Skip to content
2000
image of Heterocyclic Compounds as Bcr-Abl Tyrosine Kinase Inhibitors Against Chronic Myeloid Leukemia

Abstract

Despite significant progress in oncology therapeutics, cancer remains a leading cause of mortality worldwide. Chronic myeloid leukemia, which accounts for 15% of all adult leukemia cases, is characterized by chromosomal abnormalities involving the fusion of the Bcr and Abl genes to form the Bcr-Abl oncogene. Current drug treatment of the disease involves the use of Bcr-Abl tyrosine kinase inhibitors belonging to the first, second, and third generations. However, the toxicity and resistance associated with the use of imatinib, a first-generation Bcr-Abl inhibitor, in cases where the T315I mutation exists, necessitates the need for new tyrosine kinase inhibitors. This review focuses on recent synthetic compounds that exhibit potential as inhibitors of the Bcr-Abl protein which could be utilized in chemotherapy. Herein, we evaluated and summarized 36 studies published in the last few years that reported on newly synthesized and biologically evaluated novel small molecules with different heterocyclic scaffolds as Bcr-Abl tyrosine kinase inhibitors. The intricacy of the structure of newly synthesized compounds and the fact that each compound contains more than one scaffold makes it difficult to infer the potentially active core or scaffold. However, investigating different combined scaffolds enhances the chance of successfully developing novel drug candidates. Overall, the information provided in this review can be beneficial to researchers with an interest in chronic myeloid leukemia and tyrosine kinase inhibitors.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064311341240929175508
2024-10-11
2025-01-24
Loading full text...

Full text loading...

References

  1. Yin L. Yao Z. Wang Y. Huang Y-H. Mazuranic M. Yin A. 4MO Preclinical evaluation of novel CDK4/6 inhibitor GLR2007 in breast and lung cancer models. Ann. Oncol. 2021 32 S362 10.1016/j.annonc.2021.08.282
    [Google Scholar]
  2. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  3. Brown J.S. Amend S.R. Austin R.H. Gatenby R.A. Hammarlund E.U. Pienta K.J. Updating the definition of cancer. Mol. Cancer Res. 2023 21 11 1142 1147 10.1158/1541‑7786.MCR‑23‑0411 37409952
    [Google Scholar]
  4. Taverna S. Corrado C. Natural compounds: Molecular weapons against Leukemia’s. J. Leuk. (Los Angel.) 2017 5 226 2
    [Google Scholar]
  5. Lee Y.T. Tan Y.J. Oon C.E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol. 2018 834 188 196 10.1016/j.ejphar.2018.07.034 30031797
    [Google Scholar]
  6. Røsland G.V. Engelsen A.S.T. Novel points of attack for targeted cancer therapy. Basic Clin. Pharmacol. Toxicol. 2015 116 1 9 18 10.1111/bcpt.12313 25154903
    [Google Scholar]
  7. Brahmbhatt M.M. Trivedi P.J. Patel D.M. Shukla S.N. Patel P.S. Location of the BCR/ABL fusion genes on both chromosomes 9 in Ph negative young chronic myeloid leukemia patients: An indian experience. Indian J. Hematol. Blood Transfus. 2014 30 241 246 10.1007/s12288‑013‑0316‑6 25435721
