Skip to content
2000
image of Integrating Machine Learning and Pharmacophore Features for Enhanced Prediction of H1 Receptor Blockers

Abstract

Introduction

Histamine Type I Receptor Antagonists (H1 blockers) are widely used to mitigate histamine-induced inflammation, particularly in allergic reactions. Histamine, a biogenic amine found in endothelial cells, vascular smooth muscle, bronchial smooth muscle, and the hypothalamus, is a key player in these responses. H1 blockers are essential in cough syrups and flu medications and are divided into two generations: first-generation H1 blockers, which are sedating and have numerous side effects, and second-generation blockers, which are non-sedating and generally less toxic but may still exhibit cross-reactivity with other receptors.

Method

In this study, a comprehensive database of compounds was utilized alongside fexofenadine as a benchmark to discover compounds with potentially superior efficacy and reduced side effect profiles. In particular, multidimensional K-means clustering, a machine-learning technique, was applied to identify compounds with chemical structures similar to fexofenadine.

Result

Utilizing computational prediction of pharmacokinetic profile and molecular docking experiments, the action of these drugs on the H1 receptor was assessed. Furthermore, the cross-reactivity of antihistamines was investigated by conducting a structure-based pharmacophore feature analysis of the docked poses of highly toxic antihistamines with various receptors.

Conclusion

By identifying and proposing the removal of common toxic features, we aim to facilitate the development of antihistamines with fewer adverse effects.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064355393250121062539
2025-01-27
2025-06-30
Loading full text...

Full text loading...

