Skip to content
2000
image of Exploring the Therapeutic Potential of 1,3-Thiazole: A Decade Overview

Abstract

The escalating prevalence of lifestyle and microbial diseases poses a significant threat to human well-being, necessitating the discovery and development of novel drugs with distinct modes of action. Addressing this challenge involves employing innovative strategies, and one current approach involves utilizing heterocyclic compounds to synthesize hybrid molecules. These hybrids have resulted from the fusion of two or more bioactive heterocyclic moieties into a single molecule. The focus of this review revolves around the strategic incorporation of heterocycles, particularly thiazole derivatives. Thiazole derivatives, due to their unique structural features, are explored in depth within this review paper. The paper comprehensively outlines diverse hybridization strategies of thiazole derivatives, highlighting their vibrant biological activities mainly in the last decade, 2014-2024. By presenting an extensive overview, the review aims to provide valuable insights into the potential of thiazole derivatives as promising candidates for drug development. The insights garnered from this paper are expected to offer valuable guidance for future drug design endeavors, providing a foundation for developing novel and effective drugs to combat lifestyle diseases and microbial resistance.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064365060250116103320
2025-01-22
2025-06-23
Loading full text...

Full text loading...

References

  1. Horton D.A. Bourne G.T. Smythe M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev. 2003 103 3 893 930 10.1021/cr020033s 12630855
    [Google Scholar]
  2. Parit S. Manchare A. Ghodse S. Hatvate N. Comparative review on homogeneous and heterogeneous catalyzed synthesis of 1,3-thiazole. Synth. Commun. 2024 54 23 2003 2023 10.1080/00397911.2024.2399187
    [Google Scholar]
  3. Kushwaha P. Pandey S. 1,3-thiazole derivatives as a promising scaffold in medicinal chemistry: A recent overview. Antiinflamm. Antiallergy Agents Med. Chem. 2023 22 3 133 163 10.2174/0118715230276678231102150158 37997807
    [Google Scholar]
  4. Ali S.H. Sayed A.R. Review of the synthesis and biological activity of thiazoles. Synth. Commun. 2021 51 5 670 700 10.1080/00397911.2020.1854787
    [Google Scholar]
  5. Portsmouth S. Veenhuyzen v.D. Echols R. Machida M. Ferreira J.C.A. Ariyasu M. Tenke P. Nagata T.D. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by gram-negative uropathogens: A phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect. Dis. 2018 18 12 1319 1328 10.1016/S1473‑3099(18)30554‑1 30509675
    [Google Scholar]
  6. Ghoncheh M. Pournamdar Z. Salehiniya H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac. J. Cancer Prev. 2016 17 sup3 43 46 10.7314/APJCP.2016.17.S3.43 27165206
    [Google Scholar]
