Skip to content
2000
image of A Comprehensive Review: Synthesis and Pharmacological Activities of 1,3,4-Oxadiazole Hybrid Scaffolds

Abstract

Introduction

Heterocyclic derivatives, particularly those containing heteroatoms such as oxygen and nitrogen, represent a significant portion of currently marketed drugs. Among these, the aromatic heterocycle 1,3,4-oxadiazole, characterized by an N=C=O-linkage, stands out due to its remarkable biological activities. These activities include anti-inflammatory, anti-cancer, antioxidant, anti-tubercular, antiviral, anti-diabetic, and antibacterial effects. Notably, several commercially available medications, such as tiodazosin, raltegravir, zibotentan, and nesapidil, incorporate this structural motif.

Methods

This review compiles and analyzes existing synthetic methods for preparing 1,3,4-oxadiazole and its derivatives. By examining various synthetic routes and methodologies, the review provides a detailed overview of the strategies employed to generate these biologically active compounds.

Results

The review highlights the potential of 1,3,4-oxadiazole derivatives in addressing the toxicity, side effects, and drug resistance commonly associated with existing anticancer therapies. By combining the 1,3,4-oxadiazole moiety with other heteroatoms, novel hybrid derivatives have been synthesized, demonstrating enhanced pharmacological activities across various therapeutic areas.

Conclusion

This comprehensive review offers valuable insights into the synthesis and pharmacological applications of 1,3,4-oxadiazoles. It serves as a crucial resource for researchers exploring the development of new therapeutic compounds, with the ultimate goal of improving public health. The review builds on existing literature from the last two decades to present an exhaustive examination of the potential of 1,3,4-oxadiazole derivatives in drug development.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064354700241202174614
2025-01-23
2025-07-13
Loading full text...

Full text loading...

References

  1. Gujjarappa R. Sravani S. Kabi A.K. Garg A. Vodnala N. Tyagi U. Kaldhi D. Singh V. Gupta S. Malakar C.C. An overview on biological activities of oxazole, isoxazoles and 1,2,4-oxadiazoles derivatives. Nanostructured Biomater. Basic Struct. Appl. Swain B.P. Singapore Springer 2022 379 400 10.1007/978‑981‑16‑8399‑2_10
    [Google Scholar]
  2. Akbar S. Das S. Dewangan R.P. Joseph A. Ahmed B. Review on the potential of 1,3,4-Oxadiazine derivatives: Synthesis, structure-activity relationship, and future prospects in drug development. Eur J Med Chem Rep 2024 11 100152 10.1016/j.ejmcr.2024.100152
    [Google Scholar]
  3. Chaudhary T. Upadhyay P.K. Recent advancement in synthesis and bioactivities of 1,3,4-oxadiazole. Curr. Org. Synth. 2023 20 6 663 677 10.2174/1570179420666221129153933 36453511
    [Google Scholar]
  4. Sahu B. Bhatia R. Kaur D. Choudhary D. Rawat R. Sharma S. Kumar B. Design, synthesis and biological evaluation of oxadiazole clubbed piperazine derivatives as potential antidepressant agents. Bioorg. Chem. 2023 136 106544 10.1016/j.bioorg.2023.106544 37116324
    [Google Scholar]
  5. Zoroddu S. Corona P. Sanna L. Borghi F. Bordoni V. Asproni B. Pinna G.A. Bagella L. Murineddu G. Novel 1,3,4-oxadiazole chalcogen analogues: Synthesis and cytotoxic activity. Eur. J. Med. Chem. 2022 238 114440 10.1016/j.ejmech.2022.114440 35576700
    [Google Scholar]
