Skip to content
2000
image of In silico Study of Novel Tryptanthrin-Based Topoisomerase Inhibitors

Abstract

Background

Over the past ten years, a remarkable number of changes have occurred in the field of cancer drug research. Most anticancer drugs from the first generation work by breaking down DNA, preventing its production, interfering with cell division processes, or attaching to microtubules. The potential use of tryptanthrin as well as its analogues is well documented for anticancer properties.

Objective

To design a novel hybrid of tryptanthrin analogs with expected anticancer activity.

Method

By changing the C-6 carbonyl position of the tryptanthrin molecule, a set of 72 derivatives of substituted-6-benzylidine-6-indolo[2,1-] quinazoline-12-one was developed. These ligands were screened using Schrodinger Glide extra precision docking against DNA topoisomerase using doxorubicin and teniposide as references to identify their potential anticancer properties. Further, these ligands were subjected to an ADMET study to identify their drug likeliness.

Results

Combined results of molecular docking and ADMET study suggest that out of the total 72 ligands, 6 ligands RC 51, RC 29, RC 42, RC 3, RC 54, and RC 63 were showing very better binding affinity than the natural ligand adenylyl-imidodiphosphate and the two standard reference drugs- doxorubicin and teniposide.

Conclusion

Our computational approach was successful in identifying ligands that are potentially potent topoisomerase inhibitors. These can be tested further using and analysis.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064334604241014024205
2024-10-24
2025-01-09
Loading full text...

Full text loading...