  7. Shytaj I.L. Fares M. Gallucci L. Lucic B. Tolba M.M. Zimmermann L. Adler J.M. Xing N. Bushe J. Gruber A.D. Ambiel I. Ayoub T.A. Cortese M. Neufeldt C.J. Stolp B. Sobhy M.H. Fathy M. Zhao M. Laketa V. Diaz R.S. Sutton R.E. Chlanda P. Boulant S. Bartenschlager R. Stanifer M.L. Fackler O.T. Trimpert J. Savarino A. Lusic M. The fda-approved drug cobicistat synergizes with remdesivir to inhibit sars-cov-2 replication in vitro and decreases viral titers and disease progression in syrian hamsters. MBio 2022 13 2 e03705-21 10.1128/mbio.03705‑21 35229634
    [Google Scholar]
  8. Nishida Y. Kawaoka T. Imamura M. Namba M. Fujii Y. Uchikawa S. Ohya K. Daijo K. Teraoka Y. Morio K. Fujino H. Nakahara T. Yamauchi M. Hiramatsu A. Tsuge M. Aikata H. Takahashi S. Hayes C.N. Fukuhara T. Tsuji K. Arataki K. Nagaoki Y. Aisaka Y. Kamada K. Kodama H. Chayama K. Efficacy of lusutrombopag for thrombocytopenia in patients with chronic liver disease scheduled to undergo invasive procedures. Intern. Med. 2021 60 6 829 837 10.2169/internalmedicine.5930‑20 33087674
    [Google Scholar]
  9. Arshad M.F. Alam A. Alshammari A.A. Alhazza M.B. Alzimam I.M. Alam M.A. Mustafa G. Ansari M.S. Alotaibi A.M. Alotaibi A.A. Kumar S. Asdaq S.M.B. Imran M. Deb P.K. Venugopala K.N. Jomah S. Thiazole: A versatile standalone moiety contributing to the development of various drugs and biologically active agents. Molecules 2022 27 13 3994 10.3390/molecules27133994 35807236
    [Google Scholar]
  10. Rozo WE Nossa DL Duchowicz PR Antiprotozoal qsar modelling for trypanosomiasis (chagas disease) based on thiosemicarbazone and thiazole derivatives. J. Mol. Graph Model. 2021 103 107821
    [Google Scholar]
  11. Graebin CS Uchoa FD Bernardes LSC Campo VL Carvalho I Antiprotozoal agents: An overview. Anti-Infect. Agent. Medici. Chem. 2009 8 4 345 366
    [Google Scholar]
  12. de Oliveira Filho G.B. Cardoso M.V.O. Espíndola J.W.P. Oliveira e Silva D.A. Ferreira R.S. Coelho P.L. Anjos P.S. Santos E.S. Meira C.S. Moreira D.R.M. Soares M.B.P. Leite A.C.L. Structural design, synthesis and pharmacological evaluation of thiazoles against trypanosoma cruzi. Eur. J. Med. Chem. 2017 141 346 361 10.1016/j.ejmech.2017.09.047 29031078
    [Google Scholar]
  13. Zuazo N.C. Silva C.F. Puc M.R. Bacab C.M.J. Morales O.B.O. Díaz M.H. Coutiño D.D. Núñez N.E. Vázquez N.G. 2-acylamino-5-nitro-1,3-thiazoles: Preparation and in vitro bioevaluation against four neglected protozoan parasites. Bioorg. Med. Chem. 2014 22 5 1626 1633 10.1016/j.bmc.2014.01.029 24529307
    [Google Scholar]
  14. Borcea A.M. Ionuț I. Crișan O. Oniga O. An overview of the synthesis and antimicrobial, antiprotozoal, and antitumor activity of thiazole and bisthiazole derivatives. Molecules 2021 26 3 624 10.3390/molecules26030624 33504100
    [Google Scholar]
  15. Petrou A. Fesatidou M. Geronikaki A. Thiazole ring—a biologically active scaffold. Molecules 2021 26 11 3166 10.3390/molecules26113166 34070661
    [Google Scholar]
  16. Jadhav P.M. Kantevari S. Tekale A.B. Bhosale S.V. Pawar R.P. Tekale S.U. A review on biological and medicinal significance of thiazoles. Phosphorus Sulfur Silicon Relat. Elem. 2021 196 10 879 895 10.1080/10426507.2021.1945601
    [Google Scholar]
