Skip to content
2000
image of Carboxylic Acids as Activators of NRF2: Antioxidant and Anti-inflammatory Effects

Abstract

The complex interaction between carboxylic acids and molecular signaling pathways, particularly the nuclear factor erythroid 2-related factor 2 (NRF2) pathway, is of growing interest in medicinal chemistry due to its potential therapeutic benefits. Carboxylic acids, which are widely distributed in nature, are versatile regulators of cellular responses due to their ability to interact with multiple signaling pathways, especially those involved in combating oxidative stress and inflammation. Several carboxylic acids exhibit significant antioxidant and anti-inflammatory activities. They have been identified as potential activators of the NRF2 transcription factor, a key regulator of endogenous antioxidants that maintains cellular redox homeostasis and modulates the production of several antioxidant proteins and detoxifying enzymes. The potential effects of carboxylic acid-NRF2 crosstalk are exhibited in a variety of physiological processes, such as attenuation of oxidative stress and inflammation, detoxification of xenobiotics, and modulation of the immune system. The molecular docking of some carboxylic acids with NRF2 protein showed that their binding affinities were comparable to dimethyl fumarate, a reference drug. The current review explores the evolving landscape of carboxylic acid-NRF2 interactions and their mechanisms of action, highlighting the possible impact of their antioxidant and anti-inflammatory effects on inflammation and oxidative stress-mediated diseases. The natural and synthetic sources of NRF2-activating carboxylic acids and the role of their chemical and physical properties in influencing NRF2-inducing activities were discussed. Their potential challenges as future drugs and clinical trial prospects were also highlighted. Carboxylic acid-NRF2 interactions offer potential for developing therapies that will attenuate oxidative stress and inflammation.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064335901241101025220
2024-11-08
2025-01-05
Loading full text...

Full text loading...

References

  1. Cuevas-Cianca S.I. Romero-Castillo C. Gálvez-Romero J.L. Juárez Z.N. Hernández L.R. Antioxidant and anti-inflammatory compounds from edible plants with anti-cancer activity and their potential use as drugs. Molecules 2023 28 3 1488 10.3390/molecules28031488 36771154
    [Google Scholar]
  2. Dhalaria R. Verma R. Kumar D. Puri S. Tapwal A. Kumar V. Nepovimova E. Kuca K. Bioactive compounds of edible fruits with their anti-aging properties: A comprehensive review to prolong human life. Antioxidants 2020 9 11 1123 10.3390/antiox9111123 33202871
    [Google Scholar]
  3. Egbujor M.C. Egu S.A. Okonkwo V.I. Jacob A.D. Egwuatu P.I. Amasiatu I.S. Antioxidant drug design: Historical and recent developments. J. Pharm. Res. Int. 2021 32 41 36 56 10.9734/jpri/2020/v32i4131042
    [Google Scholar]
  4. Li Z. Liu S. Zhao Y. Wang J. Ma X. Compound organic acid could improve the growth performance, immunity and antioxidant properties, and intestinal health by altering the microbiota profile of weaned piglets. J. Anim. Sci. 2023 101 skad196 10.1093/jas/skad196 37314321
    [Google Scholar]
  5. Hussen E.M. Endalew S.A. In vitro antioxidant and free-radical scavenging activities of polar leaf extracts of Vernonia amygdalina. BMC Complement Med. Ther. 2023 23 1 146 10.1186/s12906‑023‑03923‑y 37143058
    [Google Scholar]
  6. Kocaman A. Combined interactions of amino acids and organic acids in heavy metal binding in plants. Plant Signal. Behav. 2023 18 1 2064072 10.1080/15592324.2022.2064072 35491815
    [Google Scholar]
  7. Huchzermeyer B. Menghani E. Khardia P. Shilu A. Metabolic pathway of natural antioxidants, antioxidant enzymes, and ROS providence. Antioxidants 2022 11 4 761 10.3390/antiox11040761 35453446
    [Google Scholar]
  8. Ponnampalam E.N. Kiani A. Santhiravel S. Holman B.W.B. Lauridsen C. Dunshea F.R. The importance of dietary antioxidants on oxidative stress, meat and milk production, and their preservative aspects in farm animals: Antioxidant action, animal health, and product quality-invited review. Animals (Basel) 2022 12 23 3279 10.3390/ani12233279 36496798
    [Google Scholar]
  9. Egbujor M.C. Okoro U.C. Okafor S.N. Nwankwo N.E. Synthesis, characterization, and in silico studies of novel alkanoylated 4-methylphenyl sulphonamoyl carboxylic acids as potential antimicrobial and antioxidant agents. Int J Pharm Phytopharmacol Res. 2019 9 3 89 97
    [Google Scholar]
  10. Liu P. Wang L. Li H. Tan L. Ying X. Ju B. Two new organic acids from Portulaca oleracea L. and their anti-inflammatory and anticholinesterase activities. Nat. Prod. Res. 2022 36 17 4395 4403 10.1080/14786419.2021.1999945 34749551
    [Google Scholar]
  11. Du K. Foote M.S. Mousavi S. Buczkowski A. Schmidt S. Peh E. Kittler S. Bereswill S. Heimesaat M.M. Combination of organic acids benzoate, butyrate, caprylate, and sorbate provides a novel antibiotics-independent treatment option in the combat of acute campylobacteriosis. Front. Microbiol. 2023 14 1128500 10.3389/fmicb.2023.1128500 37007531
    [Google Scholar]
  12. Egbujor M.C. Okoro U.C. Okafor S. Design, synthesis, molecular docking, antimicrobial, and antioxidant activities of new phenylsulfamoyl carboxylic acids of pharmacological interest. Med. Chem. Res. 2019 28 12 2118 2127 10.1007/s00044‑019‑02440‑3
    [Google Scholar]
  13. Egbujor M.C. Okoro U.C. Egu A.S. Okonkwo V.I. Okafor S.N. Emeruwa C.N. Egwuatu P.I. Umeh O.R. Eziafakaego M.I. Amasiatu I.S. Nwobodo D.C. Synthesis and biological evaluation of sulfamoyl carboxamide derivatives from sulfur-containing α-amino acids. Chiang Mai J. Sci. 2022 49 4 1100 1115 10.12982/CMJS.2022.070
    [Google Scholar]
