Skip to content
2000
image of Marine-Derived Compound Targeting mTOR and FGFR-2: A Promising Strategy for Breast, Lung, and Colorectal Cancer Therapy

Abstract

Introduction

The marine habitat is a plentiful source of diverse, active compounds that are extensively utilised for their medicinal properties. Pharmaceutical trends have currently changed towards utilising a diverse range of goods derived from the marine environment.

Method

This study aimed to examine the inhibitory effects of bioactive chemicals derived from marine algae and bacteria. The identification of these compounds was carried out through the process of Gas Chromatography-Mass Spectrometry (GC-MS) profiling. Subsequently, these compounds were subjected to docking simulations against a specific set of target proteins that are known to be frequently overexpressed in three distinct types of cancer.

Result

From the docking results, the ligand 1,4:3,6:5,7-Tribenzal-beta-mannoheptitol was found to be effective against the proteins mTOR (PDB ID: 4JSV) and FGFR2 (PDB ID:6V6Q). The findings of this study highlight the significant benefits offered by the tool under investigation, which effectively enhances the efficiency of the docking procedures.

Conclusion

These compounds hold significant potential for further development and exploration in the field of cancer therapeutics.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064346419241104110015
2025-01-07
2025-06-27
Loading full text...

Full text loading...

References

  1. Cooper G.M. The Cell: A Molecular Approach. Sinauer Associates Sunderland (MA) 2000
    [Google Scholar]
  2. Hausman D.M. What is cancer? Perspect. Biol. Med. 2019 62 4 778 784 10.1353/pbm.2019.0046 31761807
    [Google Scholar]
  3. Patel A. Benign vs malignant tumors. JAMA Oncol. 2020 6 9 1488 10.1001/jamaoncol.2020.2592 32729930
    [Google Scholar]
  4. Nakamura H. Maeda H. Cancer Chemotherapy Fundamentals of Pharmaceutical Nanoscience Springer 2023 401 427 10.1007/978‑1‑4614‑9164‑4_15
    [Google Scholar]
  5. Behranvand N. Nasri F. Zolfaghari Emameh R. Khani P. Hosseini A. Garssen J. Falak R. Chemotherapy: A double-edged sword in cancer treatment. Cancer Immunol. Immunother. 2022 71 3 507 526 10.1007/s00262‑021‑03013‑3 34355266
    [Google Scholar]
  6. Altun İ. Sonkaya A. The most common side effects experienced by patients were receiving first cycle of chemotherapy. Iran. J. Public Health 2018 47 8 1218 1219 30186799
    [Google Scholar]
  7. Nasim F. Sabath B.F. Eapen G.A. Lung cancer. Med. Clin. North Am. 2019 103 3 463 473 10.1016/j.mcna.2018.12.006 30955514
    [Google Scholar]
  8. Imyanitov E.N. Iyevleva A.G. Levchenko E.V. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit. Rev. Oncol. Hematol. 2021 157 103194 10.1016/j.critrevonc.2020.103194 33316418
    [Google Scholar]
  9. Alves Martins B.A. de Bulhões G.F. Cavalcanti I.N. Martins M.M. de Oliveira P.G. Martins A.M.A. Biomarkers in colorectal cancer: The role of translational proteomics research. Front. Oncol. 2019 9 1284 10.3389/fonc.2019.01284 31828035
    [Google Scholar]
  10. Dekker E. Tanis P.J. Vleugels J.L.A. Kasi P.M. Wallace M.B. Colorectal cancer. Lancet 2019 394 10207 1467 1480 10.1016/S0140‑6736(19)32319‑0 31631858
    [Google Scholar]
  11. Medhi B. Saini V.K. Sewal R.K. Ahmad Y. Prospective observational study of adverse drug reactions of anticancer drugs used in cancer treatment in a tertiary care hospital. Indian J. Pharm. Sci. 2015 77 6 687 693 10.4103/0250‑474X.174990 26997696
    [Google Scholar]
  12. Cacabelos R. Naidoo V. Corzo L. Cacabelos N. Carril J.C. Genophenotypic factors and pharmacogenomics in adverse drug reactions. Int. J. Mol. Sci. 2021 22 24 13302 10.3390/ijms222413302 34948113
    [Google Scholar]
