Skip to content
2000
image of Extraction, Isolation and Purification of Catechins and their Applications

Abstract

Catechins, the main active components of tea polyphenols, boast remarkable antioxidant activities because of their unique structures. This translates to a range of potential health benefits, including fighting antibacterial, inflammation, and even cancers. However, extracting these beneficial compounds can be tricky as they're prone to degradation. Thankfully, recent advancements have yielded successful methods for isolating and purifying catechins, allowing us to obtain them in their purest form. The power of catechins isn't just theoretical. and studies have demonstrated promising results in treating various conditions like inflammation, cancer, neurodegenerative diseases, cardiovascular diseases, diabetes, and more. This review dives deep into the methods used to extract, isolate, and purify catechins. Additionally, it explores their potent antioxidant activities and exciting possibilities for future applications.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064353669241212064640
2025-01-06
2025-04-21
Loading full text...

Full text loading...

References

  1. Wang L. Huang X. Jing H. Ye X. Jiang C. Shao J. Ma C. Wang H. Separation of epigallocatechin gallate and epicatechin gallate from tea polyphenols by macroporous resin and crystallization. Anal. Methods 2021 13 6 832 842 10.1039/D0AY02118K 33507177
    [Google Scholar]
  2. Samanta S. Potential bioactive components and health promotional benefits of tea (Camellia sinensis). J. Am. Nutr. Assoc. 2022 41 1 65 93 10.1080/07315724.2020.1827082 33216711
    [Google Scholar]
  3. Higdon J.V. Frei B. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 2003 43 1 89 143 10.1080/10408690390826464 12587987
    [Google Scholar]
  4. Dos Santos A.N. de L Nascimento, T.R.; Gondim, B.L.C.; Velo, M.M.A.C.; de A Rêgo, R.I.; do C Neto, J.R.; Machado, J.R.; da Silva, M.V.; de Araújo, H.W.C.; Fonseca, M.G.; Castellano, L.R.C. Catechins as model bioactive compounds for biomedical applications. Curr. Pharm. Des. 2020 26 33 4032 4047 10.2174/1381612826666200603124418 32493187
    [Google Scholar]
  5. Pedro A.C. Maciel G.M. Rampazzo Ribeiro V. Haminiuk C.W.I. Fundamental and applied aspects of catechins from different sources: A review. Int. J. Food Sci. Technol. 2020 55 2 429 442 10.1111/ijfs.14371
    [Google Scholar]
  6. Chen J. Thilakarathna W.P.D.W. Astatkie T. Rupasinghe H.P.V. Optimization of catechin and proanthocyanidin recovery from grape seeds using microwave-assisted extraction. Biomolecules 2020 10 2 243 257 10.3390/biom10020243 32033405
    [Google Scholar]
  7. Mendes T.M.N. Murayama Y. Yamaguchi N. Sampaio G.R. Fontes L.C.B. Torres E.A.F.S. Tamura H. Yonekura L. Guaraná (Paullinia cupana) catechins and procyanidins: Gastrointestinal/colonic bioaccessibility, Caco-2 cell permeability and the impact of macronutrients. J. Funct. Foods 2019 55 352 361 10.1016/j.jff.2019.02.026
    [Google Scholar]
  8. Santana Á.L. Macedo G.A. Effects of hydroalcoholic and enzyme-assisted extraction processes on the recovery of catechins and methylxanthines from crude and waste seeds of guarana (Paullinia cupana). Food Chem. 2019 281 222 230 10.1016/j.foodchem.2018.12.091 30658751