    [Google Scholar]
  8. El-Tanani M. Nsairat H. Matalka I.I. Lee Y.F. Rizzo M. Aljabali A.A. Mishra V. Mishra Y. Hromić-Jahjefendić A. Tambuwala M.M. The impact of the BCR-ABL oncogene in the pathology and treatment of chronic myeloid leukemia. Pathol. Res. Pract. 2024 254 155161 10.1016/j.prp.2024.155161 38280275
    [Google Scholar]
  9. Sampaio M.M. Santos M.L.C. Marques H.S. Gonçalves V.L.S. Araújo G.R.L. Lopes L.W. Apolonio J.S. Silva C.S. Santos L.K.S. Cuzzuol B.R. Guimarães Q.E.S. Santos M.N. de Brito B.B. da Silva F.A.F. Oliveira M.V. Souza C.L. de Melo F.F. Chronic myeloid leukemia-from the Philadelphia chromosome to specific target drugs: A literature review. World J. Clin. Oncol. 2021 12 2 69 94 10.5306/wjco.v12.i2.69 33680875
    [Google Scholar]
  10. Sun H. Yan Z. Zhang S. Three atypical BCR/ABL transcripts detected simultaneously in a Philadelphia-positive acute lymphoblastic leukemia patient showing resistance to tyrosine kinase inhibitors. Int. J. Hematol. 2023 117 1 134 136 10.1007/s12185‑022‑03451‑4 36087225
    [Google Scholar]
  11. Nacheva E.P. Grace C.D. Brazma D. Gancheva K. Howard-Reeves J. Rai L. Gale R.E. Linch D.C. Hills R.K. Russell N. Burnett A.K. Kottaridis P.D. Does BCR/ABL1 positive acute myeloid leukaemia exist? Br. J. Haematol. 2013 161 4 541 550 10.1111/bjh.12301 23521501
    [Google Scholar]
  12. Mariotti B. Meconi F. Palmieri R. De Bellis E. Lavorgna S. Ottone T. Martini V. Lo-Coco F. Cicconi L. Acute myeloid leukemia with concomitant Bcr-Abl and NPM1 mutations. Case Rep. Hematol. 2019 2019 1 4 10.1155/2019/6707506 31110828
    [Google Scholar]
  13. Deininger M.W. Shah N.P. Altman J.K. Berman E. Bhatia R. Bhatnagar B. DeAngelo D.J. Gotlib J. Hobbs G. Maness L. Mead M. Metheny L. Mohan S. Moore J.O. Naqvi K. Oehler V. Pallera A.M. Patnaik M. Pratz K. Pusic I. Rose M.G. Smith B.D. Snyder D.S. Sweet K.L. Talpaz M. Thompson J. Yang D.T. Gregory K.M. Sundar H. Chronic myeloid leukemia, version 2.2021, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 2020 18 10 1385 1415 10.6004/jnccn.2020.0047 33022644
    [Google Scholar]
  14. Druker B.J. Tamura S. Buchdunger E. Ohno S. Segal G.M. Fanning S. Zimmermann J. Lydon N.B. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells. Nat. Med. 1996 2 5 561 566 10.1038/nm0596‑561 8616716
    [Google Scholar]
  15. Santos C. Pimentel L. Canzian H. Oliveira A. Junior F. Dantas R. Hoelz L. Marinho D. Cunha A. Bastos M. Boechat N. Hybrids of imatinib with quinoline: Synthesis, antimyeloproliferative activity evaluation, and molecular docking. Pharmaceuticals (Basel) 2022 15 3 309 10.3390/ph15030309 35337107
    [Google Scholar]
  16. Braun T.P. Eide C.A. Druker B.J. Response and resistance to Bcr-Abl1-targeted therapies. Cancer Cell 2020 37 4 530 542 10.1016/j.ccell.2020.03.006 32289275
    [Google Scholar]
  17. Lee H. Basso I.N. Kim D.D.H. Target spectrum of the BCR-ABL tyrosine kinase inhibitors in chronic myeloid leukemia. Int. J. Hematol. 2021 113 5 632 641 10.1007/s12185‑021‑03126‑6 33772728