References

  1. Kaur R. Manjal S.K. Rawal R.K. Kumar K. Recent synthetic and medicinal perspectives of tryptanthrin. Bioorg. Med. Chem. 2017 25 17 4533 4552 10.1016/j.bmc.2017.07.003 28720329
    [Google Scholar]
  2. Rodríguez-Romero J.J. Aceves-Lara C.A. Silva C.F. Gschaedler A. Amaya-Delgado L. Arrizon J. 2-Phenylethanol and 2-phenylethylacetate production by nonconventional yeasts using tequila vinasses as a substrate. Biotechnol. Rep. 2020 25 e00420 10.1016/j.btre.2020.e00420 32025510
    [Google Scholar]
  3. Popov A.M. Osipov A.N. Korepanova E.A. Krivoshapko O.N. Shtoda Y.P. Klimovich A.A. Study of antioxidant and membranotropic activities of quinazoline alkaloid tryptanthrin using different model systems. Biofizika 2015 60 4 700 707 26394469
    [Google Scholar]
  4. Hao Y. Guo J. Wang Z. Liu Y. Li Y. Ma D. Wang Q. Discovery of tryptanthrins as novel antiviral and anti-phytopathogenic-fungus agents. J. Agric. Food Chem. 2020 68 20 5586 5595 10.1021/acs.jafc.0c02101 32357298
    [Google Scholar]
  5. Kirpotina L.N. Schepetkin I.A. Hammaker D. Kuhs A. Khlebnikov A.I. Quinn M.T. Therapeutic effects of tryptanthrin and tryptanthrin-6-oxime in models of rheumatoid arthritis. Front. Pharmacol. 2020 11 1145 10.3389/fphar.2020.01145 32792961
    [Google Scholar]
  6. Jahng Y. Progress in the studies on tryptanthrin, an alkaloid of history. Arch. Pharm. Res. 2013 36 5 517 535 10.1007/s12272‑013‑0091‑9 23543631
    [Google Scholar]
  7. Hwang J.M. Oh T. Kaneko T. Upton A.M. Franzblau S.G. Ma Z. Design, synthesis, and structure activity relationship studies of tryptanthrins as antitubercular agents. J. Nat. Prod. 2012 ••• 10.1021/np3007167 23360475
    [Google Scholar]
  8. Shang X.F. Morris-Natschke S.L. Yang G.Z. Liu Y.Q. Guo X. Xu X.S. Goto M. Li J.C. Zhang J.Y. Lee K.H. Biologically active quinoline and quinazoline alkaloids part II. Med. Res. Rev. 2018 38 5 1614 1660 10.1002/med.21492 29485730
    [Google Scholar]
  9. Hesse-Macabata J. Morgner B. Elsner P. Hipler U.C. Wiegand C. Tryptanthrin promotes keratinocyte and fibroblast responses in vitro after infection with Trichophyton benhamiae DSM6916. Sci. Rep. 2020 10 1 1863 10.1038/s41598‑020‑58773‑2 32024909
    [Google Scholar]
  10. Matveevskaya V.V. Pavlov D.I. Sukhikh T.S. Gushchin A.L. Ivanov A.Y. Tennikova T.B. Sharoyko V.V. Baykov S.V. Benassi E. Potapov A.S. Arene-ruthenium (II) complexes containing 11H-Indeno[1,2-b]quinoxalin-11-one derivatives and tryptanthrin-6-oxime: Synthesis, characterization, cytotoxicity, and catalytic transfer hydrogenation of aryl ketones. ACS Omega 2020 5 19 11167 11179 10.1021/acsomega.0c01204 32455240
    [Google Scholar]
  11. Teja C. Ramanathan K. Naresh K. Vidya R. Gomathi K. Nawaz F.R. Design, synthesis, and biological evaluation of tryptanthrin alkaloids as potential anti-diabetic and anticancer agents. Polycycl. Aromat. Compd. 2023 43 1 874 894 10.1080/10406638.2021.2021257
    [Google Scholar]
  12. Pinheiro D. Pineiro M. Seixas de Melo J.S. Tryptanthrin derivatives as efficient singlet oxygen sensitizers. Photochem. Photobiol. Sci. 2022 21 5 645 658 10.1007/s43630‑021‑00117‑8 34735707
    [Google Scholar]
  13. Yu S. Chern J. Chen T. Chiu Y. Chen H. Chen Y. Cytotoxicity and reversal of multidrug resistance by tryptanthrin-derived indoloquinazolines. Acta Pharmacol. Sin. 2010 31 2 259 264 10.1038/aps.2009.198 20139909
    [Google Scholar]
  14. Sridhar M. Ravi G. Reddy L.K. Reddy P.M. Ramesh P. Raju A.K. Synthesis of Co(II) metal complexes of tryptanthrin schiff bases, characterization, their biological evaluation, and molecular docking studies. Asian J. Green Chem. 2024 8 441 456
    [Google Scholar]