    [Google Scholar]
  9. Albuquerque B.R. Prieto M.A. Barros L. Ferreira I.C.F.R. Assessment of the stability of catechin-enriched extracts obtained from Arbutus unedo L. fruits: Kinetic mathematical modeling of pH and temperature properties on powder and solution systems. Ind. Crops Prod. 2017 99 150 162 10.1016/j.indcrop.2017.02.002
    [Google Scholar]
  10. Arts I.C.W. Hollman P.C.H. Kromhout D. Chocolate as a source of tea flavonoids. Lancet 1999 354 9177 488 10.1016/S0140‑6736(99)02267‑9 10465183
    [Google Scholar]
  11. Suzuki T. Someya S. Hu F. Tanokura M. Comparative study of catechin compositions in five Japanese persimmons. Food Chem. 2005 93 1 149 152 10.1016/j.foodchem.2004.10.017
    [Google Scholar]
  12. Tsanova-Savova S. Ribarova F. Gerova M. (+)-Catechin and (−)-epicatechin in Bulgarian fruits. J. Food Compos. Anal. 2005 18 7 691 698 10.1016/j.jfca.2004.06.008
    [Google Scholar]
  13. Yilmaz Y. Toledo R.T. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem. 2004 52 2 255 260 10.1021/jf030117h 14733505
    [Google Scholar]
  14. Bronner W.E. Beecher G.R. Method for determining the content of catechins in tea infusions by high-performance liquid chromatography. J. Chromatogr. A 1998 805 1-2 137 142 10.1016/S0021‑9673(98)00040‑5 9618918
    [Google Scholar]
  15. Roy M.K. Koide M. Rao T.P. Okubo T. Ogasawara Y. Juneja L.R. ORAC and DPPH assay comparison to assess antioxidant capacity of tea infusions: Relationship between total polyphenol and individual catechin content. Int. J. Food Sci. Nutr. 2010 61 2 109 124 10.3109/09637480903292601 20109129
    [Google Scholar]
  16. Talebi M. Talebi M. Farkhondeh T. Mishra G. İlgün S. Samarghandian S. New insights into the role of the Nrf2 signaling pathway in green tea catechin applications. Phytother. Res. 2021 35 6 3078 3112 10.1002/ptr.7033 33569875
    [Google Scholar]
  17. Chen I.J. Liu C.Y. Chiu J.P. Hsu C.H. Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. 2016 35 3 592 599 10.1016/j.clnu.2015.05.003 26093535
    [Google Scholar]
  18. Wolfram S. Wang Y. Thielecke F. Anti‐obesity effects of green tea: From bedside to bench. Mol. Nutr. Food Res. 2006 50 2 176 187 10.1002/mnfr.200500102 16470636
    [Google Scholar]
  19. Kim H.M. Kim J. The effects of green tea on obesity and type 2 diabetes. Diabetes Metab. J. 2013 37 3 173 175 10.4093/dmj.2013.37.3.173 23807919
    [Google Scholar]
  20. Lin Y. Shi D. Su B. Wei J. Găman M.A. Sedanur Macit M. Borges do Nascimento I.J. Guimaraes N.S. The effect of green tea supplementation on obesity: A systematic review and DOSE–RESPONSE META‐ANALYSIS of randomized controlled trials. Phytother. Res. 2020 34 10 2459 2470 10.1002/ptr.6697 32372444
    [Google Scholar]
  21. Kao Y. Hiipakka R.A. Liao S. Modulation of obesity by a green tea catechin. Am. J. Clin. Nutr. 2000 72 5 1232 1233 10.1093/ajcn/72.5.1232 11063454
    [Google Scholar]
  22. Suzuki T. Pervin M. Goto S. Isemura M. Nakamura Y. Beneficial effects of tea and the green tea catechin epigallocatechin-3-gallate on obesity. Molecules 2016 21 10 1305 10.3390/molecules21101305 27689985