  13. ArulJothi K.N. Kumaran K. Senthil S. Nidhu A.B. Munaff N. Janitri V.B. Kirubakaran R. Singh S.K. Gupt G. Dua K. Krishnan A. Implications of reactive oxygen species in lung cancer and exploiting it for therapeutic interventions. Med. Oncol. 2022 40 1 43 10.1007/s12032‑022‑01900‑y 36472716
    [Google Scholar]
  14. Townsend D. Kasi A. Oxaliplatin. Comprehen. Pharmacol. Ref. 2007 1–4 1 4 10.1016/B978‑008055232‑3.62973‑3
    [Google Scholar]
  15. Cassidy J. Misset J.L. Oxaliplatin-related side effects: Characteristics and management. Semin. Oncol. 2002 29 5 Suppl. 15 11 20 10.1016/S0093‑7754(02)90016‑3 12422304
    [Google Scholar]
  16. Saikia S. Bordoloi M. Molecular docking: Challenges, advances and its use in drug discovery perspective. Curr. Drug Targets 2019 20 5 501 521 10.2174/1389450119666181022153016 30360733
    [Google Scholar]
  17. Pinzi L. Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019 20 18 4331 10.3390/ijms20184331 31487867
    [Google Scholar]
  18. Jakhar R. Dangi M. Khichi A. Chhillar A.K. Relevance of molecular docking studies in drug designing. Curr. Bioinform. 2020 15 4 270 278 10.2174/1574893615666191219094216
    [Google Scholar]
  19. Ferreira L. Dos Santos R. Oliva G. Andricopulo A. Molecular docking and structure-based drug design strategies. Molecules 2015 20 7 13384 13421 10.3390/molecules200713384 26205061
    [Google Scholar]
  20. Purawarga Matada G.S. Dhiwar P.S. Abbas N. Singh E. Ghara A. Das A. Bhargava S.V. Molecular docking and molecular dynamic studies: Screening of phytochemicals against EGFR, HER2, estrogen and NF-KB receptors for their potential use in breast cancer. J. Biomol. Struct. Dyn. 2022 40 13 6183 6192 10.1080/07391102.2021.1877823 33525984
    [Google Scholar]
  21. Kaur T. Madgulkar A. Bhalekar M. Asgaonkar K. Molecular docking in formulation and development. Curr. Drug Discov. Technol. 2019 16 1 30 39 10.2174/1570163815666180219112421 29468973
    [Google Scholar]
  22. A S. Sekar S. Kasinathan K. Kn A. The Cytotoxic and anti-tumor potential of methanolic extracts of indian marine isolates in HCT116 colorectal cancer cells. Anticancer. Agents Med. Chem. 2023 23 17 1974 1981 10.2174/1871520623666230810094755 37565553
    [Google Scholar]
  23. Sruthi S. A S. K K. Macrin D. Murali RM V. Aruljothi K.N. Anticancer activity and GC-MS profiling of bioactive constituents in the methanolic extracts of Spatoglossum variabile and Gracilaria corticata. Curr. Bioact. Compd. 2024 20 e240424229273 10.2174/0115734072296835240409124751
    [Google Scholar]
  24. Saleem H. Zengin G. Locatelli M. Ahmad I. Khaliq S. Mahomoodally M.F. Hussain R. Rengasamy K.R.R. Mollica A. Zainal Abidin S.A. Ahemad N. Pharmacological, phytochemical and in-vivo toxicological perspectives of a xero-halophyte medicinal plant: Zaleya pentandra (L.) Jeffrey. Food Chem. Toxicol. 2019 131 110535 10.1016/j.fct.2019.05.043 31154083
    [Google Scholar]
  25. Teoh W.Y. Yong Y.S. Razali F.N. Stephenie S. Dawood Shah M. Tan J.K. Gnanaraj C. Mohd Esa N. LC-MS/MS and GC-MS analysis for the identification of bioactive Metabolites responsible for the Antioxidant and Antibacterial activities of Lygodium microphyllum (Cav.) R. Br. Separations 2023 10 3 215 10.3390/separations10030215
    [Google Scholar]
  26. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne P.E. The protein data bank. Nucleic Acids Res. 2000 28 1 235 242 10.1093/nar/28.1.235 10592235
    [Google Scholar]
  27. Seeliger D. de Groot B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 2010 24 5 417 422 10.1007/s10822‑010‑9352‑6 20401516
    [Google Scholar]
  28. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  29. Dallakyan S. Olson A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015 1263 243 250 10.1007/978‑1‑4939‑2269‑7_19 25618350