  14. Srinivasan M. Sudheer A.R. Menon V.P. Ferulic Acid: Therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 2007 40 2 92 100 10.3164/jcbn.40.92 18188410
    [Google Scholar]
  15. Kumar N. Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. (Amst.) 2019 24 e00370 10.1016/j.btre.2019.e00370 31516850
    [Google Scholar]
  16. Lassalas P. Gay B. Lasfargeas C. James M.J. Tran V. Vijayendran K.G. Brunden K.R. Kozlowski M.C. Thomas C.J. Smith A.B. Huryn D.M. Ballatore C. Structure property relationships of carboxylic acid isosteres. J. Med. Chem. 2016 59 7 3183 3203 10.1021/acs.jmedchem.5b01963 26967507
    [Google Scholar]
  17. Iverson C. Bacong A. Liu S. Baumgartner S. Lundström T. Oscarsson J. Miner J.N. Omega-3-carboxylic acids provide efficacious anti-inflammatory activity in models of crystal-mediated inflammation. Sci. Rep. 2018 8 1 1217 10.1038/s41598‑018‑19252‑x 29352206
    [Google Scholar]
  18. Nenadis N. Samara E. Mantzouridou F.T. On the role of the carboxyl group to the protective effect of o-dihydroxybenzoic acids to Saccharomyces cerevisiae cells upon induced oxidative stress. Antioxidants 2022 11 1 161 10.3390/antiox11010161 35052665
    [Google Scholar]
  19. Itoh H. Yamashita N. Kamijo S. Masuda K. Kato H. Yamaori S. Effects of acidic non-steroidal anti-inflammatory drugs on human cytochrome P450 4A11 activity: Roles of carboxylic acid and a sulfur atom in potent inhibition by sulindac sulfide. Chem. Biol. Interact. 2023 382 110644 10.1016/j.cbi.2023.110644 37499995
    [Google Scholar]
  20. Munteanu I.G. Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021 22 7 3380 10.3390/ijms22073380 33806141
    [Google Scholar]
  21. Mahmood F. Khan J.A. Mahnashi M.H. Jan M.S. Javed M.A. Rashid U. Sadiq A. Hassan S.S. Bungau S. Anti-inflammatory, analgesic, and antioxidant potential of new (2S,3S)-2-(4-isopropylbenzyl)-2-methyl-4-nitro-3-phenylbutanals and their corresponding carboxylic acids through in vitro, in silico, and in vivo studies. Molecules 2022 27 13 4068 10.3390/molecules27134068 35807316
    [Google Scholar]
  22. Gulcin İ. Alwasel S.H. Metal ions, metal chelators and metal chelating assay as antioxidant method. Processes (Basel) 2022 10 1 132 10.3390/pr10010132
    [Google Scholar]
  23. Kelley M. Vessey D.A. Techniques for measuring the activity of carboxylic acid:CoA ligase and acyl-CoA:amino acid N-acyltransferase: The amino acid conjugation pathway. Curr. Protoc. Toxicol. 2003 14 1 10.1002/0471140856.tx0411s14 20945302
    [Google Scholar]
  24. DeRuiter J. Carboxylic acid structure and chemistry: Part 1 Principles of Drug Action 1 Hoeber Medical Division, Harper & Row 2005
    [Google Scholar]
  25. Egbujor M.C. Buttari B. Profumo E. Telkoparan-Akillilar P. Saso L. An overview of NRF2-activating compounds bearing α,β-unsaturated moiety and their antioxidant effects. Int. J. Mol. Sci. 2022 23 15 8466 10.3390/ijms23158466 35955599
    [Google Scholar]
  26. Gugliandolo A. Bramanti P. Mazzon E. Activation of Nrf2 by natural bioactive compounds: A promising approach for stroke? Int. J. Mol. Sci. 2020 21 14 4875 10.3390/ijms21144875 32664226
    [Google Scholar]
  27. Egbujor M.C. Saha S. Buttari B. Profumo E. Saso L. Activation of Nrf2 signaling pathway by natural and synthetic chalcones: A therapeutic road map for oxidative stress. Expert Rev. Clin. Pharmacol. 2021 14 4 465 480 10.1080/17512433.2021.1901578 33691555
    [Google Scholar]
  28. Kansanen E. Bonacci G. Schopfer F.J. Kuosmanen S.M. Tong K.I. Leinonen H. Woodcock S.R. Yamamoto M. Carlberg C. Ylä-Herttuala S. Freeman B.A. Levonen A.L. Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism. J. Biol. Chem. 2011 286 16 14019 14027 10.1074/jbc.M110.190710 21357422
    [Google Scholar]
  29. Egbujor M.C. Tucci P. Onyeije U.C. Emeruwa C.N. Saso L. NRF2 activation by nitrogen heterocycles: A review. Molecules 2023 28 6 2751 10.3390/molecules28062751 36985723
    [Google Scholar]
  30. Abiko Y. Toriba A. Kumagai Y. Phytochemicals to regulate oxidative and electrophilic stress through Nrf2 activation. Redox Exp. Med. 2023 1 2023 10.1530/REM‑22‑0021
    [Google Scholar]
  31. Egbujor M.C. Garrido J. Borges F. Saso L. Sulfonamide, a valid scaffold for antioxidant drug development. Mini Rev. Org. Chem. 2023 20 2 190 209 10.2174/1570193X19666220411134006
    [Google Scholar]
  32. Sharifi-Rad J. Seidel V. Izabela M. Monserrat-Mequida M. Sureda A. Ormazabal V. Zuniga F.A. Mangalpady S.S. Pezzani R. Ydyrys A. Tussupbekova G. Martorell M. Calina D. Cho W.C. Phenolic compounds as Nrf2 inhibitors: Potential applications in cancer therapy. Cell Commun. Signal. 2023 21 1 89 10.1186/s12964‑023‑01109‑0 37127651
    [Google Scholar]
  33. Wang Q. Botchway B.O.A. Zhang Y. Liu X. Ellagic acid activates the Keap1-Nrf2-ARE signaling pathway in improving Parkinson’s disease: A review. Biomed. Pharmacother. 2022 156 113848 10.1016/j.biopha.2022.113848 36242848
    [Google Scholar]
  34. Kwak M.K. Itoh K. Yamamoto M. Kensler T.W. Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol. Cell. Biol. 2002 22 9 2883 2892 10.1128/MCB.22.9.2883‑2892.2002 11940647
    [Google Scholar]
  35. Lee O.H. Jain A.K. Papusha V. Jaiswal A.K. An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance. J. Biol. Chem. 2007 282 50 36412 36420 10.1074/jbc.M706517200 17925401
    [Google Scholar]
  36. Li R. Jia Z. Zhu H. Regulation of Nrf2 signaling. React. Oxyg. Species (Apex) 2019 8 24 312 322 31692987
    [Google Scholar]
  37. Wen H. Yang H. An Y.J. Kim J.M. Lee D.H. Jin X. Park S. Min K.J. Park S. Enhanced phase II detoxification contributes to beneficial effects of dietary restriction as revealed by multi-platform metabolomics studies. Mol. Cell. Proteomics 2013 12 3 575 586 10.1074/mcp.M112.021352 23230277
    [Google Scholar]
  38. Surai P. Silymarin as a natural antioxidant: An overview of the current evidence and perspectives. Antioxidants 2015 4 1 204 247 10.3390/antiox4010204 26785346