  15. Zou Y. Zhang G. Li C. Long H. Chen D. Li Z. Ouyang G. Zhang W. Zhang Y. Wang Z. Discovery of tryptanthrin and its derivatives and its activities against NSCLC in vitro via both apoptosis and autophagy pathways. Int. J. Mol. Sci. 2023 24 2 1450 10.3390/ijms24021450 36674964
    [Google Scholar]
  16. Popov A. Klimovich A. Styshova O. Moskovkina T. Shchekotikhin A. Grammatikova N. Dezhenkova L. Kaluzhny D. Deriabin P. Gerasimenko A. Udovenko A. Stonik V. Design, synthesis and biomedical evaluation of mostotrin, a new water soluble tryptanthrin derivative. Int. J. Mol. Med. 2020 46 4 1335 1346 10.3892/ijmm.2020.4693 32945360
    [Google Scholar]
  17. Yakkala P.A. Penumallu N.R. Shafi S. Kamal A. Prospects of topoisomerase inhibitors as promising anti-cancer agents. Pharmaceuticals 2023 16 10 1456 1480 10.3390/ph16101456 37895927
    [Google Scholar]
  18. Hou B. Zhou Y. Li W. Liu J. Wang C. Synthesis and evaluation of tryptanthrins as antitumor agents. Tetrahedron 2021 99 132454 10.1016/j.tet.2021.132454
    [Google Scholar]
  19. Long H. Zhang G. Zhou Y. Qin L. Zhu D. Chen J. Liu B. Tan H. Chen D. Li Z. Li C. Wang Z. A novel tryptanthrin derivative d6 induces apoptosis and DNA damage in non-small-cell lung cancer cells through regulating the EGFR pathway. Anticancer. Agents Med. Chem. 2024 24 17 1275 1287 10.2174/0118715206303721240715042526 39034729
    [Google Scholar]
  20. Zhou X. Recent advances of tryptanthrin and its derivatives as potential anticancer agents. RSC Medicinal Chemistry 2024 15 4 1127 1147 10.1039/D3MD00698K 38665827
    [Google Scholar]
  21. Schepetkin I.A. Karpenko O.S. Kovrizhina A.R. Kirpotina L.N. Khlebnikov A.I. Chekal S.I. Radudik A.V. Shybinska M.O. Quinn M.T. Novel tryptanthrin derivatives with selectivity as c–jun n–terminal kinase (JNK) 3 inhibitors. Molecules 2023 28 12 4806 10.3390/molecules28124806 37375361
    [Google Scholar]
  22. Kimoto T. Hino K. Koya-Miyata S. Yamamoto Y. Takeuchi M. Nishizaki Y. Micallef M.J. Ushio S. Iwaki K. Ikeda M. Kurimoto M. Cell differentiation and apoptosis of monocytic and promyelocytic leukemia cells (U‐937 and HL‐60) by tryptanthrin, an active ingredient of Polygonum tinctorium Lour. Pathol. Int. 2001 51 5 315 325 10.1046/j.1440‑1827.2001.01204.x 11422788
    [Google Scholar]
  23. Chan H.L. Yip H.Y. Mak N.K. Leung K.N. Modulatory effects and action mechanisms of tryptanthrin on murine myeloid leukemia cells. Cell. Mol. Immunol. 2009 6 5 335 342 10.1038/cmi.2009.44 19887046
    [Google Scholar]
  24. Yang S. Li X. Hu F. Li Y. Yang Y. Yan J. Kuang C. Yang Q. Discovery of tryptanthrin derivatives as potent inhibitors of indoleamine 2,3-dioxygenase with therapeutic activity in Lewis lung cancer (LLC) tumor-bearing mice. J. Med. Chem. 2013 56 21 8321 8331 10.1021/jm401195n 24099220
    [Google Scholar]
  25. Bandekar P.P. Roopnarine K.A. Parekh V.J. Mitchell T.R. Novak M.J. Sinden R.R. Antimicrobial activity of tryptanthrins in Escherichia coli. J. Med. Chem. 2010 53 9 3558 3565 10.1021/jm901847f 20373766
    [Google Scholar]
  26. Seya K. Yamaya A. Kamachi S. Murakami M. Kitahara H. Kawakami J. Okumura K. Murakami M. Motomura S. Furukawa K.I. 8-Methyltryptanthrin-induced differentiation of P19CL6 embryonal carcinoma cells into spontaneously beating cardiomyocyte-like cells. J. Nat. Prod. 2014 77 6 1413 1419 10.1021/np500108r 24885014
    [Google Scholar]
  27. Catanzaro E. Betari N. Arencibia J.M. Montanari S. Sissi C. De Simone A. Vassura I. Santini A. Andrisano V. Tumiatti V. De Vivo M. Krysko D.V. Rocchi M.B.L. Fimognari C. Milelli A. Targeting topoisomerase II with trypthantrin derivatives: Discovery of 7-((2-(dimethylamino)ethyl)amino)indolo[2,1-b]quinazoline-6,12-dione as an antiproliferative agent and to treat cancer. Eur. J. Med. Chem. 2020 202 112504 10.1016/j.ejmech.2020.112504 32712536