    [Google Scholar]
  18. Ono T. Which tyrosine kinase inhibitors should be selected as the first-line treatment for chronic myelogenous leukemia in chronic phase? Cancers (Basel) 2021 13 20 5116 10.3390/cancers13205116 34680265
    [Google Scholar]
  19. Pereira W.A. Nascimento É.C.M. Martins J.B.L. Electronic and structural study of T315I mutated form in DFG-out conformation of BCR-ABL inhibitors. J. Biomol. Struct. Dyn. 2022 40 20 9774 9788 10.1080/07391102.2021.1935320 34121617
    [Google Scholar]
  20. Rossari F. Minutolo F. Orciuolo E. Past, present, and future of Bcr-Abl inhibitors: From chemical development to clinical efficacy. J. Hematol. Oncol. 2018 11 1 84 10.1186/s13045‑018‑0624‑2 29925402
    [Google Scholar]
  21. Sun L. Yang P.C. Luan L. Sun J.F. Wang Y.T. Harmonizing the craft of crafting clinically endorsed small-molecule BCR-ABL tyrosine kinase inhibitors for the treatment of hematological malignancies. Eur. J. Pharm. Sci. 2024 193 106678 10.1016/j.ejps.2023.106678 38114052
    [Google Scholar]
  22. Alza E. Flow and Microreactor Technology in Medicinal Chemistry. Weinheim WILEY-VCH 2022 154 103 10.1002/9783527824595
    [Google Scholar]
  23. Druker B.J. Guilhot F. O’Brien S.G. Gathmann I. Kantarjian H. Gattermann N. Deininger M.W.N. Silver R.T. Goldman J.M. Stone R.M. Cervantes F. Hochhaus A. Powell B.L. Gabrilove J.L. Rousselot P. Reiffers J. Cornelissen J.J. Hughes T. Agis H. Fischer T. Verhoef G. Shepherd J. Saglio G. Gratwohl A. Nielsen J.L. Radich J.P. Simonsson B. Taylor K. Baccarani M. So C. Letvak L. Larson R.A. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 2006 355 23 2408 2417 10.1056/NEJMoa062867 17151364
    [Google Scholar]
  24. Reddy E.P. Aggarwal A.K. The ins and outs of bcr-abl inhibition. Genes Cancer 2012 3 5-6 447 454 10.1177/1947601912462126 23226582
    [Google Scholar]
  25. Senapati J. Sasaki K. Issa G.C. Lipton J.H. Radich J.P. Jabbour E. Kantarjian H.M. Management of chronic myeloid leukemia in 2023 – common ground and common sense. Blood Cancer J. 2023 13 1 58 10.1038/s41408‑023‑00823‑9 37088793
    [Google Scholar]
  26. Nicolini F.E. Ibrahim A.R. Soverini S. Martinelli G. Müller M.C. Hochhaus A. Dufva I.H. Kim D.W. Cortes J. Mauro M.J. Chuah C. Labussière H. Morisset S. Roche-Lestienne C. Lippert E. Hayette S. Peter S. Zhou W. Maguer-Satta V. Michallet M. Goldman J. Apperley J.F. Mahon F.X. Marin D. Etienne G. The BCR-ABLT315I mutation compromises survival in chronic phase chronic myelogenous leukemia patients resistant to tyrosine kinase inhibitors, in a matched pair analysis. Haematologica 2013 98 10 1510 1516 10.3324/haematol.2012.080234 23716543
    [Google Scholar]
  27. Wang Y. Liang Z. Gale R.P. Liao H. Ma J. Gong T. Shao Y. Liang Y. Chronic myeloid leukaemia: Biology and therapy. Blood Rev. 2024 65 101196 10.1016/j.blre.2024.101196 38604819
    [Google Scholar]
  28. Roskoski R. Jr Targeting BCR-Abl in the treatment of Philadelphia-chromosome positive chronic myelogenous leukemia. Pharmacol. Res. 2022 178 106156 10.1016/j.phrs.2022.106156 35257901