    [Google Scholar]
  39. Zhang M. An C. Gao Y. Leak R.K. Chen J. Zhang F. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog. Neurobiol. 2013 100 30 47 10.1016/j.pneurobio.2012.09.003 23025925
    [Google Scholar]
  40. Park J.M. Kim D.H. Na H.K. Surh Y.J. Methylseleninic acid induces NAD(P)H:quinone oxidoreductase-1 expression through activation of NF-E2-related factor 2 in Chang liver cells. Oncotarget 2018 9 3 3014 3028 10.18632/oncotarget.10289 29423025
    [Google Scholar]
  41. Egbujor M.C. Petrosino M. Zuhra K. Saso L. The role of organosulfur compounds as Nrf2 activators and their antioxidant effects. Antioxidants 2022 11 7 1255 10.3390/antiox11071255 35883746
    [Google Scholar]
  42. Steele M.L. Fuller S. Patel M. Kersaitis C. Ooi L. Münch G. Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells. Redox Biol. 2013 1 1 441 445 10.1016/j.redox.2013.08.006 24191238
    [Google Scholar]
  43. Di Giacomo C. Malfa G.A. Tomasello B. Bianchi S. Acquaviva R. Natural compounds and glutathione: Beyond mere antioxidants. Antioxidants 2023 12 7 1445 10.3390/antiox12071445 37507985
    [Google Scholar]
  44. Giustarini D. Milzani A. Dalle-Donne I. Rossi R. How to increase cellular glutathione. Antioxidants 2023 12 5 1094 10.3390/antiox12051094 37237960
    [Google Scholar]
  45. Lu S.C. Glutathione synthesis. Biochim. Biophys. Acta, Gen. Subj. 2013 1830 5 3143 3153 10.1016/j.bbagen.2012.09.008 22995213
    [Google Scholar]
  46. Gao W. Guo L. Yang Y. Wang Y. Xia S. Gong H. Zhang B.K. Yan M. Dissecting the crosstalk between Nrf2 and NF-κB response pathways in drug-induced toxicity. Front. Cell Dev. Biol. 2022 9 809952 10.3389/fcell.2021.809952 35186957
    [Google Scholar]
  47. Gado F. Ferrario G. Della Vedova L. Zoanni B. Altomare A. Carini M. Aldini G. D’Amato A. Baron G. Targeting Nrf2 and NF-κB signaling pathways in cancer prevention: The role of apple phytochemicals. Molecules 2023 28 3 1356 10.3390/molecules28031356 36771023
    [Google Scholar]
  48. Qader M. Xu J. Yang Y. Liu Y. Cao S. Natural Nrf2 activators from juices, wines, coffee, and cocoa. Beverages 2020 6 4 68 10.3390/beverages6040068
    [Google Scholar]
  49. Azouz A.A. Omar H.A. Hersi F. Ali F.E.M. Hussein Elkelawy A.M.M. Impact of the ACE2 activator xanthenone on tacrolimus nephrotoxicity: Modulation of uric acid/ERK/p38 MAPK and Nrf2/SOD3/GCLC signaling pathways. Life Sci. 2022 288 120154 10.1016/j.lfs.2021.120154 34800514
    [Google Scholar]
  50. Nabil-Adam A. Ashour M.L. Shreadah M.A. Modulation of MAPK/NF-κB pathway and NLRP3 inflammasome by secondary metabolites from red algae: A mechanistic study. ACS Omega 2023 8 41 37971 37990 10.1021/acsomega.3c03480 37867644
    [Google Scholar]
  51. Bhattacharjee S. Dashwood R.H. Epigenetic regulation of NRF2/KEAP1 by phytochemicals. Antioxidants 2020 9 9 865 10.3390/antiox9090865 32938017
    [Google Scholar]
  52. Lee J.H. Shu L. Fuentes F. Su Z.Y. Kong A-N.T. Cancer chemoprevention by traditional chinese herbal medicine and dietary phytochemicals: Targeting nrf2-mediated oxidative stress/anti-inflammatory responses, epigenetics, and cancer stem cells. J. Tradit. Complement. Med. 2013 3 1 69 79 10.4103/2225‑4110.107700 24716158
    [Google Scholar]
  53. Zhang J. Pan W. Zhang Y. Tan M. Yin Y. Li Y. Zhang L. Han L. Bai J. Jiang T. Li H. Comprehensive overview of Nrf2-related epigenetic regulations involved in ischemia-reperfusion injury. Theranostics 2022 12 15 6626 6645 10.7150/thno.77243 36185600
    [Google Scholar]
  54. Guo Y. Yu S. Zhang C. Kong A.N. Epigenetic regulation of Keap1-Nrf2 signaling Free Radic. Biol. Med. 2015 88 Part B 337 349 10.1016/j.freeradbiomed.2015.06.013
    [Google Scholar]
  55. Ashrafizadeh M. Ahmadi Z. Samarghandian S. Mohammadinejad R. Yaribeygi H. Sathyapalan T. Sahebkar A. MicroRNA-mediated regulation of Nrf2 signaling pathway: Implications in disease therapy and protection against oxidative stress. Life Sci. 2020 244 117329 10.1016/j.lfs.2020.117329 31954747
    [Google Scholar]
  56. Williams N.C. O’Neill L.A.J. A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front. Immunol. 2018 9 141 10.3389/fimmu.2018.00141 29459863
    [Google Scholar]
  57. Tretter L. Patocs A. Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim. Biophys. Acta Bioenerg. 2016 1857 8 1086 1101 10.1016/j.bbabio.2016.03.012 26971832
    [Google Scholar]
  58. Guo L. Liu Y. Luo L. Hussain S.B. Bai Y. Alam S.M. Comparative metabolites and citrate-degrading enzymes activities in citrus fruits reveal the role of balance between ACL and Cyt-ACO in metabolite conversions. Plants 2020 9 3 350 10.3390/plants9030350 32164290
    [Google Scholar]
  59. Ryan E.M. Duryee M.J. Hollins A. Dover S.K. Pirruccello S. Sayles H. Real K.D. Hunter C.D. Thiele G.M. Mikuls T.R. Antioxidant properties of citric acid interfere with the uricase-based measurement of circulating uric acid. J. Pharm. Biomed. Anal. 2019 164 460 466 10.1016/j.jpba.2018.11.011 30447534
    [Google Scholar]
  60. Smeriglio A. Denaro M. D’Angelo V. Germanò M.P. Trombetta D. Antioxidant, anti-inflammatory and anti-angiogenic properties of Citrus lumia juice. Front. Pharmacol. 2020 11 593506 10.3389/fphar.2020.593506 33343362
    [Google Scholar]
  61. Wu X. Dai H. Liu L. Xu C. Yin Y. Yi J. Bielec M.D. Han Y. Li S. Citrate reduced oxidative damage in stem cells by regulating cellular redox signaling pathways and represent a potential treatment for oxidative stress-induced diseases. Redox Biol. 2019 21 101057 10.1016/j.redox.2018.11.015 30576924
    [Google Scholar]
  62. Yao H. Zhang W. Yang F. Ai F. Du D. Li Y. Discovery of caffeoylisocitric acid as a Keap1-dependent Nrf2 activator and its effects in mesangial cells under high glucose. J. Enzyme Inhib. Med. Chem. 2022 37 1 178 188 10.1080/14756366.2021.1998025 34894983