  17. Dylevych K.A. Kaminskyy D. Lesyk R. In‐vitro antiviral screening of some thiopyranothiazoles. Chem. Biol. Interact. 2023 386 110738 10.1016/j.cbi.2023.110738 37816448
    [Google Scholar]
  18. Sokolova A.S. Yarovaya О.I. Baev D.S. Shernyukov А.V. Shtro A.A. Zarubaev V.V. Salakhutdinov N.F. Aliphatic and alicyclic camphor imines as effective inhibitors of influenza virus h1n1. Eur. J. Med. Chem. 2017 127 661 670 10.1016/j.ejmech.2016.10.035 27823881
    [Google Scholar]
  19. Alam N. Arora S. Ibrahim A. Deval P. Current synthesis routes of thiazole and its derivatives and their broad spectrum therapeutic activity: A review. J. Basic Appl. Res. Biomed. 2022 8 1 35 40 10.51152/jbarbiomed.v8i1.216
    [Google Scholar]
  20. Dawood K.M. Eldebss T.M.A. Zahabi E.H.S.A. Yousef M.H. Synthesis and antiviral activity of some new bis-1,3-thiazole derivatives. Eur. J. Med. Chem. 2015 102 266 276 10.1016/j.ejmech.2015.08.005 26291036
    [Google Scholar]
  21. Alghamdi A. Abouzied A.S. Alamri A. Anwar S. Ansari M. Khadra I. Zaki Y.H. Gomha S.M. Synthesis, molecular docking, and dynamic simulation targeting main protease (mpro) of new, thiazole clubbed pyridine scaffolds as potential COVID-19 inhibitors. Curr. Issues Mol. Biol. 2023 45 2 1422 1442 10.3390/cimb45020093 36826038
    [Google Scholar]
  22. Mishchenko M. Shtrygol S. Kaminskyy D. Lesyk R. Thiazole-bearing 4-thiazolidinones as new anticonvulsant agents. Sci. Pharm. 2020 88
    [Google Scholar]
  23. Mishra C.B. Kumari S. Tiwari M. Thiazole: A promising heterocycle for the development of potent cns active agents. Eur. J. Med. Chem. 2015 92 1 34 10.1016/j.ejmech.2014.12.031 25544146
    [Google Scholar]
  24. Łączkowski K.Z. Sałat K. Misiura K. Podkowa A. Malikowska N. Synthesis and anticonvulsant activities of novel 2-(cyclopentylmethylene)hydrazinyl-1,3-thiazoles in mouse models of seizures. J. Enzyme Inhib. Med. Chem. 2016 31 6 1576 1582 10.3109/14756366.2016.1158172 27052195
    [Google Scholar]
  25. Siddiqui N. Ahsan W. Triazole incorporated thiazoles as a new class of anticonvulsants: Design, synthesis and in vivo screening. Eur. J. Med. Chem. 2010 45 4 1536 1543 10.1016/j.ejmech.2009.12.062 20116140
    [Google Scholar]
  26. Siddiqui A.A. Partap S. Khisal S. Yar M.S. Mishra R. Synthesis, anti-convulsant activity and molecular docking study of novel thiazole pyridazinone hybrid analogues. Bioorg. Chem. 2020 99 103584 10.1016/j.bioorg.2020.103584 32229345
    [Google Scholar]
  27. Ahangar N. Ayati A. Alipour E. Pashapour A. Foroumadi A. Emami S. 1-[(2-arylthiazol-4-yl)methyl]azoles as a new class of anticonvulsants: Design, synthesis, in vivo screening, and in silico drug-like properties. Chem. Biol. Drug Des. 2011 78 5 844 852 10.1111/j.1747‑0285.2011.01211.x 21827633
    [Google Scholar]
  28. Ayati A. Emami S. Asadipour A. Shafiee A. Foroumadi A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem. 2015 97 699 718 10.1016/j.ejmech.2015.04.015 25934508
    [Google Scholar]
  29. Ghabbour H.A. Kadi A.A. ElTahir K.E.H. Angawi R.F. Subbagh E.H.I. Synthesis, biological evaluation and molecular docking studies of thiazole-based pyrrolidinones and isoindolinediones as anticonvulsant agents. Med. Chem. Res. 2015 24 8 3194 3211 10.1007/s00044‑015‑1371‑3