    [Google Scholar]
  23. Auvichayapat P. Prapochanung M. Tunkamnerdthai O. Sripanidkulchai B. Auvichayapat N. Thinkhamrop B. Kunhasura S. Wongpratoom S. Sinawat S. Hongprapas P. Effectiveness of green tea on weight reduction in obese Thais: A randomized, controlled trial. Physiol. Behav. 2008 93 3 486 491 10.1016/j.physbeh.2007.10.009 18006026
    [Google Scholar]
  24. Baranwal A. Aggarwal P. Rai A. Kumar N. Pharmacological actions and underlying mechanisms of catechin: A review. Mini Rev. Med. Chem. 2022 22 5 821 833 10.2174/1389557521666210902162120 34477517
    [Google Scholar]
  25. Chen B. Zhang W. Lin C. Zhang L. A comprehensive review on beneficial effects of catechins on secondary mitochondrial diseases. Int. J. Mol. Sci. 2022 23 19 11569 10.3390/ijms231911569 36232871
    [Google Scholar]
  26. Wen L. Wu D. Tan X. Zhong M. Xing J. Li W. Li D. Cao F. The role of catechins in regulating diabetes: An update review. Nutrients 2022 14 21 4681 10.3390/nu14214681 36364943
    [Google Scholar]
  27. Reygaert W.C. Green tea catechins: Their use in treating and preventing infectious diseases. BioMed Res. Int. 2018 2018 1 9 10.1155/2018/9105261 30105263
    [Google Scholar]
  28. Gadkari P.V. Balaraman M. Catechins: Sources, extraction and encapsulation: A review. Food Bioprod. Process. 2015 93 122 138 10.1016/j.fbp.2013.12.004
    [Google Scholar]
  29. López-Miranda S. Serrano-Martínez A. Hernández-Sánchez P. Guardiola L. Pérez-Sánchez H. Fortea I. Gabaldón J.A. Núñez-Delicado E. Use of cyclodextrins to recover catechin and epicatechin from red grape pomace. Food Chem. 2016 203 379 385 10.1016/j.foodchem.2016.02.100 26948628
    [Google Scholar]
  30. López-Bascón M.A. De Castro M.D.L. Soxhlet extraction. Liquid-Phase Extraction. Elsevier 2020 327 354 10.1016/B978‑0‑12‑816911‑7.00011‑6
    [Google Scholar]
  31. George K.O. Moseti K.O. Wanyoko J.K. Kinyanjui T. Wachira F.N. Quantitation of the total catechin content in oils extracted from seeds of selected tea (Camellia sinensis (L) O. Kuntze, Theaceae) clones by RP-HPLC. Am. J. Plant Sci. 2015 6 7 1080 1089 10.4236/ajps.2015.67112
    [Google Scholar]
  32. Tiwari B.K. Ultrasound: A clean, green extraction technology. Trends Analyt. Chem. 2015 71 100 109 10.1016/j.trac.2015.04.013
    [Google Scholar]
  33. Zu Y. Li C. Fu Y. Zhao C. Simultaneous determination of catechin, rutin, quercetin kaempferol and isorhamnetin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD. J. Pharm. Biomed. Anal. 2006 41 3 714 719 10.1016/j.jpba.2005.04.052 16520013
    [Google Scholar]
  34. Routray W. Orsat V. Microwave-assisted extraction of flavonoids: A review. Food Bioprocess Technol. 2012 5 2 409 424 10.1007/s11947‑011‑0573‑z
    [Google Scholar]
  35. Nkhili E. Tomao V. El Hajji H. El Boustani E.S. Chemat F. Dangles O. Microwave‐assisted water extraction of green tea polyphenols. Phytochem. Anal. 2009 20 5 408 415 10.1002/pca.1141 19609884
    [Google Scholar]
  36. Albuquerque B.R. Prieto M.A. Barreiro M.F. Rodrigues A. Curran T.P. Barros L. Ferreira I.C.F.R. Catechin-based extract optimization obtained from Arbutus unedo L. fruits using maceration/microwave/ultrasound extraction techniques. Ind. Crops Prod. 2017 95 404 415 10.1016/j.indcrop.2016.10.050