    [Google Scholar]
  63. Saxena R.K. Saran S. Isar J. Kaushik R. Production and applications of succinic acid. Current Developments in Biotechnology and Bioengineering. Pandey A. Negi S. Soccol C.R. Elsevier 2017 601 630 10.1016/B978‑0‑444‑63662‑1.00027‑0
    [Google Scholar]
  64. Zarubina I.V. Lukk M.V. Shabanov P.D. Antihypoxic and antioxidant effects of exogenous succinic acid and aminothiol succinate-containing antihypoxants. Bull. Exp. Biol. Med. 2012 153 3 336 339 10.1007/s10517‑012‑1709‑5 22866305
    [Google Scholar]
  65. Chien S.C. Chen M.L. Kuo H.T. Tsai Y.C. Lin B.F. Kuo Y.H. Anti-inflammatory activities of new succinic and maleic derivatives from the fruiting body of Antrodia camphorata. J. Agric. Food Chem. 2008 56 16 7017 7022 10.1021/jf801171x 18642845
    [Google Scholar]
  66. Rybalka E. Goodman C.A. Campelj D.G. Hayes A. Timpani C.A. Adenylosuccinic acid: a novel inducer of the cytoprotectant Nrf2 with efficacy in Duchenne muscular dystrophy. Curr. Med. Res. Opin. 2021 37 3 465 467 10.1080/03007995.2020.1865699 33331789
    [Google Scholar]
  67. Bellezza I. Grottelli S. Gatticchi L. Mierla A.L. Minelli A. α-Tocopheryl succinate pre-treatment attenuates quinone toxicity in prostate cancer PC3 cells. Gene 2014 539 1 1 7 10.1016/j.gene.2014.02.009 24530478
    [Google Scholar]
  68. Mashiguchi K. Tanaka K. Sakai T. Sugawara S. Kawaide H. Natsume M. Hanada A. Yaeno T. Shirasu K. Yao H. McSteen P. Zhao Y. Hayashi K. Kamiya Y. Kasahara H. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 2011 108 45 18512 18517 10.1073/pnas.1108434108 22025724
    [Google Scholar]
  69. Sugawara S. Hishiyama S. Jikumaru Y. Hanada A. Nishimura T. Koshiba T. Zhao Y. Kamiya Y. Kasahara H. Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. USA 2009 106 13 5430 5435 10.1073/pnas.0811226106 19279202
    [Google Scholar]
  70. Johnson H.E. Crosby D.G. Indole-3-acetic acid. Org. Synth. 44 2003 10.1002/0471264180.os044.21
    [Google Scholar]
  71. Ji Y. Yin W. Liang Y. Sun L. Yin Y. Zhang W. Anti-inflammatory and anti-oxidative activity of indole-3-acetic acid involves induction of HO-1 and neutralization of free radicals in RAW264.7 cells. Int. J. Mol. Sci. 2020 21 5 1579 10.3390/ijms21051579 32106625
    [Google Scholar]
  72. Kim D. Kim H. Kim K. Roh S. The protective effect of indole-3-acetic acid (IAA) on H2O2-damaged human dental pulp stem cells is mediated by the AKT pathway and involves increased expression of the transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) and its downstream target heme oxygenase 1 (HO-1). Oxid. Med. Cell. Longev. 2017 2017 1 8639485 10.1155/2017/8639485 28694916
    [Google Scholar]
  73. Meng D. Sommella E. Salviati E. Campiglia P. Ganguli K. Djebali K. Zhu W. Walker W.A. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr. Res. 2020 88 2 209 217 10.1038/s41390‑019‑0740‑x 31945773
    [Google Scholar]
  74. Zhang Q. Zhao Q. Li T. Lu L. Wang F. Zhang H. Liu Z. Ma H. Zhu Q. Wang J. Zhang X. Pei Y. Liu Q. Xu Y. Qie J. Luan X. Hu Z. Liu X. Lactobacillus plantarum-derived indole-3-lactic acid ameliorates colorectal tumorigenesis via epigenetic regulation of CD8+ T cell immunity. Cell Metab. 2023 35 6 943 960.e9 10.1016/j.cmet.2023.04.015 37192617
    [Google Scholar]
  75. Zhang F.L. Chen X.W. Wang Y.F. Hu Z. Zhang W.J. Zhou B.W. Ci P.F. Liu K.X. Microbiota-derived tryptophan metabolites indole-3-lactic acid is associated with intestinal ischemia/reperfusion injury via positive regulation of YAP and Nrf2. J. Transl. Med. 2023 21 1 264 10.1186/s12967‑023‑04109‑3 37072757
    [Google Scholar]
  76. Felter H. Lloyd J. King's American dispensatory. 1898 Available from: https://www.henriettes-herb.com/eclectic/kings/index.html
  77. March J. March's Advanced Organic Chemistry New Jersey Wiley 1992
    [Google Scholar]
  78. Moustafa-Farag M. Mohamed H.I. Mahmoud A. Elkelish A. Misra A.N. Guy K.M. Kamran M. Ai S. Zhang M. Salicylic acid stimulates antioxidant defense and osmolyte metabolism to alleviate oxidative stress in watermelons under excess boron. Plants 2020 9 6 724 10.3390/plants9060724 32521755
    [Google Scholar]
  79. Kang S. Kim W. Jeong S. Lee Y. Nam J. Lee S. Jung Y. Oxidized 5-aminosalicylic acid activates Nrf2-HO-1 pathway by covalently binding to Keap1: Implication in anti-inflammatory actions of 5-aminosalicylic acid. Free Radic. Biol. Med. 2017 108 715 724 10.1016/j.freeradbiomed.2017.04.366 28473247
    [Google Scholar]
  80. Mann F.G. Saunders B.C. Practical Organic Chemistry. Longan Inc. New York 1974
    [Google Scholar]
  81. Jian Z. Tang L. Yi X. Liu B. Zhang Q. Zhu G. Wang G. Gao T. Li C. Aspirin induces Nrf2‐mediated transcriptional activation of haem oxygenase‐1 in protection of human melanocytes from H 2 O 2 ‐induced oxidative stress. J. Cell. Mol. Med. 2016 20 7 1307 1318 10.1111/jcmm.12812 26969214
    [Google Scholar]
  82. Dewick P.M. Haslam E. Phenol biosynthesis in higher plants. Gallic acid. Biochem. J. 1969 113 3 537 542 10.1042/bj1130537 5807212
    [Google Scholar]
  83. Goldberg I. Rokem J.S. Encyclopedia of Microbiology. 3rd ed Academic Press 2009
    [Google Scholar]
  84. Radan M. Dianat M. Badavi M. Mard S.A. Bayati V. Goudarzi G. In vivo and in vitro evidence for the involvement of Nrf2-antioxidant response element signaling pathway in the inflammation and oxidative stress induced by particulate matter (PM10): The effective role of gallic acid. Free Radic. Res. 2019 53 2 210 225 10.1080/10715762.2018.1563689 30585515
    [Google Scholar]
  85. Sohrabi F. Dianat M. Badavi M. Radan M. Mard S.A. Gallic acid suppresses inflammation and oxidative stress through modulating Nrf2-HO-1-NF-κB signaling pathways in elastase-induced emphysema in rats. Environ. Sci. Pollut. Res. Int. 2021 28 40 56822 56834 10.1007/s11356‑021‑14513‑1 34080114
    [Google Scholar]
