Skip to content
2000
image of Effective Synthesis of Dopamine Dimer

Abstract

Background

Dopamine () is a commonly used vasopressor, primarily employed to treat various types of shock, congestive heart failure, and acute renal failure. Dopamine dimer () is an impurity generated during the production process of dopamine raw materials or the metabolism of dopamine drugs themselves.

Methods

This article presents an effective method for synthesizing dopamine dimer through the condensation of methyl 3,4-dimethoxyphenyl acetate () and 3,4-dimethoxyphenylethyl amine (), followed by reduction and demethylation.

Results

The product was synthesized from easily accessible raw materials, achieving a total yield of 48% over five steps.

Conclusion

This synthesis method is simple and beneficial for pharmaceutical companies to adopt and implement.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064262975241208063806
2025-01-23
2025-05-10
Loading full text...

Full text loading...

References

  1. Voelckel W.G. Lindner K.H. Wenzel V. Bonatti J.O. Krismer A.C. Miller E.A. Lurie K.G. Effect of small-dose dopamine on mesenteric blood flow and renal function in a pig model of cardiopulmonary resuscitation with vasopressin. Anesth. Analg. 1999 89 6 1430 1436 10.1213/00000539‑199912000‑00020 10589622
    [Google Scholar]
  2. Riegger A J Hormones in heart failure--Regulation and counterregulation Eur. Heart J. 1991 12 Suppl D 190 192
    [Google Scholar]
  3. Matsumura Y. Kuro T. Kobayashi Y. Konishi F. Takaoka M. Wessale J.L. Opgenorth T.J. Gariepy C.E. Yanagisawa M. Exaggerated vascular and renal pathology in endothelin-B receptor-deficient rats with deoxycorticosterone acetate-salt hypertension. Circulation 2000 102 22 2765 2773 10.1161/01.CIR.102.22.2765 11094045
    [Google Scholar]
  4. Feng Z.C. Chang P. Tao S.H. Chen H. Continuous blood purification in the treatment of pediatric septic shock. Zhonghua Er Ke Za Zhi 2006 44 8 579 582 17083780
    [Google Scholar]
  5. Gao A.Y. Diaz Espinosa A.M. Nguyen B.B.N. Link P.A. Meridew J. Jones D.L. Gibbard D.F. Tschumperlin D.J. Haak A.J. Dopamine receptor D1 Is exempt from transforming growth factor β -mediated Antifibrotic G protein-coupled receptor landscape tampering in lung fibroblasts. J. Pharmacol. Exp. Ther. 2023 386 3 277 287 10.1124/jpet.122.001442 37024146
    [Google Scholar]
  6. Zhao B. Li S. Guo Z. Chen Z. Zhang X. Xu C. Chen J. Wei C. Dopamine receptor D2 inhibition alleviates diabetic hepatic stellate cells fibrosis by regulating the TGF‐β1/Smads and NFκB pathways. Clin. Exp. Pharmacol. Physiol. 2021 48 3 370 380 10.1111/1440‑1681.13437 33179312
    [Google Scholar]
  7. Zhang X.H. Zhang X.F. Zhang J.Q. Tian Y.M. Xue H. Yang N. Zhu J.X. β-Adrenoceptors, but not dopamine receptors, mediate dopamine-induced ion transport in late distal colon of rats. Cell Tissue Res. 2008 334 1 25 35 10.1007/s00441‑008‑0661‑1 18696115
    [Google Scholar]
  8. Wang Y. Wang X. Wang K. Qi J. Zhang Y. Wang X. Zhang L. Zhou Y. Gu L. Yu R. Zhou X. Chronic stress accelerates glioblastoma progression via DRD2/ERK/β-catenin axis and Dopamine/ERK/TH positive feedback loop. J. Exp. Clin. Cancer Res. 2023 42 1 161 10.1186/s13046‑023‑02728‑8 37415171