    [Google Scholar]
  37. da Silva R.P.F.F. Rocha-Santos T.A.P. Duarte A.C. Supercritical fluid extraction of bioactive compounds. Trends Analyt. Chem. 2016 76 40 51 10.1016/j.trac.2015.11.013
    [Google Scholar]
  38. Ruslan M.S.H. Idham Z. Nian Y. L.; Ahmad Zaini, M.A.; Che Yunus, M.A. Effect of operating conditions on catechin extraction from betel nuts using supercritical CO 2 -methanol extraction. Sep. Sci. Technol. 2018 53 4 662 670 10.1080/01496395.2017.1406947
    [Google Scholar]
  39. Putra N.R. Rizkiyah D.N. Yunus M.A.C. Abdul Aziz A.H. Pamungkas A. Utilizing subcritical methanol extraction for catechin and epicatechin recovery from peanut skin as agricultural waste. Separations 2023 10 2 82 97 10.3390/separations10020082
    [Google Scholar]
  40. Khan S.A. Aslam R. Makroo H.A. High pressure extraction and its application in the extraction of bio‐active compounds: A review. J. Food Process Eng. 2019 42 1 e12896 e12910 10.1111/jfpe.12896
    [Google Scholar]
  41. Mrabti H. Jaradat N. Fichtali I. Ouedrhiri W. Jodeh S. Ayesh S. Cherrah Y. Faouzi M. Separation, identification, and antidiabetic activity of catechin isolated from Arbutus unedo L. plant roots. Plants 2018 7 2 31 39 10.3390/plants7020031 29649130
    [Google Scholar]
  42. Płotka-Wasylka J. Szczepańska N. de la Guardia M. Namieśnik J. Modern trends in solid phase extraction: New sorbent media. Trends Analyt. Chem. 2016 77 23 43 10.1016/j.trac.2015.10.010
    [Google Scholar]
  43. Ma W. Dai Y. Row K.H. Molecular imprinted polymers based on magnetic chitosan with different deep eutectic solvent monomers for the selective separation of catechins in black tea. Electrophoresis 2018 39 15 2039 2046 10.1002/elps.201800034 29450897
    [Google Scholar]
  44. Ma W. Row K.H. Solid-phase extraction of catechins from green tea with deep eutectic solvent immobilized magnetic molybdenum disulfide molecularly imprinted polymer. Molecules 2020 25 2 280 291 10.3390/molecules25020280 31936680
    [Google Scholar]
  45. Coskun O. Separation techniques: Chromatography. North. Clin. Istanb. 2016 3 2 156 160 28058406
    [Google Scholar]
  46. Glavnik V. Simonovska B. Vovk I. Densitometric determination of (+)-catechin and (−)-epicatechin by 4-dimethylaminocinnam-aldehyde reagent. J. Chromatogr. A 2009 1216 20 4485 4491 10.1016/j.chroma.2009.03.026 19339019
    [Google Scholar]
  47. Nian B. Chen L. Yi C. Shi X. Jiang B. Jiao W. Liu Q. Lv C. Ma Y. Zhao M. A high performance liquid chromatography method for simultaneous detection of 20 bioactive components in tea extracts. Electrophoresis 2019 40 21 2837 2844 10.1002/elps.201900154 31353482
    [Google Scholar]
  48. Rahim A.A. Nofrizal S. Saad B. Rapid tea catechins and caffeine determination by HPLC using microwave-assisted extraction and silica monolithic column. Food Chem. 2014 147 262 268 10.1016/j.foodchem.2013.09.131 24206716
    [Google Scholar]
  49. Šilarová P. Česlová L. Meloun M. Fast gradient HPLC/MS separation of phenolics in green tea to monitor their degradation. Food Chem. 2017 237 471 480 10.1016/j.foodchem.2017.05.133 28764022