  6. Balachandra A. Deshpande S.N. Raj A. Revanasiddappa B.C. Synthesis, molecular docking, and anticonvulsant activity of 1,3,4-oxadiazole derivatives. J. Health Allied Sci 2024 10.1055/s‑0044‑1787814
    [Google Scholar]
  7. Ma S. Jiang W. Li Q. Li T. Wu W. Bai H. Shi B. Design, synthesis, and study of the insecticidal activity of novel steroidal 1,3,4-oxadiazoles. J. Agric. Food Chem. 2021 69 39 11572 11581 10.1021/acs.jafc.1c00088 34554742
    [Google Scholar]
  8. Verma S.K. Verma R. Verma S. Vaishnav Y. Tiwari S.P. Rakesh K.P. Anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review. Eur. J. Med. Chem. 2021 209 112886 10.1016/j.ejmech.2020.112886 33032083
    [Google Scholar]
  9. Parizadeh N. Alipour E. Soleymani S. Zabihollahi R. Aghasadeghi M.R. Hajimahdi Z. Zarghi A. Synthesis of novel 3-(5-(Alkyl/arylthio)-1,3,4-Oxadiazol-2-yl)-8-Phenylquinolin-4(1 H )-one derivatives as anti-HIV agents. Phosphorus Sulfur Silicon Relat. Elem. 2018 193 4 225 231 10.1080/10426507.2017.1394302
    [Google Scholar]
  10. Wang Y.E. Yang D. Dai L. Huo J. Chen L. Kang Z. Mao J. Zhang J. Design, synthesis, herbicidal activity, and molecular docking study of 2-Thioether-5-(Thienyl/Pyridyl)-1,3,4-Oxadiazoles as potent transketolase inhibitors. J. Agric. Food Chem. 2022 70 8 2510 2519 10.1021/acs.jafc.1c06897 35175764
    [Google Scholar]
  11. Hamoud M.M.S. Osman N.A. Rezq S. A A Abd El-Wahab H. E A Hassan A. Abdel-Fattah H.A. Romero D.G. Ghanim A.M. Design and synthesis of novel 1,3,4-Oxadiazole and 1,2,4-Triazole derivatives as cyclooxygenase-2 inhibitors with anti-inflammatory and antioxidant activity in LPS-stimulated RAW264.7 macrophages. Bioorg. Chem. 2022 124 105808 10.1016/j.bioorg.2022.105808 35447409
    [Google Scholar]
  12. Lata S. Kaur R. Singh G. Bhandari D.D. Abbot V. Exploring the antimicrobial potential of novel 2-oxo-2-H-chromene conjugates with guanine, thiazole, and imidazole: Synthesis, characterization, and biological evaluation. Eur J Med Chem Rep 2024 12 100179 10.1016/j.ejmcr.2024.100179
    [Google Scholar]
  13. Wang Y. Li D. Lv Z. Feng B. Li T. Weng X. Efficacy and safety of Gutong Patch compared with NSAIDs for knee osteoarthritis: A real-world multicenter, prospective cohort study in China. Pharmacol. Res. 2023 197 106954 10.1016/j.phrs.2023.106954 37832860
    [Google Scholar]
  14. Heinrich M. Appendino G. Efferth T. Fürst R. Izzo A.A. Kayser O. Pezzuto J.M. Viljoen A. Best practice in research – Overcoming common challenges in phytopharmacological research. J. Ethnopharmacol. 2020 246 112230 10.1016/j.jep.2019.112230 31526860
    [Google Scholar]
  15. Zhou Y. Li L. Yu Z. Gu X. Pan R. Li Q. Yuan C. Cai F. Zhu Y. Cui Y. Dermatophagoides pteronyssinus allergen Der p 22: Cloning, expression, IgE ‐binding in asthmatic children, and immunogenicity. Pediatr. Allergy Immunol. 2022 33 8 e13835 10.1111/pai.13835 36003049
    [Google Scholar]
  16. Mermer A. Keles T. Sirin Y. Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorg. Chem. 2021 114 105076 10.1016/j.bioorg.2021.105076 34157555
    [Google Scholar]
  17. Chernyshov V.V. Popadyuk I.I. Yarovaya O.I. Salakhutdinov N.F. Nitrogen-containing heterocyclic compounds obtained from monoterpenes or their derivatives: Synthesis and properties. Top. Curr. Chem. 2022 380 5 42 10.1007/s41061‑022‑00399‑1 35951263
    [Google Scholar]
  18. Kapila I. Bharwal A. Sharma P. Choudhary N. Abbot V. Synthetic marvels in tuberculosis research: An in-depth review of 1,3,4-oxadiazole derivatives as antitubercular agents. Eur J Med Chem Rep 2024 11 100150 10.1016/j.ejmcr.2024.100150