    [Google Scholar]
  9. Pittolo S. Yokoyama S. Willoughby D.D. Taylor C.R. Reitman M.E. Tse V. Wu Z. Etchenique R. Li Y. Poskanzer K.E. Dopamine activates astrocytes in prefrontal cortex via α1-adrenergic receptors. Cell Rep. 2022 40 13 111426 10.1016/j.celrep.2022.111426 36170823
    [Google Scholar]
  10. Sharples S.A. Burma N.E. Borowska-Fielding J. Kwok C.H.T. Eaton S.E.A. Baker G.B. Jean-Xavier C. Zhang Y. Trang T. Whelan P.J. A dynamic role for dopamine receptors in the control of mammalian spinal networks. Sci. Rep. 2020 10 1 16429 10.1038/s41598‑020‑73230‑w 33009442
    [Google Scholar]
  11. Morimoto K. Ouchi M. Kitano T. Eguchi R. Otsuguro K. Dopamine regulates astrocytic IL-6 expression and process formation via dopamine receptors and adrenoceptors. Eur. J. Pharmacol. 2022 928 175110 10.1016/j.ejphar.2022.175110 35738452
    [Google Scholar]
  12. Melis M. Carta G. Pistis M. Banni S. Physiological role of peroxisome proliferator-activated receptors type α on dopamine systems. CNS Neurol. Disord. Drug Targets 2013 12 1 70 77 10.2174/1871527311312010012 23394525
    [Google Scholar]
  13. Goldberg L.I. Dopamine receptors and hypertension. Physiologic and pharmacologic implications. Am. J. Med. 1984 77 4 37 44 10.1016/S0002‑9343(84)80036‑4 6148892
    [Google Scholar]
  14. Goldberg L.I. Dopamine and new dopamine analogs: Receptors and clinical applications. J. Clin. Anesth. 1988 1 1 66 74 10.1016/0952‑8180(88)90014‑1 2908484
    [Google Scholar]
  15. Fuenzalida J. Galaz P. Araya K.A. Slater P.G. Blanco E.H. Campusano J.M. Ciruela F. Gysling K. Dopamine D 1 and corticotrophin‐releasing hormone type‐2 α receptors assemble into functionally interacting complexes in living cells. Br. J. Pharmacol. 2014 171 24 5650 5664 10.1111/bph.12868 25073922
    [Google Scholar]
  16. Almikhlafi M.A. The role of exercise in parkinson’s disease. Neurosciences 2023 28 1 4 12 10.17712/nsj.2023.1.20220105 36617448
    [Google Scholar]
  17. Jones A.M. Panaccione D.G. Ergot alkaloids contribute to the pathogenic potential of the fungus Aspergillus leporis. Appl. Environ. Microbiol. 2023 89 6 e00415-23 10.1128/aem.00415‑23 37212708
    [Google Scholar]
  18. Britton K.N. Steen C.R. Davis K.A. Sampson J.K. Panaccione D.G. Contribution of a novel gene to lysergic acid amide synthesis in Metarhizium brunneum. BMC Res. Notes 2022 15 1 183 10.1186/s13104‑022‑06068‑2 35585609
    [Google Scholar]
  19. Steen C.R. Sampson J.K. Panaccione D.G. A baeyer-villiger monooxygenase gene involved in the synthesis of lysergic acid amides affects the interaction of the fungus Metarhizium brunneum with insects. Appl. Environ. Microbiol. 2021 87 17 e00748-21 10.1128/AEM.00748‑21 34160271
    [Google Scholar]
  20. Singh R. Singh A. Misra V. Singh R. Degradation of lindane contaminated soil using zero-valent iron nanoparticles. J. Biomed. Nanotechnol. 2011 7 1 175 176 10.1166/jbn.2011.1256 21485858
    [Google Scholar]
  21. Rude L.H. Filsø U. D’Anna V. Spyratou A. Richter B. Hino S. Zavorotynska O. Baricco M. Sørby M.H. Hauback B.C. Hagemann H. Besenbacher F. Skibsted J. Jensen T.R. Hydrogen–fluorine exchange in NaBH4–NaBF4. Phys. Chem. Chem. Phys. 2013 15 41 18185 18194 10.1039/c3cp52815d 24071912