    [Google Scholar]
  29. Schoepfer J. Jahnke W. Berellini G. Buonamici S. Cotesta S. Cowan-Jacob S.W. Dodd S. Drueckes P. Fabbro D. Gabriel T. Groell J.M. Grotzfeld R.M. Hassan A.Q. Henry C. Iyer V. Jones D. Lombardo F. Loo A. Manley P.W. Pellé X. Rummel G. Salem B. Warmuth M. Wylie A.A. Zoller T. Marzinzik A.L. Furet P. Discovery of Asciminib (ABL001), an Allosteric Inhibitor of the Tyrosine Kinase Activity of BCR-ABL1. J. Med. Chem. 2018 61 18 8120 8135 10.1021/acs.jmedchem.8b01040 30137981
    [Google Scholar]
  30. Jiang Q. Li Z. Qin Y. Li W. Xu N. Liu B. Zhang Y. Meng L. Zhu H. Du X. Chen S. Liang Y. Hu Y. Liu X. Song Y. Men L. Chen Z. Niu Q. Wang H. Lu M. Yang D. Zhai Y. Huang X. Olverembatinib (HQP1351), a well-tolerated and effective tyrosine kinase inhibitor for patients with T315I-mutated chronic myeloid leukemia: Results of an open-label, multicenter phase 1/2 trial. J. Hematol. Oncol. 2022 15 1 113 10.1186/s13045‑022‑01334‑z 35982483
    [Google Scholar]
  31. Ren X. Pan X. Zhang Z. Wang D. Lu X. Li Y. Wen D. Long H. Luo J. Feng Y. Zhuang X. Zhang F. Liu J. Leng F. Lang X. Bai Y. She M. Tu Z. Pan J. Ding K. Identification of GZD824 as an orally bioavailable inhibitor that targets phosphorylated and nonphosphorylated breakpoint cluster region-Abelson (Bcr-Abl) kinase and overcomes clinically acquired mutation-induced resistance against imatinib. J. Med. Chem. 2013 56 3 879 894 10.1021/jm301581y 23301703
    [Google Scholar]
  32. Milojkovic D. Apperley J. Mechanisms of resistance to imatinib and second-generation tyrosine inhibitors in chronic myeloid leukemia. Clin. Cancer Res. 2009 15 24 7519 7527 10.1158/1078‑0432.CCR‑09‑1068 20008852
    [Google Scholar]
  33. Koroleva E.V. Kornoushenko Y.V. Karpenko A.D. Bosko I.P. Siniutsich J.V. Ignatovich Z.V. Andrianov A.M. In silico design and computational evaluation of novel 2-arylaminopyrimidine-based compounds as potential multi-targeted protein kinase inhibitors: Application for the native and mutant (T315I) Bcr-Abl tyrosine kinase. J. Biomol. Struct. Dyn. 2023 41 9 4065 4080 10.1080/07391102.2022.2062784 35470777
    [Google Scholar]
  34. Fedarkevich A.N. Sharko O.L. Shmanai V.V. Computer modeling and synthesis of potential ınhibitors of tyrosine kinase Bcr-Abl with the T315I mutation. Russ. J. Bioorganic Chem. 2020 46 2 187 198 10.1134/S1068162020020089
    [Google Scholar]
  35. Günay F. Balta S. Synthesis, molecular modeling, and biological evaluation of novel imatinib derivatives asanticancer agents. Turk. J. Chem. 2022 46 1 102 186 38143894
    [Google Scholar]
  36. Maddeboina K. Yada B. Kumari S. McHale C. Pal D. Durden D.L. Recent advances in multitarget-directed ligands via in silico drug discovery. Drug Discov. Today 2024 29 3 103904 10.1016/j.drudis.2024.103904 38280625
    [Google Scholar]
  37. Pandrala M. Bruyneel A.A.N. Hnatiuk A.P. Mercola M. Malhotra S.V. Designing novel Bcr-Abl inhibitors for chronic myeloid leukemia with improved cardiac safety. J. Med. Chem. 2022 65 16 10898 10919 10.1021/acs.jmedchem.1c01853 35944901