    [Google Scholar]
  50. Kalai Selvi I. Nagarajan S. Separation of catechins from green tea (Camellia sinensis L.) by microwave assisted acetylation, evaluation of antioxidant potential of individual components and spectroscopic analysis. Lebensm. Wiss. Technol. 2018 91 391 397 10.1016/j.lwt.2018.01.042
    [Google Scholar]
  51. Gargi S. Nilanjan S. Moutusi N. Subhasis M. Bioactive components of tea. 2020 4 1 001 009 10.29328/journal.afns.1001020
    [Google Scholar]
  52. Xu D.P. Li Y. Meng X. Zhou T. Zhou Y. Zheng J. Zhang J.J. Li H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017 18 1 96 127 10.3390/ijms18010096 28067795
    [Google Scholar]
  53. Zanwar A.A. Badole S.L. Shende P.S. Hegde M.V. Bodhankar S.L. Antioxidant role of catechin in health and disease. Polyphenols Hum Health Dis 2014 1 267 271 10.1016/B978‑0‑12‑398456‑2.00021‑9
    [Google Scholar]
  54. Cheng A.W. Tan X. Sun J.Y. Gu C.M. Liu C. Guo X. Catechin attenuates TNF-α induced inflammatory response via AMPK-SIRT1 pathway in 3T3-L1 adipocytes. PLoS One 2019 14 5 e0217090 e0217104 10.1371/journal.pone.0217090 31100089
    [Google Scholar]
  55. Youn S.H. Kwon J.H. Yin J. Tam L.T. Ahn H.S. Myung S.C. Lee M.W. Anti-inflammatory and anti-urolithiasis effects of polyphenolic compounds from Quercus gilva Blume. Molecules 2017 22 7 1121 1133 10.3390/molecules22071121 28678204
    [Google Scholar]
  56. Tasneem S. Liu B. Li B. Choudhary M.I. Wang W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol. Res. 2019 139 126 140 10.1016/j.phrs.2018.11.001 30395947
    [Google Scholar]
  57. Reddy A.T. Lakshmi S.P. Maruthi Prasad E. Varadacharyulu N.C. Kodidhela L.D. Epigallocatechin gallate suppresses inflammation in human coronary artery endothelial cells by inhibiting NF-κB. Life Sci. 2020 258 118136 118160 10.1016/j.lfs.2020.118136 32726662
    [Google Scholar]
  58. Fan F.Y. Sang L.X. Jiang M. Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules 2017 22 3 484 512 10.3390/molecules22030484 28335502
    [Google Scholar]
  59. Aglan H.A. Ahmed H.H. El-Toumy S.A. Mahmoud N.S. Gallic acid against hepatocellular carcinoma: An integrated scheme of the potential mechanisms of action from in vivo study. Tumour Biol. 2017 39 6 10.1177/1010428317699127 28618930
    [Google Scholar]
  60. Truong V.L. Jeong W.S. Antioxidant and anti-inflammatory roles of tea polyphenols in inflammatory bowel diseases. Food Sci. Hum. Wellness 2022 11 3 502 511 10.1016/j.fshw.2021.12.008
    [Google Scholar]
  61. Shirakami Y. Shimizu M. Possible mechanisms of green tea and its constituents against cancer. Molecules 2018 23 9 2284 2297 10.3390/molecules23092284 30205425
    [Google Scholar]
  62. Sinsinwar S. Vadivel V. Catechin isolated from cashew nut shell exhibits antibacterial activity against clinical isolates of MRSA through ROS-mediated oxidative stress. Appl. Microbiol. Biotechnol. 2020 104 19 8279 8297 10.1007/s00253‑020‑10853‑z 32857200
    [Google Scholar]
  63. La X. Zhang L. Li Z. Li H. Yang Y. (−)-Epigallocatechin Gallate (EGCG) enhances the sensitivity of colorectal cancer cells to 5-FU by inhibiting GRP78/NF-κB/miR-155-5p/MDR1 pathway. J. Agric. Food Chem. 2019 67 9 2510 2518 10.1021/acs.jafc.8b06665 30741544