    [Google Scholar]
  22. Senapati S. Srivastava S.K. Singh S.B. Kulkarni A.R. SERS active Ag encapsulated Fe@SiO2 nanorods in electromagnetic wave absorption and crystal violet detection. Environ. Res. 2014 135 95 104 10.1016/j.envres.2014.08.026 25262081
    [Google Scholar]
  23. Snider B.B. Grabowski J.F. Total synthesis of (-)-senepodine G and (-)-cermizine C. J. Org. Chem. 2007 72 3 1039 1042 10.1021/jo062067w 17253832
    [Google Scholar]
  24. Palomo C. Oiarbide M. López R. González P.B. Gómez-Bengoa E. Saá J.M. Linden A. Intramolecular sulfur transfer in N-enoyl oxazolidine-2-thiones promoted by Brønsted acids. Practical asymmetric synthesis of beta-mercapto carboxylic acids and mechanistic insights. J. Am. Chem. Soc. 2006 128 47 15236 15247 10.1021/ja0654027 17117876
    [Google Scholar]
  25. Kanth J.V.B. Brown H.C. Improved procedures for the generation of diborane from sodium borohydride and boron trifluoride. Inorg. Chem. 2000 39 8 1795 1802 10.1021/ic0000911 12526571
    [Google Scholar]
  26. Hou C.C. Wang Y. Wang Y.Q. Clinical efficacy of anisodamine hydrobromide combined with dopamine in the treatment of septic shock. Chin. Med. 2024 19 8 1184 1188
    [Google Scholar]
  27. Yao Z.W. Study on clinical efficacy of combining dopamine, furosemide and nitroglycerin in patients with rheumatic heart disease and heart failure. China Prac Med 2024 19 12 1 4 [J].
    [Google Scholar]
  28. Qu P. Wang S.B. Clinical study of dopamine in improving hemodynamics in patients undergoing intrathecal anesthesia for cesarean delivery. Heilongjiang Med. J. 2024 48 4 427 430 [J].
    [Google Scholar]
  29. Zhong Y.Q. Wang Y.C. Miao Y. Re-understanding of the clinical application value of dopamine in kidney transplantation. Organ Transplantation 2024 15 4 643 647
    [Google Scholar]
  30. Lauretani F. Giallauria F. Testa C. Zinni C. Lorenzi B. Zucchini I. Salvi M. Napoli R. Maggio M.G. Dopamine pharmacodynamics: New insights. Int. J. Mol. Sci. 2024 25 10 5293 5305 10.3390/ijms25105293 38791331
    [Google Scholar]
  31. Dudzik P. Lustyk K. Pytka K. Beyond dopamine: Novel strategies for schizophrenia treatment. Med. Res. Rev. 2024 44 5 2307 2330 10.1002/med.22042 38653551
    [Google Scholar]
  32. Espallergues J. Boubaker-Vitre J. Mignon A. Avrillon M. Bon-Jego M.L. Baufreton J. Valjent E. Spatiomolecular characterization of dopamine D2 receptors cells in the mouse external globus pallidus. Curr. Neuropharmacol. 2024 22 9 1528 1539 10.2174/1570159X21666230720121027 37475558
    [Google Scholar]
  33. Wu M. Zhang X. Feng S. Freda S.N. Kumari P. Dumrongprechachan V. Kozorovitskiy Y. Dopamine pathways mediating affective state transitions after sleep loss. Neuron 2024 112 1 141 154.e8 10.1016/j.neuron.2023.10.002 37922904
    [Google Scholar]
/content/journals/mc/10.2174/0115734064262975241208063806
Loading
/content/journals/mc/10.2174/0115734064262975241208063806
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: vasopressor ; synthesis ; clinical safety ; Dopamine ; impurity ; dimer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test