    [Google Scholar]
  38. Gupta P. Zhang G.N. Barbuti A.M. Zhang X. Karadkhelkar N. Zhou J. Ding K. Pan J. Yoganathan S. Yang D.H. Chen Z.S. Preclinical development of a novel BCR-ABL T315I inhibitor against chronic myeloid leukemia. Cancer Lett. 2020 472 132 141 10.1016/j.canlet.2019.11.040 31837444
    [Google Scholar]
  39. Shen Y. Ren X. Ding K. Zhang Z. Wang D. Pan J. Antitumor activity of S116836, a novel tyrosine kinase inhibitor, against imatinib-resistant FIP1L1-PDGFRα-expressing cells. Oncotarget 2014 5 21 10407 10420 10.18632/oncotarget.2090 25431951
    [Google Scholar]
  40. El-Damasy A.K. Jin H. Seo S.H. Bang E.K. Keum G. Design, synthesis, and biological evaluations of novel 3-amino-4-ethynyl indazole derivatives as Bcr-Abl kinase inhibitors with potent cellular antileukemic activity. Eur. J. Med. Chem. 2020 207 112710 10.1016/j.ejmech.2020.112710 32961435
    [Google Scholar]
  41. Zhang D. Li P. Gao Y. Song Y. Zhu Y. Su H. Yang B. Li L. Li G. Gong N. Lu Y. Shao H. Yu C. Huang H. Discovery of a candidate containing an (S)-3,3-Difluoro-1-(4-methylpiperazin-1-yl)-2,3-dihydro-1H-inden scaffold as a highly potent pan-inhibitor of the Bcr-Abl kinase including the T315I-resistant mutant for the treatment of chronic myeloid leukemia. J. Med. Chem. 2021 64 11 7434 7452 10.1021/acs.jmedchem.1c00082 34011155
    [Google Scholar]
  42. Kantankar A. Jayaprakash Rao Y. Mallikarjun G. Hemasri Y. Kethiri R.R. Rational design, synthesis, biological evaluation and molecular docking studies of chromone-pyrimidine derivatives as potent anti-cancer agents. J. Mol. Struct. 2021 1239 130502 10.1016/j.molstruc.2021.130502
    [Google Scholar]
  43. Munikrishnappa C.S. Suresh Kumar G.V. Bhandare R.R. Shaik A.B. Design, synthesis, and biological evaluation of novel bromo-pyrimidine analogues as tyrosine kinase inhibitors. Arab. J. Chem. 2021 14 4 103054 10.1016/j.arabjc.2021.103054
    [Google Scholar]
  44. Pimentel LCF Hoelz LVB Canzian HF (Phenylamino)pyrimidine-1,2,3-triazole derivatives as analogs of imatinib: Searching for novel compounds against chronic myeloid leukemia. Beilstein J. Org. Chem. 2021 17 2260 2269
    [Google Scholar]
  45. Abdellatif K.R.A. Bakr R.B. Pyrimidine and fused pyrimidine derivatives as promising protein kinase inhibitors for cancer treatment. Med. Chem. Res. 2021 30 1 31 49 10.1007/s00044‑020‑02656‑8
    [Google Scholar]
  46. Radi M. Tintori C. Musumeci F. Brullo C. Zamperini C. Dreassi E. Fallacara A.L. Vignaroli G. Crespan E. Zanoli S. Laurenzana I. Filippi I. Maga G. Schenone S. Angelucci A. Botta M. Design, synthesis, and biological evaluation of pyrazolo[3,4-d]pyrimidines active in vivo on the Bcr-Abl T315I mutant. J. Med. Chem. 2013 56 13 5382 5394 10.1021/jm400233w 23746084
    [Google Scholar]
  47. Di Maria S. Picarazzi F. Mori M. Cianciusi A. Carbone A. Crespan E. Perini C. Sabetta S. Deplano S. Poggialini F. Molinari A. Aronne R. Maccioni E. Maga G. Angelucci A. Schenone S. Musumeci F. Dreassi E. Novel pyrazolo[3,4-d]pyrimidines as dual Src/Bcr-Abl kinase inhibitors: Synthesis and biological evaluation for chronic myeloid leukemia treatment. Bioorg. Chem. 2022 128 106071 10.1016/j.bioorg.2022.106071 35932498