References

  1. Qian H. Shu C. Xiao L. Wang G. Histamine and histamine receptors: Roles in major depressive disorder. Front. Psychiatry 2022 13 825591 10.3389/fpsyt.2022.825591 36213905
    [Google Scholar]
  2. Patel R.H. Mohiuddin S.S. Biochemistry, Histamine. StatPearls 2021
    [Google Scholar]
  3. Sanna M.D. Galeotti N. Central neuronal functions of histamine H4 receptors. Oncotarget 2017 8 8 12556 12557 10.18632/oncotarget.15289 28199959
    [Google Scholar]
  4. Steinhoff M. Buddenkotte J. Lerner E.A. Role of mast cells and basophils in pruritus. Immunol. Rev. 2018 282 1 248 264 10.1111/imr.12635 29431207
    [Google Scholar]
  5. Bonnekoh H. Scheffel J. Kambe N. Krause K. The role of mast cells in autoinflammation. Immunol. Rev. 2018 282 1 265 275 10.1111/imr.12633 29431217
    [Google Scholar]
  6. Dileepan K.N. Raveendran V.V. Sharma R. Abraham H. Barua R. Singh V. Sharma R. Sharma M. Mast cell-mediated immune regulation in health and disease. Front. Med. 2023 10 1213320 10.3389/fmed.2023.1213320 37663654
    [Google Scholar]
  7. Branco A.C.C.C. Yoshikawa F.S.Y. Pietrobon A.J. Sato M.N. Role of histamine in modulating the immune response and inflammation. Mediators Inflamm 2018 2018 9524075 10.1155/2018/9524075
    [Google Scholar]
  8. Shulpekova Y.O. Nechaev V.M. Popova I.R. Deeva T.A. Kopylov A.T. Malsagova K.A. Kaysheva A.L. Ivashkin V.T. Food intolerance: The role of histamine. Nutrients 2021 13 9 3207 10.3390/nu13093207 34579083
    [Google Scholar]
  9. Wang W. Yu H. Pan Y. Shao S. Combined treatment With H1 and H4 receptor antagonists improves th2 inflammatory responses in the nasal mucosa of allergic rhinitis rats. Am. J. Rhinol. Allergy 2021 35 6 809 816 10.1177/19458924211002604 33726554
    [Google Scholar]
  10. Mahdy A.M. Webster N.R. Histamine and antihistamines. Anaesth. Intensive Care Med. 2017 18 4 210 215 10.1016/j.mpaic.2017.01.007
    [Google Scholar]
  11. Obara I. Telezhkin V. Alrashdi I. Chazot P.L. Histamine, histamine receptors, and neuropathic pain relief. Br. J. Pharmacol. 2020 177 3 580 599 10.1111/bph.14696 31046146
    [Google Scholar]
  12. Ince M. Ruether P. Histamine and antihistamines. Anaesth. Intensive Care Med. 2021 22 11 749 755 10.1016/j.mpaic.2021.07.025
    [Google Scholar]
  13. Linton S. Hossenbaccus L. Ellis A.K. Evidence-based use of antihistamines for treatment of allergic conditions. Ann. Allergy Asthma Immunol. 2023 131 4 412 420 10.1016/j.anai.2023.07.019
    [Google Scholar]
  14. Akimoto H. Uesawa Y. Hishinuma S. Molecular determinants of the kinetic binding properties of antihistamines at the histamine H1 receptors. Int. J. Mol. Sci. 2021 22 5 2400 10.3390/ijms22052400 33673686
    [Google Scholar]
  15. Bernstein D.I. Schoenwetter W.F. Nathan R.A. Storms W. Ahlbrandt R. Mason J. Efficacy and safety of fexofenadine hydrochloride for treatment of seasonal allergic rhinitis. Ann. Allergy Asthma Immunol. 1997 79 5 443 448 10.1016/S1081‑1206(10)63041‑4 9396979
    [Google Scholar]
  16. Meltzer E.O. Rosario N.A. Van Bever H. Lucio L. Fexofenadine: Review of safety, efficacy and unmet needs in children with allergic rhinitis. Allergy Asthma Clin. Immunol. 2021 17 1 113 10.1186/s13223‑021‑00614‑6 34727966
    [Google Scholar]
  17. Lipkus A.H. A proof of the triangle inequality for the Tanimoto distance. J. Math. Chem. 1999 26 1/3 263 265 10.1023/A:1019154432472
    [Google Scholar]
  18. Ballester P.J. Multidisciplinary Digital Publishing Institute 2019 Available from: https://www.mdpi.com/
  19. Sasahara K. Shibata M. Sasabe H. Suzuki T. Takeuchi K. Umehara K. Kashiyama E. Feature importance of machine learning prediction models shows structurally active part and important physicochemical features in drug design. Drug Metab. Pharmacokinet. 2021 39 100401 10.1016/j.dmpk.2021.100401 34089983
    [Google Scholar]
  20. Environment M.O. Montreal M.O.E. Molecular operating environment 2019 Available from: https://www.chemcomp.com/en/Products.htm
    [Google Scholar]
  21. Eibe I.W. Witten I.H. Frank E. Trigg L. Hall M. Holmes G. Cunningham S.J. Proc ICONIP/ANZIIS/ANNES99 Future Directions for Intelligent Systems and Information Sciences 1999
    [Google Scholar]
  22. Inselberg A. Parallel Coordinates Springer 2009
    [Google Scholar]
  23. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  24. Shimamura T. Shiroishi M. Weyand S. Tsujimoto H. Winter G. Katritch V. Abagyan R. Cherezov V. Liu W. Han G.W. Kobayashi T. Stevens R.C. Iwata S. Structure of the human histamine H1 receptor complex with doxepin. Nature 2011 475 7354 65 70 10.1038/nature10236 21697825
    [Google Scholar]
  25. Salentin S. Schreiber S. Haupt V.J. Adasme M.F. Schroeder M. PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Res. 2015 43 W1 W443 W447 10.1093/nar/gkv315 25873628
    [Google Scholar]
  26. Larenas-Linnemann D. Comparing antihistamines in chronic spontaneous urticaria: Possible future directions. J. Allergy Clin. Immunol. Pract. 2021 9 6 2272 2273 10.1016/j.jaip.2021.02.024 34112475
    [Google Scholar]
  27. Kalpaklioglu F. Baccioglu A. Efficacy and safety of H1-antihistamines: An update. Antiinflamm. Antiallergy Agents Med. Chem. 2012 11 3 230 237
    [Google Scholar]
  28. Wolber G. Langer T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 2005 45 1 160 169 10.1021/ci049885e 15667141
    [Google Scholar]
  29. Steindl T.M. Schuster D. Wolber G. Laggner C. Langer T. High-throughput structure-based pharmacophore modelling as a basis for successful parallel virtual screening. J. Comput. Aided Mol. Des. 2007 20 12 703 715 10.1007/s10822‑006‑9066‑y 17009092
    [Google Scholar]
  30. Daddam J.R. Sreenivasulu B. Peddanna K. Umamahesh K. Designing, docking and molecular dynamics simulation studies of novel cloperastine analogues as anti-allergic agents: Homology modeling and active site prediction for the human histamine H1 receptor. RSC Advances 2020 10 8 4745 4754 10.1039/C9RA09245E 35495246
    [Google Scholar]
/content/journals/mc/10.2174/0115734064355393250121062539
Loading
/content/journals/mc/10.2174/0115734064355393250121062539
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: machine learning ; H1 blockers ; multidimensional k-means clustering
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test