    [Google Scholar]
  30. Amin K.M. Rahman D.E.A. Eryani A.Y.A. Synthesis and preliminary evaluation of some substituted coumarins as anticonvulsant agents. Bioorg. Med. Chem. 2008 16 10 5377 5388 10.1016/j.bmc.2008.04.021 18467106
    [Google Scholar]
  31. Ibrahim D.A. Synthesis and biological evaluation of 3,6-disubstituted [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives as a novel class of potential anti-tumor agents. Eur. J. Med. Chem. 2009 44 7 2776 2781 10.1016/j.ejmech.2009.01.003 19203813
    [Google Scholar]
  32. Thomas R. Mary Y.S. Resmi K.S. Narayana B. Sarojini B.K. Vijayakumar G. Alsenoy v.C. Two neoteric pyrazole compounds as potential anti-cancer agents: Synthesis, electronic structure, physico-chemical properties and docking analysis. J. Mol. Struct. 2019 1181 455 466 10.1016/j.molstruc.2019.01.003
    [Google Scholar]
  33. Sayed A.R. Gomha S.M. Taher E.A. Muhammad Z.A. Seedi E.H.R. Gaber H.M. Ahmed M.M. One-pot synthesis of novel thiazoles as potential anti-cancer agents. Drug Des. Devel. Ther. 2020 14 1363 1375 10.2147/DDDT.S221263 32308369
    [Google Scholar]
  34. Nalla S. Pavani Y. Gollapudi R. Poodari S. Mannam S. Synthesis and biological evaluation of amide derivatives of 1,2,4-thiadiazole-thiazole-pyridine as anticancer agents. Chemical Data Collections 2024 49 101108 10.1016/j.cdc.2023.101108
    [Google Scholar]
  35. Agarwal S. Kalal P. Gandhi D. Prajapat P. Thiazole containing heterocycles with cns activity. Curr. Drug Discov. Technol. 2018 15 3 178 195 10.2174/1570163814666170724170152 28745208
    [Google Scholar]
  36. Raza R. Saeed A. Arif M. Mahmood S. Muddassar M. Raza A. Iqbal J. Synthesis and biological evaluation of 3-thiazolocoumarinyl schiff-base derivatives as cholinesterase inhibitors. Chem. Biol. Drug Des. 2012 80 4 605 615 10.1111/j.1747‑0285.2012.01435.x 22726458
    [Google Scholar]
  37. Abbasi A.M. Raza H. Aziz-ur-Rehman Siddiqui Z.S. Adnan Ali Shah S. Hassan M. Seo S.Y. Synthesis of novel n-(1,3-thiazol-2-yl)benzamide clubbed oxadiazole scaffolds: Urease inhibition, lipinski rule and molecular docking analyses. Bioorg. Chem. 2019 83 63 75 10.1016/j.bioorg.2018.10.018 30342387
    [Google Scholar]
  38. Shiradkar M.R. Akula K.C. Dasari V. Baru V. Chiningiri B. Gandhi S. Kaur R. Clubbed thiazoles by maos: A novel approach to cyclin-dependent kinase 5/p25 inhibitors as a potential treatment for alzheimer’s disease. Bioorg. Med. Chem. 2007 15 7 2601 2610 10.1016/j.bmc.2007.01.043 17291769
    [Google Scholar]
  39. Phung O.J. Sood N.A. Sill B.E. Coleman C.I. Oral anti‐diabetic drugs for the prevention of type 2 diabetes. Diabet. Med. 2011 28 8 948 964 10.1111/j.1464‑5491.2011.03303.x 21429006
    [Google Scholar]
  40. Iida T. Ubukata M. Mitani I. Nakagawa Y. Maeda K. Imai H. Ogoshi Y. Hotta T. Sakata S. Sano R. Morinaga H. Negoro T. Oshida S. Tanaka M. Inaba T. Discovery of potent liver-selective stearoyl-coa desaturase-1 (scd1) inhibitors, thiazole-4-acetic acid derivatives, for the treatment of diabetes, hepatic steatosis, and obesity. Eur. J. Med. Chem. 2018 158 832 852 10.1016/j.ejmech.2018.09.003 30248655