  86. Singla E. Puri G. Dharwal V. Naura A.S. Gallic acid ameliorates COPD-associated exacerbation in mice. Mol. Cell. Biochem. 2021 476 1 293 302 10.1007/s11010‑020‑03905‑5 32965595
    [Google Scholar]
  87. Lin Y. Luo T. Weng A. Huang X. Yao Y. Fu Z. Li Y. Liu A. Li X. Chen D. Pan H. Gallic acid alleviates gouty arthritis by inhibiting NLRP3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling. Front. Immunol. 2020 11 580593 10.3389/fimmu.2020.580593 33365024
    [Google Scholar]
  88. Zhou D. Yang Q. Tian T. Chang Y. Li Y. Duan L.R. Li H. Wang S.W. Gastroprotective effect of gallic acid against ethanol-induced gastric ulcer in rats: Involvement of the Nrf2/HO-1 signaling and anti-apoptosis role. Biomed. Pharmacother. 2020 126 110075 10.1016/j.biopha.2020.110075 32179202
    [Google Scholar]
  89. Sanjay S. Girish C. Toi P.C. Bobby Z. Gallic acid attenuates isoniazid and rifampicin-induced liver injury by improving hepatic redox homeostasis through influence on Nrf2 and NF-κB signalling cascades in Wistar Rats. J. Pharm. Pharmacol. 2021 73 4 473 486 10.1093/jpp/rgaa048 33793834
    [Google Scholar]
  90. Vogt T. Phenylpropanoid biosynthesis. Mol. Plant 2010 3 1 2 20 10.1093/mp/ssp106 20035037
    [Google Scholar]
  91. Garbe D. Cinnamic acid. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim Wiley-VCH 2012 10.1002/14356007.a07_099
    [Google Scholar]
  92. Zhuo R. Cheng X. Luo L. Yang L. Zhao Y. Zhou Y. Peng L. Jin X. Cui L. Liu F. Yang L. Cinnamic acid improved lipopolysaccharide-induced depressive-like behaviors by inhibiting neuroinflammation and oxidative stress in mice. Pharmacology 2022 107 5-6 281 289 10.1159/000520990 35325888
    [Google Scholar]
  93. Wondrak G.T. Cabello C.M. Villeneuve N.F. Zhang S. Ley S. Li Y. Sun Z. Zhang D.D. Cinnamoyl-based Nrf2-activators targeting human skin cell photo-oxidative stress. Free Radic. Biol. Med. 2008 45 4 385 395 10.1016/j.freeradbiomed.2008.04.023 18482591
    [Google Scholar]
  94. Hseu Y.C. Korivi M. Lin F.Y. Li M.L. Lin R.W. Wu J.J. Yang H.L. Trans-cinnamic acid attenuates UVA-induced photoaging through inhibition of AP-1 activation and induction of Nrf2-mediated antioxidant genes in human skin fibroblasts. J. Dermatol. Sci. 2018 90 2 123 134 10.1016/j.jdermsci.2018.01.004 29395579
    [Google Scholar]
  95. Duke J.A. Handbook of Phytochemical Constituents of GRAS Herbs and Other Economic Plants 999th ed CRC Press Boca Raton 1992
    [Google Scholar]
  96. Gálvez M.C. Barroso C.G. Pérez-Bustamante J.A. Analysis of polyphenolic compounds of different vinegar samples. Z. Lebensm. Unters. Forsch. 1994 199 29 31 10.1007/BF01192948
    [Google Scholar]
  97. Lim M. Yoon C.M. An G. Rhee H. Environmentally benign oxidation reaction of aldehydes to their corresponding carboxylic acids using Pd/C with NaBH4 and KOH. Tetrahedron Lett. 2007 48 22 3835 3839 10.1016/j.tetlet.2007.03.151
    [Google Scholar]
  98. Calixto-Campos C. Carvalho T.T. Hohmann M.S.N. Pinho-Ribeiro F.A. Fattori V. Manchope M.F. Zarpelon A.C. Baracat M.M. Georgetti S.R. Casagrande R. Verri W.A. Vanillic acid inhibits inflammatory pain by inhibiting neutrophil recruitment, oxidative stress, cytokine production, and NFκB activation in mice. J. Nat. Prod. 2015 78 8 1799 1808 10.1021/acs.jnatprod.5b00246 26192250
    [Google Scholar]
  99. Ma W.F. Duan X.C. Han L. Zhang L.L. Meng X.M. Li Y.L. Wang M. Vanillic acid alleviates palmitic acid‐induced oxidative stress in human umbilical vein endothelial cells via Adenosine Monophosphate‐Activated Protein Kinase signaling pathway. J. Food Biochem. 2019 43 7 e12893 10.1111/jfbc.12893 31353730
    [Google Scholar]
  100. El-Hefnawy M.A. Yehia A. Nashar E.M.E. Saad S. Obydah W. Alghamdi M.A. Alasmari W.A. Hussein A.M. Effect of vanillic acid on pentylenetetrazole-kindled rats: Nrf2/HO-1, IGF-1 signaling pathways cross talk. J. Integr. Neurosci. 2022 21 1 015 10.31083/j.jin2101015 35164451
    [Google Scholar]
  101. Mentese A. Demir S. Kucuk H. Yulug E. Alemdar N.T. Demir E.A. Aliyazicioglu Y. Vanillic acid abrogates cisplatin-induced ovotoxicity through activating Nrf2 pathway. Tissue Cell 2023 84 102161 10.1016/j.tice.2023.102161 37478646
    [Google Scholar]
  102. Harris G.C. Sanderson T.F. Abietic acid. Org. Synth. 1952 32 1 10.15227/orgsyn.032.0001
    [Google Scholar]
  103. Justino G.C. Correia C.F. Mira L. Borges dos Santos R.M. Martinho Simões J.A. Silva A.M. Santos C. Gigante B. Antioxidant activity of a catechol derived from abietic acid. J. Agric. Food Chem. 2006 54 2 342 348 10.1021/jf052062k 16417289
    [Google Scholar]
  104. Fernández M.A. Tornos M.P. García M.D. de las Heras B. Villar A.M. Sáenz M.T. Anti-inflammatory activity of abietic acid, a diterpene isolated from Pimenta racemosa var. grissea. J. Pharm. Pharmacol. 2010 53 6 867 872 10.1211/0022357011776027 11428663
    [Google Scholar]
  105. Wahab N.A.A. Giribabu N. Kilari E.K. Salleh N. Abietic acid ameliorates nephropathy progression via mitigating renal oxidative stress, inflammation, fibrosis and apoptosis in high fat diet and low dose streptozotocin-induced diabetic rats. Phytomedicine 2022 107 154464 10.1016/j.phymed.2022.154464 36215789
    [Google Scholar]
  106. An Y. Luo Q. Han D. Guan L. Abietic acid inhibits acetaminophen-induced liver injury by alleviating inflammation and ferroptosis through regulating Nrf2/HO-1 axis. Int. Immunopharmacol. 2023 118 110029 10.1016/j.intimp.2023.110029 36963265
    [Google Scholar]
  107. Alemika T.E. Onawunmi G.O. Olugbade T.O. Antibacterial phenolics from Boswellia dalzielii. Niger. J. Nat. Prod. Med. 2006 10 108 110
    [Google Scholar]
  108. Mallavadhani U.V. Mahapatra A. A new aurone and two rare metabolites from the leaves of Diospyros melanoxylon. Nat. Prod. Res. 2005 19 1 91 97 10.1080/14786410410001704705 15700652
    [Google Scholar]