    [Google Scholar]
  64. Wang J. Liu W. Chen Z. Chen H. Physicochemical characterization of the oolong tea polysaccharides with high molecular weight and their synergistic effects in combination with polyphenols on hepatocellular carcinoma. Biomed. Pharmacother. 2017 90 160 170 10.1016/j.biopha.2017.03.059 28355590
    [Google Scholar]
  65. Chiaino E. Micucci M. Durante M. Budriesi R. Gotti R. Marzetti C. Chiarini A. Frosini M. Apoptotic-induced effects of Acacia catechu Willd. Extract in human colon cancer cells. Int. J. Mol. Sci. 2020 21 6 2102 2118 10.3390/ijms21062102 32204339
    [Google Scholar]
  66. Luo K.W. Chen W. Lung, W.Y.; Wei, X.Y.; Cheng, B.H.; Cai, Z.M.; Huang, W.R. EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivovia down-regulation of NF-κB and MMP-9. J. Nutr. Biochem. 2017 41 56 64 10.1016/j.jnutbio.2016.12.004 28040581
    [Google Scholar]
  67. Sunil M.A. Sunitha V.S. Santhakumaran P. Mohan M.C. Jose M.S. Radhakrishnan E.K. Mathew J. Protective effect of (+)–catechin against lipopolysaccharide-induced inflammatory response in RAW 264.7 cells through downregulation of NF-κB and p38 MAPK. Inflammopharmacology 2021 29 4 1139 1155 10.1007/s10787‑021‑00827‑6 34115226
    [Google Scholar]
  68. Wang L. Lee W. Cui Y.R. Ahn G. Jeon Y.J. Protective effect of green tea catechin against urban fine dust particle-induced skin aging by regulation of NF-κB, AP-1, and MAPKs signaling pathways. Environ. Pollut. 2019 252 Pt B 1318 1324 10.1016/j.envpol.2019.06.029 31252129
    [Google Scholar]
  69. Li P. Liu A. Xiong W. Lin H. Xiao W. Huang J. Zhang S. Liu Z. Catechins enhance skeletal muscle performance. Crit. Rev. Food Sci. Nutr. 2020 60 3 515 528 10.1080/10408398.2018.1549534 30633538
    [Google Scholar]
  70. Huang H.T. Cheng T.L. Lin S.Y. Ho C.J. Chyu J.Y. Yang R.S. Chen C.H. Shen C.L. Osteoprotective roles of green tea catechins. Antioxidants 2020 9 11 1136 1160 10.3390/antiox9111136 33207822
    [Google Scholar]
  71. Rashidinejad A. Boostani S. Babazadeh A. Rehman A. Rezaei A. Akbari-Alavijeh S. Shaddel R. Jafari S.M. Opportunities and challenges for the nanodelivery of green tea catechins in functional foods. Food Res. Int. 2021 142 110186 110206 10.1016/j.foodres.2021.110186 33773663
    [Google Scholar]
  72. Dai W. Ruan C. Zhang Y. Wang J. Han J. Shao Z. Sun Y. Liang J. Bioavailability enhancement of EGCG by structural modification and nano-delivery: A review. J. Funct. Foods 2020 65 103732 103740 10.1016/j.jff.2019.103732
    [Google Scholar]
  73. Chanphai P. Tajmir-Riahi H.A. Conjugation of tea catechins with chitosan nanoparticles. Food Hydrocoll. 2018 84 561 570 10.1016/j.foodhyd.2018.06.043
    [Google Scholar]
  74. Qi C. Liu G. Ping Y. Yang K. Tan Q. Zhang Y. Chen G. Huang X. Xu D. A comprehensive review of nano-delivery system for tea polyphenols: Construction, applications, and challenges. Food Chem. X 2023 17 100571 10.1016/j.fochx.2023.100571 36845473
    [Google Scholar]
  75. Li Y.J. Luo L.J. Harroun S.G. Wei S.C. Unnikrishnan B. Chang H.T. Huang Y.F. Lai J.Y. Huang C.C. Synergistically dual-functional nano eye-drops for simultaneous anti-inflammatory and anti-oxidative treatment of dry eye disease. Nanoscale 2019 11 12 5580 5594 10.1039/C9NR00376B 30860532