    [Google Scholar]
  19. Zhou Y. Li Q. Pan R. Wang Q. Zhu X. Yuan C. Cai F. Gao Y. Cui Y. Regulatory roles of three miRNAs on allergen mRNA expression in Tyrophagus putrescentiae. Allergy 2022 77 2 469 482 10.1111/all.15111 34570913
    [Google Scholar]
  20. Li X. Liang J. Hu J. Ma L. Yang J. Zhang A. Jing Y. Song Y. Yang Y. Feng Z. Du Z. Wang Y. Luo T. He W. Shu X. Yang S. Li Q. Mei M. Luo S. Liao K. Zhang Y. He Y. He Y. Xiao M. Peng B. Chongqing Primary Aldosteronism Study (CONPASS) Group Screening for primary aldosteronism on and off interfering medications. Endocrine 2023 83 1 178 187 10.1007/s12020‑023‑03520‑6 37796417
    [Google Scholar]
  21. Patel D.S.A. 1, 3, 4-Oxadiazole: Synthesis and Pharmacological Applications. Crown Publishing 2024
    [Google Scholar]
  22. Zuo W. Zuo L. Geng X. Li Z. Wang L. Photoinduced C–H heteroarylation of enamines via quadruple cleavage of CF 2 Br 2. Org. Chem. Front. 2023 10 24 6112 6116 10.1039/D3QO01474F
    [Google Scholar]
  23. Singh R.B. Singh G.K. Chaturvedi K. Kumar D. Singh S.K. Zaman M.K. Design, synthesis, characterization, and molecular modeling studies of novel oxadiazole derivatives of nipecotic acid as potential anticonvulsant and antidepressant agents. Med. Chem. Res. 2018 27 1 137 152 10.1007/s00044‑017‑2047‑y
    [Google Scholar]
  24. Zhao L. Weng Y. Zhou X. Wu G. Aminoselenation and dehydroaromatization of cyclohexanones with anilines and diselenides. Org. Lett. 2024 26 22 4835 4839 10.1021/acs.orglett.4c01799 38809603
    [Google Scholar]
  25. Ahsan M.J. 1,3,4-oxadiazole containing compounds as therapeutic targets for cancer therapy. Mini Rev. Med. Chem. 2022 22 1 164 197 10.2174/1389557521666210226145837 33634756
    [Google Scholar]
  26. Chen S. Semenov I. Zhang F. Yang Y. Geng J. Feng X. Meng Q. Lei K. An effective framework for predicting drug–drug interactions based on molecular substructures and knowledge graph neural network. Comput. Biol. Med. 2024 169 107900 10.1016/j.compbiomed.2023.107900 38199213
    [Google Scholar]
  27. Khan A.A. Rahim F. Taha M. Rehman W. Iqbal N. Wadood A. Ahmad N. Shah S.A.A. Ghoneim M.M. Alshehri S. Salahuddin M. Khan K.M. New biologically dynamic hybrid pharmacophore triazinoindole-based-thiadiazole as potent α-glucosidase inhibitors: In vitro and in silico study. Int. J. Biol. Macromol. 2022 199 77 85 10.1016/j.ijbiomac.2021.12.147 34968547
    [Google Scholar]
  28. Nayak S. Gaonkar S.L. Musad E.A. Dawsar A.M.A.L. 1,3,4-Oxadiazole-containing hybrids as potential anticancer agents: Recent developments, mechanism of action and structure-activity relationships. J. Saudi Chem. Soc. 2021 25 8 101284 10.1016/j.jscs.2021.101284
    [Google Scholar]
  29. Mouscadet J.F. Tchertanov L. Raltegravir: Molecular basis of its mechanism of action. Eur. J. Med. Res. 2009 14 Suppl 3 Suppl. 3 5 16 10.1186/2047‑783X‑14‑S3‑5 19959411
    [Google Scholar]
  30. Hassan A. Khan A.H. Saleem F. Ahmad H. Khan K.M. A patent review of pharmaceutical and therapeutic applications of oxadiazole derivatives for the treatment of chronic diseases (2013–2021). Expert Opin Ther Pat 2022 32 969 1001 10.1080/13543776.2022.2116312
    [Google Scholar]
  31. Siwach A. Verma P.K. Therapeutic potential of oxadiazole or furadiazole containing compounds. BMC Chem. 2020 14 1 70 10.1186/s13065‑020‑00721‑2 33372629
    [Google Scholar]
  32. Desai N. Monapara J. Jethawa A. Khedkar V. Shingate B. Oxadiazole: A highly versatile scaffold in drug discovery. Arch. Pharm. 2022 355 9 2200123 10.1002/ardp.202200123 35575467