    [Google Scholar]
  41. Oballa R.M. Belair L. Black W.C. Bleasby K. Chan C.C. Desroches C. Du X. Gordon R. Guay J. Guiral S. Hafey M.J. Hamelin E. Huang Z. Kennedy B. Lachance N. Landry F. Li C.S. Mancini J. Normandin D. Pocai A. Powell D.A. Ramtohul Y.K. Skorey K. Sørensen D. Sturkenboom W. Styhler A. Waddleton D.M. Wang H. Wong S. Xu L. Zhang L. Development of a liver-targeted stearoyl-coa desaturase (scd) inhibitor (mk-8245) to establish a therapeutic window for the treatment of diabetes and dyslipidemia. J. Med. Chem. 2011 54 14 5082 5096 10.1021/jm200319u 21661758
    [Google Scholar]
  42. Kang S.Y. Song K.S. Lee J. Lee S.H. Lee J. Synthesis of pyridazine and thiazole analogs as sglt2 inhibitors. Bioorg. Med. Chem. 2010 18 16 6069 6079 10.1016/j.bmc.2010.06.076 20637636
    [Google Scholar]
  43. He M. Li Y.J. Shao J. Li Y.S. Cui Z.N. Synthesis and biological evaluation of 2,5-disubstituted furan derivatives containing 1,3-thiazole moiety as potential α‐glucosidase inhibitors. Bioorg. Med. Chem. Lett. 2023 83 129173 10.1016/j.bmcl.2023.129173 36764471
    [Google Scholar]
  44. Moraski G.C. Seeger N. Miller P.A. Oliver A.G. Boshoff H.I. Cho S. Mulugeta S. Anderson J.R. Franzblau S.G. Miller M.J. Arrival of imidazo[2,1- b ]thiazole-5-carboxamides: Potent anti-tuberculosis agents that target qcrb. ACS Infect. Dis. 2016 2 6 393 398 10.1021/acsinfecdis.5b00154 27627627
    [Google Scholar]
  45. Khaldan A. Bouamrane S. mernissi E.R. Maghat H. Ajana M.A. Sbai A. In silico study of 2,4,5-trisubstituted thiazoles as inhibitors of tuberculosis using 3d-qsar, molecular docking, and admet analysis. El-Cezeri Fen ve Mühendislik Dergisi 2022 9 2 452 468 10.31202/ecjse.961940
    [Google Scholar]
  46. Aridoss G. Amirthaganesan S. Kim M.S. Kim J.T. Jeong Y.T. Synthesis, spectral and biological evaluation of some new thiazolidinones and thiazoles based on t-3-alkyl-r-2,c-6-diarylpiperidin-4-ones. Eur. J. Med. Chem. 2009 44 10 4199 4210 10.1016/j.ejmech.2009.05.015 19535178
    [Google Scholar]
  47. Althagafi I. Metwaly E.N. Farghaly T.A. New series of thiazole derivatives: Synthesis, structural elucidation, antimicrobial activity, molecular modeling and moe docking. Molecules 2019 24 9 1741 10.3390/molecules24091741 31060260
    [Google Scholar]
  48. Anuse D.G. Thorat B.R. Sawant S. Yamgar R.S. Chaudhari H.K. Mali S.N. Synthesis, sar, molecular docking and anti-microbial study of substituted n-bromoamido-2-aminobenzothiazoles. Curr. Computeraided Drug Des. 2020 16 5 530 540 10.2174/1573409915666190902143648 31475902
    [Google Scholar]
  49. Karegoudar P Sithambaram M Synthesis of some novel 2, 4-disubstituted thiazoles as possible antimicrobial agents. Euro. J. Med. Chem. 2008 43 2 261 267
    [Google Scholar]
  50. Bondock S Khalifa W Fadda AA Synthesis and antimicrobial evaluation of some new thiazole, thiazolidinone and thiazoline derivatives starting from. Eur. J. Med. Chem. 2007 42 7 948 954
    [Google Scholar]