    [Google Scholar]
  76. Yusuf M. Mohammad F. Shabbir M. Khan M.A. Eco-dyeing of wool with Rubia cordifolia root extract: Assessment of the effect of Acacia catechu as biomordant on color and fastness properties. Textiles Cloth. Sustainability 2017 2 1 9
    [Google Scholar]
  77. Cerempei A. Mureşan E.I. Cimpoeşu N. Carp-Cărare C. Rimbu C. Dyeing and antibacterial properties of aqueous extracts from quince (Cydonia oblonga) leaves. Ind. Crops Prod. 2016 94 216 225 10.1016/j.indcrop.2016.08.018
    [Google Scholar]
  78. Cao H. Hu Z. Zhang Q. Dyeing and function modification of silk fabric with eriocarpous glochidion. J. Silk 2021 58 20 26 10.3969/j.issn.1001‑7003.2021.07.004
    [Google Scholar]
  79. Zhao P. Fang J. Zhao Y. Wang Y. Chen X. Cao H. Color matching and functional modification of silk by curcuminoids and luteolin. Yinran 2024 50 24 28 10.3969/j.yinran.202403006
    [Google Scholar]
  80. Zhang C. Liu J. Cao H. Pigment extraction from loquat leaves as natural dye for functional modification of cotton fabric. Shanghai Textile Sci. Technol 2022 50 21 23 10.16549/j.cnki.issn.1001‑2044.2022.12.058
    [Google Scholar]
  81. Fang J. Zhao P. Deng S. Chen X. Cao H. Preparation of tea stem catechins and their staining and functional modification of silk fabrics. Adv. Textile Technol. 2024 32 1 8 10.19398/j.att.202311009
    [Google Scholar]
  82. Im K.M. Jeon J-R. Synthesis of plant phenol-derived polymeric dyes for direct or mordant-based hair dyeing. J. Vis. Exp. 2016 118 54772 27929473
    [Google Scholar]
  83. Wang F. Gong J. Ren Y. Zhang J. Eco-dyeing with biocolourant based on natural compounds. R. Soc. Open Sci. 2018 5 1 171134 10.1098/rsos.171134 29410827
    [Google Scholar]
  84. Samant L. Jose S. Rose N.M. Shakyawar D.B. Antimicrobial and UV protection properties of cotton fabric using enzymatic pretreatment and dyeing with Acacia catechu. J. Nat. Fibers 2022 19 6 2243 2253 10.1080/15440478.2020.1807443
    [Google Scholar]
  85. Ibrahim H.M. Mashaly H.M. El-Hawary N.S. Kamel M.M. El-Alfy E.A. Effect of catechu natural dye extracts on coloration and antibacterial protection factor for different cellulosic fabrics. Pharma Chem 2017 9 84 88
    [Google Scholar]
  86. Ren Y. Fu R. Fang K. Chen W. Hao L. Xie R. Shi Z. Dyeing cotton with tea extract based on in-situ polymerization: An innovative mechanism of coloring cellulose fibers by industrial crop pigments. Ind. Crops Prod. 2019 142 111863 111871 10.1016/j.indcrop.2019.111863
    [Google Scholar]
  87. Latos-Brozio M. Masek A. The application of (+)-catechin and polydatin as functional additives for biodegradable polyesters. Int. J. Mol. Sci. 2020 21 2 414 431 10.3390/ijms21020414 31936484
    [Google Scholar]
  88. Tan C. Celli G.B. Selig M.J. Abbaspourrad A. Catechin modulates the copigmentation and encapsulation of anthocyanins in polyelectrolyte complexes (PECs) for natural colorant stabilization. Food Chem. 2018 264 342 349 10.1016/j.foodchem.2018.05.018 29853386
    [Google Scholar]