    [Google Scholar]
  33. Ding C. Zhang G. Yu Y. Zhao Y. Xie X. Iron(III)/TEMPO-catalyzed synthesis of 2,5-Disubstituted 1,3,4-Oxadiazoles by oxidative cyclization under mild conditions. Synlett 2017 28 11 1373 1377 10.1055/s‑0036‑1588747
    [Google Scholar]
  34. Xu X.C. Wu D.N. Liang Y.X. Yang M. Yuan H.Y. Zhao Y.L. Visible light-induced coupling cyclization reaction of α-diazosulfonium triflates with α-oxocarboxylic acids or alkynes. J. Org. Chem. 2022 87 24 16604 16616 10.1021/acs.joc.2c02267 36469572
    [Google Scholar]
  35. Kumar D. Pilania M. Arun V. Mishra B. A facile and expeditious one-pot synthesis of α-Keto-1,3,4-oxadiazoles. Synlett 2014 25 8 1137 1141 10.1055/s‑0033‑1340981
    [Google Scholar]
  36. Wet-osot S. Phakhodee W. Pattarawarapan M. Application of N -Acylbenzotriazoles in the synthesis of 5-Substituted 2-Ethoxy-1,3,4-oxadiazoles as building blocks toward 3,5-Disubstituted 1,3,4-Oxadiazol-2(3 H )-ones. J. Org. Chem. 2017 82 18 9923 9929 10.1021/acs.joc.7b01863 28862855
    [Google Scholar]
  37. Yadav L. Kapoorr R. Singh S. Tripathi S. Photocatalytic oxidative heterocyclization of semicarbazones: An efficient approach for the synthesis of 1,3,4-Oxadiazoles. Synlett 2015 26 9 1201 1206 10.1055/s‑0034‑1380493
    [Google Scholar]
  38. Dolman S.J. Gosselin F. O’Shea P.D. Davies I.W. Superior reactivity of thiosemicarbazides in the synthesis of 2-amino-1,3,4-oxadiazoles. J. Org. Chem. 2006 71 25 9548 9551 10.1021/jo0618730 17137395
    [Google Scholar]
  39. Yang S.J. Lee S.H. Kwak H.J. Gong Y.D. Regioselective synthesis of 2-amino-substituted 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives via reagent-based cyclization of thiosemicarbazide intermediate. J. Org. Chem. 2013 78 2 438 444 10.1021/jo302324r 23215154
    [Google Scholar]
  40. Fan Y. He Y. Liu X. Hu T. Ma H. Yang X. Luo X. Huang G. Iodine-mediated domino oxidative cyclization: One-pot synthesis of 1,3,4-oxadiazoles via oxidative cleavage of C(sp 2 )–H or C(sp)–H bond. J. Org. Chem. 2016 81 15 6820 6825 10.1021/acs.joc.6b01135 27387390
    [Google Scholar]
  41. Gao Q. Liu S. Wu X. Zhang J. Wu A. Direct annulation of hydrazides to 1,3,4-Oxadiazoles via oxidative C(CO)–C(Methyl) bond cleavage of methyl ketones. Org. Lett. 2015 17 12 2960 2963 10.1021/acs.orglett.5b01241 26035338
    [Google Scholar]
  42. Fang T. Tan Q. Ding Z. Liu B. Xu B. Pd-catalyzed oxidative annulation of hydrazides with isocyanides: Synthesis of 2-amino-1,3,4-oxadiazoles. Org. Lett. 2014 16 9 2342 2345 10.1021/ol5006449 24725151
    [Google Scholar]
  43. Chauhan J. Ravva M.K. Sen S. Harnessing autoxidation of aldehydes: In situ iodoarene catalyzed synthesis of substituted 1,3,4-Oxadiazole, in the presence of molecular oxygen. Org. Lett. 2019 21 16 6562 6565 10.1021/acs.orglett.9b02542 31368711
    [Google Scholar]
  44. Pattarawarapan M. Yamano D. Wiriya N. Phakhodee W. Wet-osot S. Mechanochemical synthesis of 2,5-disubstituted 1,3,4-oxadiazoles mediated by PPh3-TCCA. Synlett 2022 33 14 1458 1462 10.1055/s‑0040‑1719867
    [Google Scholar]
  45. Wang L. Cao J. Chen Q. He M. One-pot synthesis of 2,5-Diaryl 1,3,4-Oxadiazoles via Di- tert -butyl peroxide promoted N -Acylation of aryl tetrazoles with aldehydes. J. Org. Chem. 2015 80 9 4743 4748 10.1021/acs.joc.5b00207 25860162
    [Google Scholar]
  46. Niu P. Kang J. Tian X. Song L. Liu H. Wu J. Yu W. Chang J. Synthesis of 2-amino-1,3,4-oxadiazoles and 2-amino-1,3,4-thiadiazoles via sequential condensation and I2-mediated oxidative C–O/C–S bond formation. J. Org. Chem. 2015 80 2 1018 1024 10.1021/jo502518c 25506709