    [Google Scholar]
  48. Dolatkhah Z. Javanshir S. Sadr A.S. Hosseini J. Sardari S. Synthesis, molecular docking, molecular dynamics studies, and biological evaluation of 4h-chromone-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives as potential antileukemic agents. J. Chem. Inf. Model. 2017 57 6 1246 1257 10.1021/acs.jcim.6b00138 28524659
    [Google Scholar]
  49. Hu L. Cao T. Lv Y. Ding Y. Yang L. Zhang Q. Guo M. Design, synthesis, and biological activity of 4-(imidazo[1,2- b ]pyridazin-3-yl)-1 H -pyrazol-1-yl-phenylbenzamide derivatives as BCR–ABL kinase inhibitors. Bioorg. Med. Chem. Lett. 2016 26 23 5830 5835 10.1016/j.bmcl.2016.10.007 28029512
    [Google Scholar]
  50. Malarz K. Mularski J. Pacholczyk M. Musiol R. Styrylquinazoline derivatives as ABL inhibitors selective for different DFG orientations. J. Enzyme Inhib. Med. Chem. 2023 38 1 2201410 10.1080/14756366.2023.2201410 37070569
    [Google Scholar]
  51. Pan X. Liu N. Zhang Q. Wang K. Li Y. Shan Y. Li Z. Zhang J. Design, synthesis, and biological evaluation of novel Bcr-AblT315I inhibitors incorporating amino acids as flexible linker. Bioorg. Med. Chem. 2021 48 116398 10.1016/j.bmc.2021.116398 34547714
    [Google Scholar]
  52. Wang X. Xu Z. Feng J. Pan G. He X. Lv M. Chen H. Jiang W. Ji J. Yang M. Synthesis and biological evaluation of novel aromatic amide derivatives as potential BCR-ABL inhibitors. Bioorg. Med. Chem. Lett. 2023 81 129144 10.1016/j.bmcl.2023.129144 36681201
    [Google Scholar]
  53. Wang X.J. Pan G. Zhang Z. Feng J. Xu Z. Zheng L. Ma S. Dong G-S. Hou X. Deng Y-M. Ji J. Yang M. Design, synthesis and antitumor evaluation of 3‑chloro-4 - (pyridin-2-ylmethoxy) aniline derivatives as BCR-ABL kinase. J. Mol. Struct. 2023 1282 135154 10.1016/j.molstruc.2023.135154
    [Google Scholar]
  54. Pan X. Liu N. Liu Y. Zhang Q. Wang K. Liu X. Zhang J. Design, synthesis, and biological evaluation of trizole-based heteroaromatic derivatives as Bcr-Abl kinase inhibitors. Eur. J. Med. Chem. 2022 238 114425 10.1016/j.ejmech.2022.114425 35561654
    [Google Scholar]
  55. Chen P. Sun J. Zhu C. Tang G. Wang W. Xu M. Xiang M. Zhang C.J. Zhang Z.M. Gao L. Yao S.Q. Cell-active, reversible, and irreversible covalent inhibitors that selectively target the catalytic lysine of Bcr-Abl kinase. Angew. Chem. Int. Ed. 2022 61 26 e202203878 10.1002/anie.202203878 35438229
    [Google Scholar]
  56. Ning C. Tao A. Xu J. Design, synthesis, and biological evaluation of 3, 5-disubsituted-1H-pyrazolo[3,4-b]pyridines as multiacting inhibitors against microtubule and kinases. Eur. J. Med. Chem. 2023 259 115687 10.1016/j.ejmech.2023.115687 37544183
    [Google Scholar]
  57. Bertrand J. Dostálová H. Kryštof V. Jorda R. Delgado T. Castro-Alvarez A. Mella J. Cabezas D. Faúndez M. Espinosa-Bustos C. Salas C.O. Design, synthesis, in silico studies and inhibitory activity towards Bcr-Abl, BTK and FLT3-ITD of new2,6,9-trisubstituted purine derivatives as potential agents for the treatment of leukemia. Pharmaceutics 2022 14 6 1294 10.3390/pharmaceutics14061294 35745866