  109. Pearl I.A. Synthesis of protocatechuic acid. Org. Synth. 1949 29 85 87 10.15227/orgsyn.029.0085
    [Google Scholar]
  110. Zhang S. Gai Z. Gui T. Chen J. Chen Q. Li Y. Antioxidant effects of protocatechuic acid and protocatechuic aldehyde: Old wine in a new bottle. Evid. Based Complement. Alternat. Med. 2021 2021 1 19 10.1155/2021/6139308 34790246
    [Google Scholar]
  111. Hu H.C. Lei Y.H. Zhang W.H. Luo X.Q. Antioxidant and anti-inflammatory properties of resveratrol in diabetic nephropathy: A systematic review and meta-analysis of animal studies. Front. Pharmacol. 2022 13 841818 10.3389/fphar.2022.841818 35355720
    [Google Scholar]
  112. Varì R. D’Archivio M. Filesi C. Carotenuto S. Scazzocchio B. Santangelo C. Giovannini C. Masella R. Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages. J. Nutr. Biochem. 2011 22 5 409 417 10.1016/j.jnutbio.2010.03.008 20621462
    [Google Scholar]
  113. Varì R. Scazzocchio B. Santangelo C. Filesi C. Galvano F. D’Archivio M. Masella R. Giovannini C. Protocatechuic acid prevents oxLDL-induced apoptosis by activating JNK/Nrf2 survival signals in macrophages. Oxid. Med. Cell. Longev. 2015 2015 1 11 10.1155/2015/351827 26180584
    [Google Scholar]
  114. Bovilla V.R. Anantharaju P.G. Dornadula S. Veeresh P.M. Kuruburu M.G. Bettada V.G. Ramkumar K.M. Madhunapantula S.R.V. Caffeic acid and protocatechuic acid modulate Nrf2 and inhibit Ehrlich ascites carcinomas in mice. Asian Pac. J. Trop. Biomed. 2021 11 6 244 253 10.4103/2221‑1691.314045
    [Google Scholar]
  115. Santos S.A.O. Freire C.S.R. Domingues M.R.M. Silvestre A.J.D. Neto C.P. Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography-mass spectrometry. J. Agric. Food Chem. 2011 59 17 9386 9393 10.1021/jf201801q 21761864
    [Google Scholar]
  116. Mattila P. Kumpulainen J. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J. Agric. Food Chem. 2002 50 13 3660 3667 10.1021/jf020028p 12059140
    [Google Scholar]
  117. Sidoryk K. Parapini S. Basilico N. Zaremba-Czogalla M. Kubiszewski M. Cybulski M. Gubernator J. Zagórska A. Jaromin A. Efficient one-pot synthesis of novel caffeic acid derivatives as potential antimalarials. J. Parasitol. Res. 2023 2023 1 9 10.1155/2023/6675081 38046256
    [Google Scholar]
  118. Espíndola K.M.M. Ferreira R.G. Narvaez L.E.M. Silva Rosario A.C.R. da Silva A.H.M. Silva A.G.B. Vieira A.P.O. Monteiro M.C. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front. Oncol. 2019 9 541 10.3389/fonc.2019.00541 31293975
    [Google Scholar]
  119. Yang S.Y. Pyo M.C. Nam M.H. Lee K.W. ERK/Nrf2 pathway activation by caffeic acid in HepG2 cells alleviates its hepatocellular damage caused by t-butylhydroperoxide-induced oxidative stress. BMC Complement. Altern. Med. 2019 19 1 139 10.1186/s12906‑019‑2551‑3 31221142
    [Google Scholar]
  120. Colonnello A. Aguilera-Portillo G. Rubio-López L.C. Robles-Bañuelos B. Rangel-López E. Cortez-Núñez S. Evaristo-Priego Y. Silva-Palacios A. Galván-Arzate S. García-Contreras R. Túnez I. Chen P. Aschner M. Santamaría A. Comparing the neuroprotective effects of caffeic acid in rat cortical slices and Caenorhabditis elegans: Involvement of Nrf2 and SKN-1 signaling pathways. Neurotox. Res. 2020 37 2 326 337 10.1007/s12640‑019‑00133‑8 31773641
    [Google Scholar]
  121. da Silveira J.C. Gottlieb O.R. de Oliveira G.G. Zeyherol, a dilignol from Zeyhera digitalis. Phytochemistry 1975 14 8 1829 1830 10.1016/0031‑9422(75)85304‑0
    [Google Scholar]
  122. Lintner C.J. Parks L.M. A note on the synthesis of veratric acid. J. Am. Pharm. Assoc. (Sci. Ed) 1948 37 1 39 40 10.1002/jps.3030370113 18899770
    [Google Scholar]
  123. Saravanakumar M. Raja B. Veratric acid, a phenolic acid attenuates blood pressure and oxidative stress in l-NAME induced hypertensive rats. Eur. J. Pharmacol. 2011 671 1-3 87 94 10.1016/j.ejphar.2011.08.052 21937012
    [Google Scholar]
  124. Choi W.S. Shin P.G. Lee J.H. Kim G.D. The regulatory effect of veratric acid on NO production in LPS-stimulated RAW264.7 macrophage cells. Cell. Immunol. 2012 280 2 164 170 10.1016/j.cellimm.2012.12.007 23399843
    [Google Scholar]
  125. Yu Q. Chen S. Tang H. Zhang X. Tao R. Yan Z. Shi J. Guo W. Zhang S. Veratric acid alleviates liver ischemia/reperfusion injury by activating the Nrf2 signaling pathway. 2021 Int. Immunopharmacol. 101 Part B 108294 10.1016/j.intimp.2021.108294
    [Google Scholar]
  126. Pringsheim T. Davenport W.J. Dodick D. Acute treatment and prevention of menstrually related migraine headache. Neurology 2008 70 17 1555 1563 10.1212/01.wnl.0000310638.54698.36 18427072
    [Google Scholar]
  127. Kovala-Demertzi D. Hadjipavlou-Litina D. Staninska M. Primikiri A. Kotoglou C. Demertzis M.A. Anti-oxidant, in vitro, in vivo anti-inflammatory activity and antiproliferative activity of mefenamic acid and its metal complexes with manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II). J. Enzyme Inhib. Med. Chem. 2009 24 3 742 752 10.1080/14756360802361589 18720191
    [Google Scholar]
  128. Lee W. Mun Y. Lee K.Y. Park J.M. Chang T.S. Choi Y.J. Lee B.H. Mefenamic acid-upregulated Nrf2/SQSTM1 protects hepatocytes against oxidative stress-induced cell damage. Toxics 2023 11 9 735 10.3390/toxics11090735 37755745
    [Google Scholar]
  129. Bagchi D. Moriyama H. Swaroop A. Green Coffee Bean Extract in Human Health CRC Press Boca Raton 2016 10.1201/9781315371153
    [Google Scholar]
  130. Buranov A.U. Mazza G. Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents. Food Chem. 2009 115 4 1542 1548 10.1016/j.foodchem.2009.01.059
    [Google Scholar]
  131. Ou S. Kwok K.C. Ferulic acid: Pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric. 2004 84 11 1261 1269 10.1002/jsfa.1873
    [Google Scholar]
  132. Zduńska K. Dana A. Kolodziejczak A. Rotsztejn H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol. 2018 31 6 332 336 10.1159/000491755 30235459