    [Google Scholar]
  47. George N. Sabahi B.A. AbuKhader M. Balushi K.A. Akhtar M.J. Khan S.A. Design, synthesis and in vitro biological activities of coumarin linked 1,3,4-oxadiazole hybrids as potential multi-target directed anti-Alzheimer agents. J. King Saud Univ. Sci. 2022 34 4 101977 10.1016/j.jksus.2022.101977
    [Google Scholar]
  48. Synthesis and biological evaluation of newer analogues of 2,5-disubstituted-1,3,4-Oxadiazole as anti-microbial, antioxidant and anticonvulsant agents - ProQuest. Available from: https://www.proquest.com/openview/a3fdc3fa4c30e6909923eb7d0137e870/1?pq-origsite=gscholar&cbl=2026366&diss=y
  49. Tantak M.P. Malik M. Klingler L. Olson Z. Kumar A. Sadana R. Kumar D. Indolyl-α-keto-1,3,4-oxadiazoles: Synthesis, anti-cell proliferation activity, and inhibition of tubulin polymerization. Bioorg. Med. Chem. Lett. 2021 37 127842 10.1016/j.bmcl.2021.127842 33556575
    [Google Scholar]
  50. Al-Wahaibi L.H. Mohamed A.A.B. Tawfik S.S. Hassan H.M. El-Emam A.A. 1,3,4-oxadiazole N-mannich bases: Synthesis, antimicrobial, and anti-proliferative activities. Molecules 2021 26 8 2110 10.3390/molecules26082110 33916955
    [Google Scholar]
  51. Li T. Wen G. Li J. Zhang W. Wu S. A useful synthesis of 2-acylamino-1,3,4-oxadiazoles from acylthiosemicarbazides using potassium iodate and the discovery of new antibacterial compounds. Molecules 2019 24 8 1490 10.3390/molecules24081490 30988267
    [Google Scholar]
  52. Aboraia A.S. Abdel-Rahman H.M. Mahfouz N.M. EL-Gendy M.A. Novel 5-(2-hydroxyphenyl)-3-substituted-2,3-dihydro-1,3,4-oxadiazole-2-thione derivatives: Promising anticancer agents. Bioorg. Med. Chem. 2006 14 4 1236 1246 10.1016/j.bmc.2005.09.053 16242340
    [Google Scholar]
  53. Bahri F. Shadi M. Mohammadian R. Javanbakht S. Shaabani A. Cu-decorated cellulose through a three-component Betti reaction: An efficient catalytic system for the synthesis of 1,3,4-oxadiazoles via imine C H functionalization of N-acylhydrazones. Carbohydr. Polym. 2021 265 118067 10.1016/j.carbpol.2021.118067 33966831
    [Google Scholar]
  54. Matheau-Raven D. Dixon D.J. General α‐amino 1,3,4‐oxadiazole synthesis via late‐stage reductive functionalization of tertiary amides and lactams**. Angew. Chem. Int. Ed. 2021 60 36 19725 19729 10.1002/anie.202107536 34191400
    [Google Scholar]
  55. Huang H. Zou X. Cao S. Peng Z. Peng Y. Wang X. N -heterocyclic carbene-catalyzed cyclization of aldehydes with α-diazo iodonium triflate: Facile access to 2,5-Disubstituted 1,3,4-Oxadiazoles. Org. Lett. 2021 23 11 4185 4190 10.1021/acs.orglett.1c01128 33989007
    [Google Scholar]
  56. Guin S. Ghosh T. Rout S.K. Banerjee A. Patel B.K. Cu(II) catalyzed imine C-H functionalization leading to synthesis of 2,5-substituted 1,3,4-oxadiazoles. Org. Lett. 2011 13 22 5976 5979 10.1021/ol202409r 22007797
    [Google Scholar]
  57. Adib M. Kesheh M.R. Ansari S. Bijanzadeh H.R. Reaction between N-Isocyaniminotriphenylphosphorane, Aldehydes, and Carboxylic acids: A one-pot and three-component synthesis of 2-Aryl-5-hydroxyalkyl-1,3,4-oxadiazoles. Synlett 2009 2009 1575 1578 10.1055/s‑0029‑1217337
    [Google Scholar]
  58. Godhani D.R. Mulani V.B. Mehta J.P. Cyclization and antimicrobial evolution of 1,3,4-oxadiazoles by carbohydrazide. World Sci. News 2019 124
    [Google Scholar]