    [Google Scholar]
  58. Bertrand J. Dostálová H. Krystof V. Jorda R. Castro A. Mella J. Espinosa-Bustos C. María Zarate A. Salas C.O. New 2,6,9-trisubstituted purine derivatives as Bcr-Abl and Btk inhibitors and as promising agents against leukemia. Bioorg. Chem. 2020 94 103361 10.1016/j.bioorg.2019.103361 31699386
    [Google Scholar]
  59. de Oliveira Ribeiro H. Cortez A.P. de Ávila R.I. da Silva A.C.G. de Carvalho F.S. Menegatti R. Lião L.M. Valadares M.C. Small‐molecule MDM2 inhibitor LQFM030‐induced apoptosis in p53‐null K562 chronic myeloid leukemia cells. Fundam. Clin. Pharmacol. 2020 34 4 444 457 10.1111/fcp.12540 32011031
    [Google Scholar]
  60. Liu H. Ding X. Liu L. Mi Q. Zhao Q. Shao Y. Ren C. Chen J. Kong Y. Qiu X. Elvassore N. Yang X. Yin Q. Jiang B. Discovery of novel BCR-ABL PROTACs based on the cereblon E3 ligase design, synthesis, and biological evaluation. Eur. J. Med. Chem. 2021 223 113645 10.1016/j.ejmech.2021.113645 34217059
    [Google Scholar]
  61. Jiang L. Wang Y. Li Q. Tu Z. Zhu S. Tu S. Zhang Z. Ding K. Lu X. Design, synthesis, and biological evaluation of Bcr-Abl PROTACs to overcome T315I mutation. Acta Pharm. Sin. B 2021 11 5 1315 1328 10.1016/j.apsb.2020.11.009 34094836
    [Google Scholar]
  62. Rojas-Vargas J.A. García-López A. Rodríguez L. Froeyen M. Molecular Docking Studies of Arylsubstituted Imidazoles on Oncogenic Protein Bcr-Abl Tyrosine Kinase 1 1 1 2. PharmaSciTech 2019 8 2 2018
    [Google Scholar]
  63. Hekmatshoar Y. Ozkan T. Alp M. Gurkan-Alp A.S. Sunguroglu A. Some 2‐[4‐( 1H ‐benzimidazol‐1‐yl) phenyl]‐ 1H ‐benzimidazole derivatives overcome imatinib resistance by induction of apoptosis and reduction of P‐glycoprotein activity. Chem. Biol. Drug Des. 2023 102 6 1521 1533 10.1111/cbdd.14343 37722976
    [Google Scholar]
  64. Shaldam M.A. Hendrychová D. El-Haggar R. Vojáčková V. Majrashi T.A. Elkaeed E.B. Masurier N. Kryštof V. Tawfik H.O. Eldehna W.M. 2,4-Diaryl-pyrimido[1,2-a]benzimidazole derivatives as novel anticancer agents endowed with potent anti-leukemia activity: Synthesis, biological evaluation and kinase profiling. Eur. J. Med. Chem. 2023 258 115610 10.1016/j.ejmech.2023.115610 37437350
    [Google Scholar]
  65. Nitulescu G.M. Stancov G. Seremet O.C. Nitulescu G. Mihai D.P. Duta-Bratu C.G. Barbuceanu S.F. Olaru O.T. The importance of the pyrazole scaffold in the design of protein kinases inhibitors as targeted anticancer therapies. Molecules 2023 28 14 5359 10.3390/molecules28145359 37513232
    [Google Scholar]
  66. El-Gamal M.I. Zaraei S.O. Madkour M.M. Anbar H.S. Evaluation of substituted pyrazole-based kinase inhibitors in one decade (2011–2020): Current status and future prospects. Molecules 2022 27 1 330 10.3390/molecules27010330 35011562
    [Google Scholar]