    [Google Scholar]
  133. Singh S. Arthur R. Upadhayay S. Kumar P. Ferulic acid ameliorates neurodegeneration via the Nrf2/ARE signalling pathway: A Review. Pharmacol. Res. - Mod. Chin. Med. 2022 5 100190 10.1016/j.prmcm.2022.100190
    [Google Scholar]
  134. Catino S. Paciello F. Miceli F. Rolesi R. Troiani D. Calabrese V. Santangelo R. Mancuso C. Ferulic acid regulates the Nrf2/Heme oxygenase-1 system and counteracts trimethyltin-induced neuronal damage in the human neuroblastoma cell line SH-SY5Y. Front. Pharmacol. 2016 6 305 10.3389/fphar.2015.00305 26779023
    [Google Scholar]
  135. Yu C. Pan S. Zhang J. Li X. Niu Y. Ferulic acid exerts Nrf2-dependent protection against prenatal lead exposure-induced cognitive impairment in offspring mice. J. Nutr. Biochem. 2021 91 108603 10.1016/j.jnutbio.2021.108603 33548475
    [Google Scholar]
  136. Mahmoud A.M. Hussein O.E. Hozayen W.G. Bin-Jumah M. Abd El-Twab S.M. Ferulic acid prevents oxidative stress, inflammation, and liver injury via upregulation of Nrf2/HO-1 signaling in methotrexate-induced rats. Environ. Sci. Pollut. Res. Int. 2020 27 8 7910 7921 10.1007/s11356‑019‑07532‑6 31889292
    [Google Scholar]
  137. Chen Y. Zhu L. Meng H. Sun X. Xue C. Ferulic acid protects human lens epithelial cells against ionizing radiation-induced oxidative damage by activating Nrf2/HO-1 signal pathway. Oxid. Med. Cell. Longev. 2022 2022 1 11 10.1155/2022/6932188 35592532
    [Google Scholar]
  138. Drolet J. Buchner-Duby B. Stykel M.G. Coackley C. Kang J.X. Ma D.W.L. Ryan S.D. Docosahexanoic acid signals through the Nrf2–Nqo1 pathway to maintain redox balance and promote neurite outgrowth. Mol. Biol. Cell 2021 32 7 511 520 10.1091/mbc.E20‑09‑0599 33502893
    [Google Scholar]
  139. Bates D.J.P. Smitherman P.K. Townsend A.J. King S.B. Morrow C.S. Nitroalkene fatty acids mediate activation of Nrf2/ARE-dependent and PPARγ-dependent transcription by distinct signaling pathways and with significantly different potencies. Biochemistry 2011 50 36 7765 7773 10.1021/bi2005784 21827153
    [Google Scholar]
  140. Abrescia P. Treppiccione L. Rossi M. Bergamo P. Modulatory role of dietary polyunsaturated fatty acids in Nrf2-mediated redox homeostasis. Prog. Lipid Res. 2020 80 101066 10.1016/j.plipres.2020.101066 32979455
    [Google Scholar]
  141. Henry G.E. Momin R.A. Nair M.G. Dewitt D.L. Antioxidant and cyclooxygenase activities of fatty acids found in food. J. Agric. Food Chem. 2002 50 8 2231 2234 10.1021/jf0114381 11929276
    [Google Scholar]
  142. Song Y. Li X. Li Y. Li N. Shi X. Ding H. Zhang Y. Li X. Liu G. Wang Z. Non-esterified fatty acids activate the ROS–p38–p53/Nrf2 signaling pathway to induce bovine hepatocyte apoptosis in vitro. Apoptosis 2014 19 6 984 997 10.1007/s10495‑014‑0982‑3 24699798
    [Google Scholar]
  143. Cremer D.R. Rabeler R. Roberts A. Lynch B. Long-term safety of α-lipoic acid (ALA) consumption: A 2-year study. Regul. Toxicol. Pharmacol. 2006 46 3 193 201 10.1016/j.yrtph.2006.06.003 16899332
    [Google Scholar]
  144. Skibska B. Kochan E. Stanczak A. Lipert A. Skibska A. Antioxidant and anti-inflammatory effects of α-lipoic acid on lipopolysaccharide-induced oxidative stress in rat kidney. Arch. Immunol. Ther. Exp. (Warsz.) 2023 71 1 16 10.1007/s00005‑023‑00682‑z 37378741
    [Google Scholar]
  145. Kyung S. Lim J.W. Kim H. α-lipoic acid inhibits IL-8 expression by activating Nrf2 signaling in Helicobacter pylori-infected gastric epithelial cells. Nutrients 2019 11 10 2524 10.3390/nu11102524 31635029
    [Google Scholar]
  146. Fayez A.M. Zakaria S. Moustafa D. Alpha lipoic acid exerts antioxidant effect via Nrf2/HO-1 pathway activation and suppresses hepatic stellate cells activation induced by methotrexate in rats. Biomed. Pharmacother. 2018 105 428 433 10.1016/j.biopha.2018.05.145 29879626
    [Google Scholar]
  147. Pilar Valdecantos M. Prieto-Hontoria P.L. Pardo V. Módol T. Santamaría B. Weber M. Herrero L. Serra D. Muntané J. Cuadrado A. Moreno-Aliaga M.J. Alfredo Martínez J. Valverde Á.M. Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes. Free Radic. Biol. Med. 2015 84 263 278 10.1016/j.freeradbiomed.2015.03.019 25841776
    [Google Scholar]
  148. Xia D. Zhai X. Wang H. Chen Z. Fu C. Zhu M. Alpha lipoic acid inhibits oxidative stress‐induced apoptosis by modulating of Nrf2 signalling pathway after traumatic brain injury. J. Cell. Mol. Med. 2019 23 6 4088 4096 10.1111/jcmm.14296 30989783
    [Google Scholar]
  149. Beare-Rogers J.L. Dieffenbacher A. Holm J.V. Lexicon of lipid nutrition (IUPAC technical report). Pure Appl. Chem. 2001 73 4 685 744 10.1351/pac200173040685
    [Google Scholar]
  150. Isabelle M.E. Leitch L.C. Organic deuterium compounds xix. Synthesis of some deuterated lauric acids and their methyl esters. Can. J. Chem. 1958 36 3 440 448 10.1139/v58‑063
    [Google Scholar]
  151. Anuar N.S. Shafie S.A. Maznan M.A.F. Zin N.S.N.M. Azmi N.A.S. Raoof R.A. Myrzakozha D. Samsulrizal N. Lauric acid improves hormonal profiles, antioxidant properties, sperm quality and histomorphometric changes in testis and epididymis of streptozotocin-induced diabetic infertility rats. Toxicol. Appl. Pharmacol. 2023 470 116558 10.1016/j.taap.2023.116558 37211320
    [Google Scholar]
  152. Nishimura Y. Moriyama M. Kawabe K. Satoh H. Takano K. Azuma Y.T. Nakamura Y. Lauric acid alleviates neuroinflammatory responses by activated microglia: Involvement of the GPR40-dependent pathway. Neurochem. Res. 2018 43 9 1723 1735 10.1007/s11064‑018‑2587‑7 29947014
    [Google Scholar]
  153. Shaheryar Z.A. Khan M.A. Hameed H. Zaidi S.A.A. Anjum I. Rahman M.S.U. Lauric acid provides neuroprotection against oxidative stress in mouse model of hyperglycaemic stroke. Eur. J. Pharmacol. 2023 956 175990 10.1016/j.ejphar.2023.175990 37572940
    [Google Scholar]