  51. Cheng K. Xue J.Y. Zhu H.L. Design, synthesis and antibacterial activity studies of thiazole derivatives as potent eckas iii inhibitors. Bioorg. Med. Chem. Lett. 2013 23 14 4235 4238 10.1016/j.bmcl.2013.05.006 23731945
    [Google Scholar]
  52. Ammar Y.A. Hafez E.S.M.A.A. Hessein S.A. Ali A.M. Askar A.A. Ragab A. One-pot strategy for thiazole tethered 7-ethoxy quinoline hybrids: Synthesis and potential antimicrobial agents as dihydrofolate reductase (dhfr) inhibitors with molecular docking study. J. Mol. Struct. 2021 1242 130748 10.1016/j.molstruc.2021.130748
    [Google Scholar]
  53. Elwahy A.H.M. Eid E.M. Latif A.S.A. Hassaneen H.M.E. Abdelhamid I.A. Design, synthesis, dft, td-dft/pcm calculations, and molecular docking studies on the anti-COVID-19, and anti-sars activities of some new bis-thiazoles and bis-thiadiazole. Polycycl. Aromat. Compd. 2023 43 7 6407 6436 10.1080/10406638.2022.2117204
    [Google Scholar]
  54. Cholkar K. Trinh H.M. Pal D. Mitra A.K. Discovery of novel inhibitors for the treatment of glaucoma. Expert Opin. Drug Discov. 2015 10 3 293 313 10.1517/17460441.2015.1000857 25575654
    [Google Scholar]
  55. Supuran CT Carbonic anhydrase inhibition with benzenesulfonamides and tetrafluorobenzenesulfonamides obtained via click chemistry. ACS Med. Chem. Lett. 2014 5 8 927 930
    [Google Scholar]
  56. Meleddu R. Maccioni E. Distinto S. Bianco G. Melis C. Alcaro S. Bioorganic & medicinal chemistry letters activity toward carbonic anhydrase i, ii, ix, xii. Bioorg. Med. Chem. Lett. 2015 25 3281 3284 10.1016/j.bmcl.2015.05.076 26073006
    [Google Scholar]
  57. Soliman N.N. Abd El Salam M. Fadda A.A. Motaal A.M. Synthesis, characterization, and biochemical impacts of some new bioactive sulfonamide thiazole derivatives as potential insecticidal agents against the cotton leafworm, spodoptera littoralis. J. Agric. Food Chem. 2020 68 21 5790 5805 10.1021/acs.jafc.9b06394 32343563
    [Google Scholar]
  58. Kılıcaslan S. Arslan M. Ruya Z. Bilen Ç. Ergün A. Gençer N. Arslan O. Synthesis and evaluation of sulfonamide-bearing thiazole as carbonic anhydrase isoforms hca i and hca ii. J. Enzyme Inhib. Med. Chem. 2016 31 6 1300 1305 10.3109/14756366.2015.1128426 26744900
    [Google Scholar]
  59. Sabt A. Abdelrahman M.T. Abdelraof M. Rashdan H.R.M. Investigation of novel mucorales fungal inhibitors: Synthesis, in‐silico study and anti‐fungal potency of novel class of coumarin‐6‐sulfonamides‐thiazole and thiadiazole hybrids. ChemistrySelect 2022 7 17 e202200691 10.1002/slct.202200691
    [Google Scholar]
  60. Sharma P.C. Saini A. Bansal K.K. Sharma A. Gupta G.K. Design, synthesis and molecular docking studies of some thiazole clubbed heterocyclic compounds as possible anti-infective agents. Lett. Org. Chem. 2018 15 8 716 726 10.2174/1570178615666180425120039
    [Google Scholar]
  61. Alegaon S.G. U V. Alagawadi K.R. Kumar D. Kavalapure R.S. Ranade S.D. A P.S. Jalalpure S.S. Synthesis, molecular docking and adme studies of thiazole-thiazolidinedione hybrids as antimicrobial agents. J. Biomol. Struct. Dyn. 2022 40 14 6211 6227 10.1080/07391102.2021.1880479 33538239