    [Google Scholar]
  30. Bowers K.J. Chow E. Xu H. Dror R.O. Eastwood M.P. Gregersen B.A. Klepeis J.L. Kolossvary I. Moraes M.A. Sacerdoti F.D. Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC’06 2006 10.1109/SC.2006.54
    [Google Scholar]
  31. Vo D.V. Lee J. Park H. 1,2, 3‐Triazole analogs with bulky and conformationally rigid substructures: Synthesis and in vitro evaluation as DPP ‐4 inhibitors. Bull. Korean Chem. Soc. 2023 44 5 425 428 10.1002/bkcs.12677
    [Google Scholar]
  32. Phale P.S. Shah B.A. Malhotra H. Variability in assembly of degradation Operons for Naphthalene and its derivative, Carbaryl, suggests mobilization through horizontal Gene transfer. Genes (Basel) 2019 10 8 569 10.3390/genes10080569 31357661
    [Google Scholar]
  33. Naveed M. Ishfaq H. Rehman S.U. Javed A. Waseem M. Makhdoom S.I. Aziz T. Alharbi M. Alshammari A. Alasmari A.F. GC–MS profiling of Bacillus spp. metabolites with an in vitro biological activity assessment and computational analysis of their impact on epithelial glioblastoma cancer genes. Front Chem. 2023 11 1287599 10.3389/fchem.2023.1287599 38116103
    [Google Scholar]
  34. Ali S.K. El-Masry S.S. El-Adl K. Abdel-Mawgoud M. Okla M.K. Abdel-Raheam H.E.F. Hesham A.E.L. Aboel-Ainin M.A. Mohamed H.S. Assessment of antimicrobial activity and GC-MS using culture filtrate of local marine Bacillus strains. J. Environ. Sci. Health B 2024 59 7 399 416 10.1080/03601234.2024.2357465 38785435
    [Google Scholar]
  35. Adcock S.A. McCammon J.A. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chem. Rev. 2006 106 5 1589 1615 10.1021/cr040426m 16683746
    [Google Scholar]
  36. Esposito R. Federico S. Glaviano F. Somma E. Zupo V. Costantini M. Bioactive compounds from marine sponges and algae: Effects on cancer cell metabolome and chemical structures. Int. J. Mol. Sci. 2022 23 18 10680 10.3390/ijms231810680 36142592
    [Google Scholar]
  37. Kim C. Kim B. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review. Nutrients 2018 10 8 1021 10.3390/nu10081021 30081573
    [Google Scholar]
  38. Limonta P. Moretti R.M. Marzagalli M. Fontana F. Raimondi M. Montagnani Marelli M. Role of endoplasmic reticulum stress in the anticancer activity of natural compounds. Int. J. Mol. Sci. 2019 20 4 961 10.3390/ijms20040961 30813301
    [Google Scholar]
  39. Mohamed L. Chakraborty S. ArulJothi K.N. Mabasa L. Sayah K. Costa-Lotufo L.V. Jardine A. Prince S. Galenia africana plant extract exhibits cytotoxicity in breast cancer cells by inducing multiple programmed cell death pathways. Saudi Pharm. J. 2020 28 10 1155 1165 10.1016/j.jsps.2020.08.004 33132708
    [Google Scholar]
  40. Dorman F.L. Whiting J.J. Cochran J.W. Gardea-Torresdey J. Gas chromatography. Anal. Chem. 2010 82 12 4775 4785 10.1021/ac101156h 20504041
    [Google Scholar]
  41. Ahmed E.Y. Elserwy W.S. El-Mansy M.F. Serry A.M. Salem A.M. Abdou A.M. Abdelrahman B.A. Elsayed K.H. Abd Elaziz M.R. Angiokinase inhibition of VEGFR-2, PDGFR and FGFR and cell growth inhibition in lung cancer: Design, synthesis, biological evaluation and molecular docking of novel azaheterocyclic coumarin derivatives. Bioorg. Med. Chem. Lett. 2021 48 128258 10.1016/j.bmcl.2021.128258 34246754
    [Google Scholar]
  42. Chen J. Liu B.X. Shen Q. Li N. Ling J. Xiao M. Jiao H.Y. Li T. Limonin inhibits angiogenesis and metastasis of human breast cancer cells by suppressing the VEGFR2/IGFR1-mediated STAT3 signaling pathway. Transl. Cancer Res. 2020 9 11 6820 6832 10.21037/tcr‑20‑1992 35117291
    [Google Scholar]
  43. Zhao Y. Guo S. Deng J. Shen J. Du F. Wu X. Chen Y. Li M. Chen M. Li X. Li W. Gu L. Sun Y. Wen Q. Li J. Xiao Z. VEGF/VEGFR-targeted therapy and immunotherapy in non-small cell lung cancer: Targeting the tumor microenvironment. Int. J. Biol. Sci. 2022 18 9 3845 3858 10.7150/ijbs.70958 35813484