  89. Liu S. Wang Z. Song P. Free radical graft copolymerization strategy to prepare catechin-modified chitosan loose nanofiltration (NF) membrane for dye desalination. ACS Sustain. Chem.& Eng. 2018 6 3 4253 4263 10.1021/acssuschemeng.7b04699
    [Google Scholar]
  90. Karaosmanoglu H. Kilmartin P. Tea extracts as antioxidants for food preservation. Handbook of Antioxidants for Food Preservation. Elsevier 2015 219 233 10.1016/B978‑1‑78242‑089‑7.00009‑9
    [Google Scholar]
  91. Ousji O. Sleno L. Structural elucidation of novel stable and reactive metabolites of green tea catechins and alkyl gallates by LC-MS/MS. Antioxidants 2022 11 9 1635 11650 10.3390/antiox11091635 36139709
    [Google Scholar]
  92. Khanongnuch C. Unban K. Kanpiengjai A. Saenjum C. Recent research advances and ethno-botanical history of miang, a traditional fermented tea (Camellia sinensis var. assamica) of northern Thailand. Journal of Ethnic Foods 2017 4 3 135 144 10.1016/j.jef.2017.08.006
    [Google Scholar]
  93. Janiak M.A. Amarowicz R. Rostek D. Influence of catechin fraction and high molecular fraction from green tea extract on lactobacillus, bifidobacterium and streptococcus strains. Nat. Prod. Commun. 2018 13 6 1934578X1801300615 10.1177/1934578X1801300615
    [Google Scholar]
  94. Ma Y. Ding S. Fei Y. Liu G. Jang H. Fang J. Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella. Food Control 2019 106 106712 10.1016/j.foodcont.2019.106712
    [Google Scholar]
  95. Yilmaz Y. Novel uses of catechins in foods. Trends Food Sci. Technol. 2006 17 2 64 71 10.1016/j.tifs.2005.10.005
    [Google Scholar]
  96. Takami S. Imai T. Hasumura M. Cho Y.M. Onose J. Hirose M. Evaluation of toxicity of green tea catechins with 90-day dietary administration to F344 rats. Food Chem. Toxicol. 2008 46 6 2224 2229 10.1016/j.fct.2008.02.023 18400353
    [Google Scholar]
  97. Arrieta M.P. Castro-López M.M. Rayón E. Barral-Losada L.F. López-Vilariño J.M. López J. González-Rodríguez M.V. Plasticized poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications. J. Agric. Food Chem. 2014 62 41 10170 10180 10.1021/jf5029812 25255375
    [Google Scholar]
  98. Lee J.Y. Kim Y. Her J.Y. Kim M.K. Lee K.G. Reduction of biogenic amine contents in fermented soybean paste using food additives. Lebensm. Wiss. Technol. 2018 98 470 476 10.1016/j.lwt.2018.09.015
    [Google Scholar]
  99. Sugimoto K. Matsuoka Y. Sakai K. Fujiya N. Fujii H. Mano J. Catechins in green tea powder (matcha) are heat-stable scavengers of acrolein, a lipid peroxide-derived reactive carbonyl species. Food Chem. 2021 355 129403 129412 10.1016/j.foodchem.2021.129403 33773455
    [Google Scholar]
  100. Wu Q. Min Y. Xiao J. Feng N. Chen Y. Luo Q. Zhou M. Li D. Hu Z. Wang C. Liquid state fermentation vinegar enriched with catechin as an antiglycative food product. Food Funct. 2019 10 8 4877 4887 10.1039/C8FO01892H 31334505
    [Google Scholar]
/content/journals/mc/10.2174/0115734064353669241212064640
Loading
/content/journals/mc/10.2174/0115734064353669241212064640
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: purification ; extraction ; ultraviolet resistance ; antioxidant activity ; separation ; Catechins
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test