  59. Triloknadh S. Rao C. Nagaraju B. Balaji H. Balaji M. Design and synthesis of novel 1,3,4-Oxadiazole and 1,2,4-Triazolo[3,4- B]1,3,4-Thiadiazole derivatives and their antimicrobial studies. 2018 Available from: https://www.semanticscholar.org/paper/DESIGN-AND-SYNTHESIS-OF-NOVEL-1%2C3%2C4-OXADIAZOLE-AND-Triloknadh-Rao/295ddcdd140053c6b793175a81c5611ccbdec56a
  60. Polothi R. Raolji G.S.B. Kuchibhotla V.S. Sheelam K. Tuniki B. Thodupunuri P. Synthesis and biological evaluation of 1,2,4-oxadiazole linked 1,3,4-oxadiazole derivatives as tubulin binding agents. Synth. Commun. 2019 49 13 1603 1612 10.1080/00397911.2018.1535076
    [Google Scholar]
  61. Jafari E. Hassanzadeh F. Sadeghi-Aliabadi H. Sharifzadeh A. Dana N. Synthesis and cytotoxic evaluation of some quinazolinone- 5-(4-chlorophenyl) 1, 3, 4-oxadiazole conjugates. Res. Pharm. Sci. 2019 14 5 408 413 10.4103/1735‑5362.268201 31798657
    [Google Scholar]
  62. Gu W. Jin X.Y. Li D.D. Wang S.F. Tao X.B. Chen H. Design, synthesis and in vitro anticancer activity of novel quinoline and oxadiazole derivatives of ursolic acid. Bioorg. Med. Chem. Lett. 2017 27 17 4128 4132 10.1016/j.bmcl.2017.07.033 28733083
    [Google Scholar]
  63. Roy P.P. Bajaj S. Maity T.K. Singh J. Synthesis and evaluation of anticancer activity of 1, 3, 4-oxadiazole derivatives against Ehrlich ascites carcinoma bearing mice and their correlation with histopathology of liver. Indian J Pharm Educ 2017 15 16
    [Google Scholar]
  64. Zhang X.M. Qiu M. Sun J. Zhang Y.B. Yang Y.S. Wang X.L. Tang J.F. Zhu H.L. Synthesis, biological evaluation, and molecular docking studies of 1,3,4-oxadiazole derivatives possessing 1,4-benzodioxan moiety as potential anticancer agents. Bioorg. Med. Chem. 2011 19 21 6518 6524 10.1016/j.bmc.2011.08.013 21962523
    [Google Scholar]
  65. Al-Tamimi A.M.S. Mary Y.S. Miniyar P.B. Al-Wahaibi L.H. El-Emam A.A. Armaković S. Armaković S.J. Synthesis, spectroscopic analyses, chemical reactivity and molecular docking study and anti-tubercular activity of pyrazine and condensed oxadiazole derivatives. J. Mol. Struct. 2018 1164 459 469 10.1016/j.molstruc.2018.03.085
    [Google Scholar]
  66. Gholap S. Tambe M. Nawale L. Sarkar D. Sangshetti J. Damale M. Design, synthesis, and pharmacological evaluation of fluorinated azoles as anti‐tubercular agents. Arch. Pharm. 2018 351 2 1700294 10.1002/ardp.201700294 29292534
    [Google Scholar]
  67. Sajja Y. Vanguru S. Vulupala H.R. Nagarapu L. Perumal Y. Sriram D. Nanubolu J.B. Design, synthesis, and in vitro antituberculosis activity of benzo[6,7]cyclohepta[1,2‐ b ]pyridine‐1,3,4‐oxadiazole derivatives. Chem. Biol. Drug Des. 2017 90 4 496 500 10.1111/cbdd.12969 28267891
    [Google Scholar]
  68. Sapariya N.H. Vaghasiya B.K. Thummar R.P. Kamani R.D. Patel K.H. Raval D.K. An efficient iodobenzene diacetate (IBD) catalyzed tetrazolo [1, 5-a] quinoline incorporated 1, 3, 4-oxadiazole nucleus: Synthesis, characterization and biological evaluation. Heterocycl. Lett. 2017 7 745 762
    [Google Scholar]
  69. Karad S.C. Purohit V.B. Avalani J.R. Sapariya N.H. Raval D.K. Design, synthesis, and characterization of a fluoro substituted novel pyrazole nucleus clubbed with 1,3,4-oxadiazole scaffolds and their biological applications. RSC Advances 2016 6 47 41532 41541 10.1039/C6RA01349J
    [Google Scholar]
  70. Lole B. Waghmale S. Piste P. Solid supported microwave assisted rapid synthesis of 1, 3, 4 oxadiazoles. Int. J. Pharm. Sci. Res. 2016 7 2231
    [Google Scholar]