    [Google Scholar]
  44. Mangiapane L.R. Nicotra A. Turdo A. Gaggianesi M. Bianca P. Di Franco S. Sardina D.S. Veschi V. Signore M. Beyes S. Fagnocchi L. Fiori M.E. Bongiorno M.R. Lo Iacono M. Pillitteri I. Ganduscio G. Gulotta G. Medema J.P. Zippo A. Todaro M. De Maria R. Stassi G. PI3K-driven HER2 expression is a potential therapeutic target in colorectal cancer stem cells. Gut 2022 71 1 119 128 10.1136/gutjnl‑2020‑323553 33436496
    [Google Scholar]
  45. Suwaidan A.A. Lau D.K. Chau I. HER2 targeted therapy in colorectal cancer: New horizons. Cancer Treat. Rev. 2022 105 102363 10.1016/j.ctrv.2022.102363 35228040
    [Google Scholar]
  46. André F. Bachelot T. Campone M. Dalenc F. Perez-Garcia J.M. Hurvitz S.A. Turner N. Rugo H. Smith J.W. Deudon S. Shi M. Zhang Y. Kay A. Graus Porta D. Yovine A. Baselga J. Targeting FGFR with dovitinib (TKI258): Preclinical and clinical data in breast cancer. Clin. Cancer Res. 2013 19 13 3693 3702 10.1158/1078‑0432.CCR‑13‑0190 23658459
    [Google Scholar]
  47. Chew N.J. Lim Kam Sian T.C.C. Nguyen E.V. Shin S.Y. Yang J. Hui M.N. Deng N. McLean C.A. Welm A.L. Lim E. Gregory P. Nottle T. Lang T. Vereker M. Richardson G. Kerr G. Micati D. Jardé T. Abud H.E. Lee R.S. Swarbrick A. Daly R.J. Evaluation of FGFR targeting in breast cancer through interrogation of patient-derived models. Breast Cancer Res. 2021 23 1 82 10.1186/s13058‑021‑01461‑4 34344433
    [Google Scholar]
  48. Pacini L. Jenks A.D. Lima N.C. Huang P.H. Targeting the fibroblast growth factor receptor (FGFR) family in lung cancer. Cells 2021 10 5 1154 10.3390/cells10051154 34068816
    [Google Scholar]
  49. Mehendale-Munj S. Sawant S. Breast cancer resistance protein: A potential therapeutic target for Cancer. Curr. Drug Targets 2021 22 4 420 428 10.2174/1389450121999201125200132 33243119
    [Google Scholar]
  50. Li X. Zhao L. Chen C. Nie J. Jiao B. Can EGFR be a therapeutic target in breast cancer? Biochim. Biophys. Acta Rev. Cancer 2022 1877 5 188789 10.1016/j.bbcan.2022.188789 36064121
    [Google Scholar]
  51. Tian X. Gu T. Lee M.H. Dong Z. Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer. Biochim. Biophys. Acta Rev. Cancer 2022 1877 1 188645 10.1016/j.bbcan.2021.188645 34793897
    [Google Scholar]
  52. Bulutay P. Akyürek N. Memiş L. Clinicopathological and prognostic significance of the eml4-alk translocation and igfr1, ttf1, napsin a expression in patients with lung adenocarcinoma. Turk Patoloji Derg. 2020 37 1 7 17 10.5146/tjpath.2020.01503 32876329
    [Google Scholar]
  53. Liu Y. Zhu C. Tang L. Chen Q. Guan N. Xu K. Guan X. MYC dysfunction modulates stemness and tumorigenesis in breast cancer. Int. J. Biol. Sci. 2021 17 1 178 187 10.7150/ijbs.51458 33390842
    [Google Scholar]
  54. Tajrishi M.M. Tuteja R. Tuteja N. Nucleolin. Commun. Integr. Biol. 2011 4 3 267 275 10.4161/cib.4.3.14884 21980556
    [Google Scholar]
  55. Dimas D.T.H. Perlepe C.D. Sergentanis T.N. Misitzis I. Kontzoglou K. Patsouris E. Kouraklis G. Psaltopoulou T. Nonni A. The prognostic significance of hsp70/hsp90 expression in breast cancer: A systematic review and meta-analysis. Anticancer Res. 2018 38 3 1551 1562 10.21873/anticanres.12384 29491085
    [Google Scholar]
  56. Parma B. Wurdak H. Ceppi P. Harnessing mitochondrial metabolism and drug resistance in non-small cell lung cancer and beyond by blocking heat-shock proteins. Drug Resist. Updat. 2022 65 100888 10.1016/j.drup.2022.100888 36332495
    [Google Scholar]
/content/journals/mc/10.2174/0115734064346419241104110015
Loading
/content/journals/mc/10.2174/0115734064346419241104110015
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test