  67. Abu-Safieh K. El-Barghouthi M.I. Khanfar M.A. Salameh B.A. Al-Aqrabawi I.S. Hourani B.J.A. Ali B.F. Crystal structure of 1-(1,3-dimethyl-4-nitro-1H-pyrazol-5-yl)-3,5-diphenyl-1H-pyrazole and molecular docking studies of 1-(1,3-dimethyl-4-nitro-1H-pyrazol-5-yl)-3,5-diphenyl-1H-pyrazole and 5-methyl-1-(1,3-dimethyl-4-nitro-1H-pyrazol-5-yl)-3-phenyl-1H-pyrazole towards tyrosine kinases. J. Mol. Struct. 2021 1237 130345 10.1016/j.molstruc.2021.130345
    [Google Scholar]
  68. Lewis T.R. Smith J. Griffin K. Aguiar S. Rueb K.F. Holmberg-Douglas N. Sampson E.M. Tomasetti S. Rodriguez S. Stachura D.L. Arpin C.C. NHD2-15, a novel antagonist of Growth Factor Receptor-Bound Protein-2 (GRB2), inhibits leukemic proliferation. PLoS One 2020 15 8 e0236839 10.1371/journal.pone.0236839 32780746
    [Google Scholar]
  69. Rezaei Z. Mahdi Didehvar M. Mahdavi M. Azizian H. Hamedifar H. Mohammed E.H.M. Ostad S. Amini M. Anticancer properties of N-alkyl-2, 4-diphenylimidazo [1, 2-a] quinoxalin-1-amine derivatives; kinase inhibitors. Bioorg. Chem. 2019 90 103055 10.1016/j.bioorg.2019.103055 31220669
    [Google Scholar]
  70. Ahmadu A.A. Delehouzé C. Haruna A. Mustapha L. Lawal B.A. Udobre A. Baratte B. Triscornia C. Autret A. Robert T. Bulinski J.C. Rousselot M. Simoes Eugénio M. Dimanche-Boitrel M.T. Petzer J.P. Legoabe L.J. Bach S. Betulin, a newly characterized compound in Acacia auriculiformis bark, is a multi-target protein kinase inhibitor. Molecules 2021 26 15 4599 10.3390/molecules26154599 34361750
    [Google Scholar]
  71. da Silva E.F. de Vargas A.S. Willig J.B. de Oliveira C.B. Zimmer A.R. Pilger D.A. Buffon A. Gnoatto S.C.B. Synthesis and antileukemic activity of an ursolic acid derivative: A potential co-drug in combination with imatinib. Chem. Biol. Interact. 2021 344 109535 10.1016/j.cbi.2021.109535 34051208
    [Google Scholar]
  72. Zhao L. Miao H.C. Li W.J. Sun Y. Huang S. Li Z.Y. Guo Q.L. LW-213 induces G2/M cell cycle arrest through AKT/GSK3β/β-catenin signaling pathway in human breast cancer cells. Mol. Carcinog. 2016 55 5 778 792 10.1002/mc.22321 25945460
    [Google Scholar]
  73. Liu X. Hu P. Li H. Yu X. Wang X. Qing Y. Wang Z. Wang H. Zhu M. Guo Q. Hui H. LW-213, a newly synthesized flavonoid, induces G2/M phase arrest and apoptosis in chronic myeloid leukemia. Acta Pharmacol. Sin. 2020 41 2 249 259 10.1038/s41401‑019‑0270‑4 31316178
    [Google Scholar]
  74. Hong S. Kim J. Yun S.M. Lee H. Park Y. Hong S.S. Hong S. Discovery of new benzothiazole-based inhibitors of breakpoint cluster region-Abelson kinase including the T315I mutant. J. Med. Chem. 2013 56 9 3531 3545 10.1021/jm301891t 23600806
    [Google Scholar]
  75. Bayrak N. Yıldırım H. Yıldız M. Radwan M.O. Otsuka M. Fujita M. Tuyun A.F. Ciftci H.I. Design, synthesis, and biological activity of Plastoquinone analogs as a new class of anticancer agents. Bioorg. Chem. 2019 92 103255 10.1016/j.bioorg.2019.103255 31542717
    [Google Scholar]
/content/journals/mc/10.2174/0115734064311341240929175508
Loading
/content/journals/mc/10.2174/0115734064311341240929175508
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test