  71. Desai N.C. Vaghani H.V. Jethawa A.M. Khedkar V.M. In silico molecular docking studies of oxadiazole and pyrimidine bearing heterocyclic compounds as potential antimicrobial agents. Arch. Pharm. 2021 354 10 2100134 10.1002/ardp.202100134 34169569
    [Google Scholar]
  72. Patel B.Y. Karkar T.J. Bhatt M.J. Synthesis of 5-substituted-1,3,4-oxadiazole clubbed pyrazole and dihydropyrimidine derivatives as potent bioactive agents. Eur. Chem. Bull. 2021 10 1 13 13 10.17628/ecb.2021.10.13‑20
    [Google Scholar]
  73. Paruch K. Popiołek Ł. Biernasiuk A. Hordyjewska A. Malm A. Wujec M. Novel 3-Acetyl-2,5-disubstituted-1,3,4-oxadiazolines: Synthesis and biological activity. Molecules 2020 25 24 5844 10.3390/molecules25245844 33322054
    [Google Scholar]
  74. Bitla S. Sagurthi S.R. Dhanavath R. Puchakayala M.R. Birudaraju S. Gayatri A.A. Bhukya V.K. Atcha K.R. Design and synthesis of triazole conjugated novel 2,5-diaryl substituted 1,3,4-oxadiazoles as potential antimicrobial and anti-fungal agents. J. Mol. Struct. 2020 1220 128705 10.1016/j.molstruc.2020.128705
    [Google Scholar]
  75. Hkiri S. Hafidh A. Cavalier J.F. Touil S. Samarat A. Design, synthesis, antimicrobial evaluation, and molecular docking studies of novel symmetrical 2,5‐difunctionalized 1,3,4‐oxadiazoles. J. Heterocycl. Chem. 2020 57 3 1044 1054 10.1002/jhet.3837
    [Google Scholar]
  76. Hofny H.A. Mohamed M.F.A. Gomaa H.A.M. Abdel-Aziz S.A. Youssif B.G.M. El-koussi N.A. Aboraia A.S. Design, synthesis, and antibacterial evaluation of new quinoline-1,3,4-oxadiazole and quinoline-1,2,4-triazole hybrids as potential inhibitors of DNA gyrase and topoisomerase IV. Bioorg. Chem. 2021 112 104920 10.1016/j.bioorg.2021.104920 33910078
    [Google Scholar]
  77. Ingale N. Maddi V. Palkar M. Ronad P. Mamledesai S. Vishwanathswamy A.H.M. Satyanarayana D. Synthesis and evaluation of anti-inflammatory and analgesic activity of 3-[(5-substituted-1,3,4-oxadiazol-2-yl-thio)acetyl]-2H-chromen-2-ones. Med. Chem. Res. 2012 21 1 16 26 10.1007/s00044‑010‑9494‑z
    [Google Scholar]
  78. Dewangan D. Nakhate K. Tripathi D. Kashyap P. Dhongde H. Synthesis, characterization and screening for analgesic and anti-inflammatory activities of 2, 5-disubstituted 1, 3, 4-oxadiazole derivatives. Antiinflamm. Antiallergy Agents Med. Chem. 2015 14 2 138 145 10.2174/1871523014666150820100212 26290079
    [Google Scholar]
  79. Amir M. Shikha K. Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of some new 2-[(2,6-dichloroanilino) phenyl]acetic acid derivatives. Eur. J. Med. Chem. 2004 39 6 535 545 10.1016/j.ejmech.2004.02.008 15183912
    [Google Scholar]
  80. Katiyar P. Singh M.P. Synthesis of pyridine clubbed 2,5-disubstituted-1,3,4-oxadiazole derivatives shows potent antimicrobial activity. Lett. Org. Chem. 2021 18 10 822 829 10.2174/1570178617999201130113440
    [Google Scholar]
  81. Yarmohammadi E. Beyzaei H. Aryan R. Moradi A. Ultrasound-assisted, low-solvent and acid/base-free synthesis of 5-substituted 1,3,4-oxadiazole-2-thiols as potent antimicrobial and antioxidant agents. Mol. Divers. 2021 25 4 2367 2378 10.1007/s11030‑020‑10125‑y 32770458
    [Google Scholar]
  82. Bordei Telehoiu A.T. Nuță D.C. Căproiu M.T. Dumitrascu F. Zarafu I. Ioniță P. Bădiceanu C.D. Avram S. Chifiriuc M.C. Bleotu C. Limban C. Design, synthesis and in vitro characterization of novel antimicrobial agents based on 6-Chloro-9H-carbazol derivatives and 1,3,4-oxadiazole scaffolds. Molecules 2020 25 2 266 10.3390/molecules25020266 31936505
    [Google Scholar]