    [Google Scholar]
  62. Melha A.S. Molecular modeling and docking studies of new antimicrobial antipyrine-thiazole hybrids. Arab. J. Chem. 2022 15 7 103898 10.1016/j.arabjc.2022.103898
    [Google Scholar]
  63. Gangurde K.B. More R.A. Adole V.A. Ghotekar D.S. Design, synthesis and biological evaluation of new series of benzotriazole-pyrazole clubbed thiazole hybrids as bioactive heterocycles: Antibacterial, antifungal, antioxidant, cytotoxicity study. J. Mol. Struct. 2024 1299 136760 10.1016/j.molstruc.2023.136760
    [Google Scholar]
  64. Ankali K.N. Rangaswamy J. Shalavadi M. Naik N. Krishnamurthy G. Synthesis and molecular docking of novel 1,3-thiazole derived 1,2,3-triazoles and in vivo biological evaluation for their anti anxiety and anti inflammatory activity. J. Mol. Struct. 2021 1236 130357 10.1016/j.molstruc.2021.130357
    [Google Scholar]
  65. Jacob P.J. Manju S.L. Identification and development of thiazole leads as cox-2/5-lox inhibitors through in-vitro and in-vivo biological evaluation for anti-inflammatory activity. Bioorg. Chem. 2020 100 103882 10.1016/j.bioorg.2020.103882 32361295
    [Google Scholar]
  66. Mohareb RM omran A.F Abdelaziz MA Ibrahim RA Anti-inflammatory and anti-ulcer activities of new fused thiazole derivatives derived from 2-(2-oxo-2h-chromen-3-yl) thiazol-4 (5h)-one. Acta Chimica Slovenica 2017 64 2 349 364
    [Google Scholar]
  67. Mansuri M. Ahmed A. Shaikh A. Haque N. Sheth A.K. Molvi K.I. Synthesis, antibacterial, anti-inflammatory and antiplatelet activities of some trisubstituted thiazoles. Inventi 2012 2012 1 6
    [Google Scholar]
  68. OSMANIYE D. Saglik bn. synthesis, characterization and biological activity evaluation of novel thiazole derivatives containing acetic acid residue as selective cox-1 inhibitors. Cumh. Sci. J. 2020 41 160 168
    [Google Scholar]
  69. Novichikhina N.P. Ashrafova Z.E. Stolpovskaya N.V. Ledenyova I.V. Kholyavka M.G. Podoplelova N.A. Panteleev M.A. Shikhaliev K.S. Synthesis and properties of novel hybrid molecules bearing 4h-pyrrolo[3,2,1-ij]quinolin-2-one and thiazole moieties. Russ. Chem. Bull. 2022 71 9 1969 1975 10.1007/s11172‑022‑3615‑y
    [Google Scholar]
  70. M P.H. Ostoot A.F.H. Kameshwar H.V. Khamees H. Khanum S.A. Design, synthesis, characterization, docking studies of novel 4-phenyl acrylamide-1,3-thiazole derivatives as anti-inflammatory and anti-ulcer agents. J. Mol. Struct. 2023 1292 136126 10.1016/j.molstruc.2023.136126
    [Google Scholar]
  71. Angeli A. Ferraroni M. Supuran C.T. Famotidine, an antiulcer agent, strongly inhibits helicobacter pylori and human carbonic anhydrases. ACS Med. Chem. Lett. 2018 9 10 1035 1038 10.1021/acsmedchemlett.8b00334 30344913
    [Google Scholar]
  72. Rathore S.S. Analytical techniques for nizatidine: A review. Separ. Sci. Plus 2019 2 329 342 10.1002/sscp.201900028
    [Google Scholar]
/content/journals/mc/10.2174/0115734064365060250116103320
Loading
/content/journals/mc/10.2174/0115734064365060250116103320
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test