  154. Tardy A.L. Morio B. Chardigny J.M. Malpuech-Brugère C. Ruminant and industrial sources of trans -fat and cardiovascular and diabetic diseases. Nutr. Res. Rev. 2011 24 1 111 117 10.1017/S0954422411000011 21320382
    [Google Scholar]
  155. Alonso L. Fontecha J. Lozada L. Fraga M.J. Juárez M. Fatty acid composition of caprine milk: Major, branched-chain, and trans fatty acids. J. Dairy Sci. 1999 82 5 878 884 10.3168/jds.S0022‑0302(99)75306‑3 10342226
    [Google Scholar]
  156. Noller C.R. Bannerot R.A. The synthesis of unsaturated fatty acids. Synthesis of oleic and elaidic acids. J. Am. Chem. Soc. 1934 56 7 1563 1565 10.1021/ja01322a033
    [Google Scholar]
  157. Ma W.W. Zhao L. Yuan L.H. Yu H.L. Wang H. Gong X.Y. Wei F. Xiao R. Elaidic acid induces cell apoptosis through induction of ROS accumulation and endoplasmic reticulum stress in SH-SY5Y cells. Mol. Med. Rep. 2017 16 6 9337 9346 10.3892/mmr.2017.7830 29152653
    [Google Scholar]
  158. Taylor D.C. Guo Y. Katavic V. Mietkiewska E. Francis T. Bettger W. New seed oils for improved human and animal health and as industrial feedstocks: Genetic manipulation of the Brassicaceae to produce oils enriched in nervonic acid. Modification of Seed Composition to Promote Health and Nutrition Krishnan A.B. Madison, WI American Society of Agronomy 2009 219 233 10.2134/agronmonogr51.c10
    [Google Scholar]
  159. Hale J.B. Lycan W.H. Adams R. Synthesis of nervonic acid. J. Am. Chem. Soc. 1930 52 11 4536 4539 10.1021/ja01374a054
    [Google Scholar]
  160. Umemoto H. Yasugi S. Tsuda S. Yoda M. Ishiguro T. Kaba N. Itoh T. Protective effect of nervonic acid against 6‐Hydroxydopamine‐induced oxidative stress in PC‐12 cells. J. Oleo Sci. 2021 70 1 95 102 10.5650/jos.ess20262 33431776
    [Google Scholar]
  161. Wang X. Liang T. Mao Y. Li Z. Li X. Zhu X. Cao F. Zhang J. Nervonic acid improves liver inflammation in a mouse model of Parkinson’s disease by inhibiting proinflammatory signaling pathways and regulating metabolic pathways. Phytomedicine 2023 117 154911 10.1016/j.phymed.2023.154911 37276724
    [Google Scholar]
  162. Liu S. Sun H. Zhou Q. Yu G. Qin D. Ma Q. Nervonic acid regulates the oxidative imbalance in experimental allergic encephalomyelitis. Food Sci. Technol. Res. 2021 27 2 269 280 10.3136/fstr.27.269
    [Google Scholar]
  163. Egbujor M.C. Sulfonamide derivatives: Recent compounds with potent anti-alzheimer’s disease activity. Cent. Nerv. Syst. Agents Med. Chem. 2024 24 1 82 104 10.2174/0118715249278489231128042135 38275073
    [Google Scholar]
  164. El Kebbaj R. Bouchab H. Tahri-Joutey M. Rabbaa S. Limami Y. Nasser B. Egbujor M.C. Tucci P. Andreoletti P. Saso L. Cherkaoui-Malki M. The potential role of major argan oil compounds as Nrf2 regulators and their antioxidant effects. Antioxidants 2024 13 3 344 10.3390/antiox13030344 38539877
    [Google Scholar]
  165. Egbujor M.C. Olaniyan O.T. Emeruwa C.N. Saha S. Saso L. Tucci P. An insight into role of amino acids as antioxidants via NRF2 activation. Amino Acids 2024 56 1 23 10.1007/s00726‑024‑03384‑8 38506925
    [Google Scholar]
  166. Egbujor M.C. Tucci P. Buttari B. Nwobodo D.C. Marini P. Saso L. Phenothiazines: Nrf2 activation and antioxidant effects. J. Biochem. Mol. Toxicol. 2024 38 3 e23661 10.1002/jbt.23661 38369721
    [Google Scholar]
  167. Kahremany S. Babaev I. Hasin P. Tamir T.Y. Ben-Zur T. Cohen G. Jiang Z. Weintraub S. Offen D. Rahimipour S. Major M.B. Senderowitz H. Gruzman A. Computer-aided design and synthesis of 1-{4-[(3,4-dihydroxybenzylidene)amino]phenyl}-5-oxopyrrolidine-3-carboxylic acid as an Nrf2 enhancer. ChemPlusChem 2018 83 5 320 333 10.1002/cplu.201700539 31957349
    [Google Scholar]
  168. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  169. Thomae A.V. Wunderli-Allenspach H. Krämer S.D. Permeation of aromatic carboxylic acids across lipid bilayers: The pH-partition hypothesis revisited. Biophys. J. 2005 89 3 1802 1811 10.1529/biophysj.105.060871 15951388
    [Google Scholar]
  170. Yang G. Ge S. Singh R. Basu S. Shatzer K. Zen M. Liu J. Tu Y. Zhang C. Wei J. Shi J. Zhu L. Liu Z. Wang Y. Gao S. Hu M. Glucuronidation: Driving factors and their impact on glucuronide disposition. Drug Metab. Rev. 2017 49 2 105 138 10.1080/03602532.2017.1293682 28266877
    [Google Scholar]
  171. Russmann S. Kullak-Ublick G. Grattagliano I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr. Med. Chem. 2009 16 23 3041 3053 10.2174/092986709788803097 19689281
    [Google Scholar]
  172. Attia S.M. Deleterious effects of reactive metabolites. Oxid. Med. Cell. Longev. 2010 3 4 238 253 10.4161/oxim.3.4.13246 20972370
    [Google Scholar]
  173. Rundle K.I. Sharaf M.S. Stevens D. Kamunde C. van den Heuvel M.R. Adamantane carboxylic acids demonstrate mitochondrial toxicity consistent with oil sands-derived naphthenic acids. Environ. Adv. 2021 5 100092 10.1016/j.envadv.2021.100092
    [Google Scholar]
  174. Ortega-Vallbona R. Méndez R. Tolosa L. Escher S.E. Castell J.V. Gozalbes R. Serrano-Candelas E. Uncovering the toxicity mechanisms of a series of carboxylic acids in liver cells through computational and experimental approaches. Toxicology 2024 504 153764 10.1016/j.tox.2024.153764 38428665
    [Google Scholar]
  175. Morrison R.T. Boyd R.N. Organic Chemistry. 6th ed Prentice Hall International, Inc. London 1992
    [Google Scholar]
  176. Dunn J.B. Burns M.L. Hunter S.E. Savage P.E. Hydrothermal stability of aromatic carboxylic acids. J. Supercrit. Fluids 2003 27 3 263 274 10.1016/S0896‑8446(02)00241‑3
    [Google Scholar]
/content/journals/mc/10.2174/0115734064335901241101025220
Loading
/content/journals/mc/10.2174/0115734064335901241101025220
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: oxidative stress ; antioxidant ; anti-inflammatory ; NRF2 ; inflammation ; Carboxylic acid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test