  83. Upadhyay P.K. Mishra P. Synthesis and antimicrobial screening of some 1, 3, 4-oxadiazoles and their molecular properties prediction through ‘rule of five’. Pak. J. Pharm. Sci. 2019 32 3 1025 1032 31278716
    [Google Scholar]
  84. Araniciu C. Oniga S.D. Stoica C.I. Chifiriuc M.C. Popa M. Vlase L. Palage M. Oniga O. Synthesis and antimicrobial assessment of some new 2-(thiazol-5-yl)-1, 3, 4-oxadiazoles. Rev Chim 2019 70 1996 1999
    [Google Scholar]
  85. Karaburun A.Ç. Kaya Çavuşoğlu B. Acar Çevik U. Osmaniye D. Sağlık B.N. Levent S. Özkay Y. Atlı Ö. Koparal A.S. Kaplancıklı Z.A. Synthesis and antifungal potential of some novel benzimidazole-1,3,4-oxadiazole compounds. Molecules 2019 24 1 191 10.3390/molecules24010191 30621357
    [Google Scholar]
  86. Radini I. Elsheikh T. El-Telbani E. Khidre R. New potential antimalarial agents: Design, synthesis and biological evaluation of some novel quinoline derivatives as antimalarial agents. Molecules 2016 21 7 909 10.3390/molecules21070909 27428939
    [Google Scholar]
  87. Thakkar S.S. Thakor P. Doshi H. Ray A. 1,2,4-Triazole and 1,3,4-oxadiazole analogues: Synthesis, MO studies, in silico molecular docking studies, antimalarial as DHFR inhibitor and antimicrobial activities. Bioorg. Med. Chem. 2017 25 15 4064 4075 10.1016/j.bmc.2017.05.054 28634040
    [Google Scholar]
  88. Verma G. Khan M.F. Mohan Nainwal L. Ishaq M. Akhter M. Bakht A. Anwer T. Afrin F. Islamuddin M. Husain I. Alam M.M. Shaquiquzzaman M. Targeting malaria and leishmaniasis: Synthesis and pharmacological evaluation of novel pyrazole-1,3,4-oxadiazole hybrids. Part II. Bioorg. Chem. 2019 89 102986 10.1016/j.bioorg.2019.102986 31146198
    [Google Scholar]
  89. Benmansour F. Eydoux C. Querat G. de Lamballerie X. Canard B. Alvarez K. Guillemot J.C. Barral K. Novel 2-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,3,4-oxadiazole and 3-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,2,4-oxadiazole derivatives as dengue virus inhibitors targeting NS5 polymerase. Eur. J. Med. Chem. 2016 109 146 156 10.1016/j.ejmech.2015.12.046 26774922
    [Google Scholar]
  90. Tawfik S.S. Farahat A.A. El-Sayed M.A-A. Tantawy A.S. Bagato O. Ali M.A. Synthesis and anti-influenza activity of novel thiadiazole, oxadiazole and triazole based scaffolds. Lett. Drug Des. Discov. 2018 15 363 374 10.2174/1570180814666170512122832
    [Google Scholar]
  91. Albratty M. El-Sharkawy K.A. Alhazmi H.A. Synthesis and evaluation of some new 1,3,4-oxadiazoles bearing thiophene, thiazole, coumarin, pyridine and pyridazine derivatives as antiviral agents. Acta Pharm. 2019 69 2 261 276 10.2478/acph‑2019‑0015 31259726
    [Google Scholar]
  92. El Mansouri A.E. Maatallah M. Ait Benhassou H. Moumen A. Mehdi A. Snoeck R. Andrei G. Zahouily M. Lazrek H.B. Design, synthesis, chemical characterization, biological evaluation, and docking study of new 1,3,4-oxadiazole homonucleoside analogs. Nucleosides Nucleotides Nucleic Acids 2020 39 8 1088 1107 10.1080/15257770.2020.1761982 32397827
    [Google Scholar]
  93. Hamdani S.S. Khan B.A. Hameed S. Batool F. Saleem H.N. Mughal E.U. Saeed M. Synthesis and evaluation of novel S-benzyl- and S-alkylphthalimide- oxadiazole -benzenesulfonamide hybrids as inhibitors of dengue virus protease. Bioorg. Chem. 2020 96 103567 10.1016/j.bioorg.2020.103567 32062063
    [Google Scholar]
/content/journals/mc/10.2174/0115734064354700241202174614
Loading
/content/journals/mc/10.2174/0115734064354700241202174614
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test