    [Google Scholar]
  28. Terryn R.J. III German H.W. Kummerer T.M. Sinden R.R. Baum J.C. Novak M.J. Novel computational study on π -stacking to understand mechanistic interactions of Tryptanthrin analogues with DNA. Toxicol. Mech. Methods 2014 24 1 73 79 10.3109/15376516.2013.859194 24156546
    [Google Scholar]
  29. Chang C.F. Hsu Y.L. Lee C.Y. Wu C.H. Wu Y.C. Chuang T.H. Isolation and cytotoxicity evaluation of the chemical constituents from Cephalantheropsis gracilis. Int. J. Mol. Sci. 2015 16 2 3980 3989 10.3390/ijms16023980 25686035
    [Google Scholar]
  30. Palabindela R. Guda R. Ramesh G. Myadaraveni P. Banothu D. Ravi G. Korra R. Mekala H. Kasula M. Novel tryptanthrin hybrids bearing aminothiazoles as potential EGFR inhibitors: Design, synthesis, biological screening, molecular docking studies, and ADME/T predictions. J. Heterocycl. Chem. 2022 59 9 1533 1550 10.1002/jhet.4488
    [Google Scholar]
  31. Seol Y. Neuman K.C. The dynamic interplay between DNA topoisomerases and DNA topology. Biophys. Rev. 2016 8 S1 Suppl. 1 101 111 10.1007/s12551‑016‑0240‑8 28510219
    [Google Scholar]
  32. Lee J.H. Berger J.M. Cell cycle-dependent control and roles of DNA topoisomerase II. Genes 2019 10 11 859 10.3390/genes10110859 31671531
    [Google Scholar]
  33. Nitiss J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 2009 9 5 338 350 10.1038/nrc2607 19377506
    [Google Scholar]
  34. Stingele J. Bellelli R. Boulton S.J. Mechanisms of DNA–protein crosslink repair. Nat. Rev. Mol. Cell Biol. 2017 18 9 563 573 10.1038/nrm.2017.56 28655905
    [Google Scholar]
  35. Wei H. Ruthenburg A.J. Bechis S.K. Verdine G.L. Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase. J. Biol. Chem. 2005 280 44 37041 37047 10.1074/jbc.M506520200 16100112
    [Google Scholar]
  36. O’Boyle N.M. Banck M. James C.A. Morley C. Vandermeersch T. Hutchison G.R. Open babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  37. Roos K. Wu C. Damm W. Reboul M. Stevenson J.M. Lu C. Dahlgren M.K. Mondal S. Chen W. Wang L. Abel R. Friesner R.A. Harder E.D. OPLS3e: Extending force field coverage for drug-like small molecules. J. Chem. Theory Comput. 2019 15 3 1863 1874 10.1021/acs.jctc.8b01026 30768902
    [Google Scholar]
  38. Release S. 2018-4: Maestro, version 11.8. New York, NY Schrödinger, LLC 2018
    [Google Scholar]
  39. Delgado J.L. Hsieh C.M. Chan N.L. Hiasa H. Topoisomerases as anticancer targets. Biochem. J. 2018 475 2 373 398 10.1042/BCJ20160583 29363591
    [Google Scholar]
  40. Skok Ž. Zidar N. Kikelj D. Ilaš J. Dual inhibitors of human DNA topoisomerase II and other cancer-related targets. J. Med. Chem. 2020 63 3 884 904 10.1021/acs.jmedchem.9b00726 31592646
    [Google Scholar]
  41. Cousins K.R. ChemDraw Ultra 9.0. CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA 02140. www. cambridgesoft.com. See Web site for pricing options. J. Am. Chem. Soc. 2005 127 11 4115 4116 10.1021/ja0410237
    [Google Scholar]
  42. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  43. Zhao Y.H. Abraham M.H. Le J. Hersey A. Luscombe C.N. Beck G. Sherborne B. Cooper I. Rate-limited steps of human oral absorption and QSAR studies. Pharm. Res. 2002 19 10 1446 1457 10.1023/A:1020444330011 12425461
    [Google Scholar]
  44. Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol. 2004 1 4 337 341 10.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  45. Mosbah H. Chahdoura H. Mannai A. Snoussi M. Aouadi K. Abreu R.M.V. Bouslama A. Achour L. Selmi B. Biological activities evaluation of enantiopure isoxazolidine derivatives: In vitro, in vivo and in silico studies. Appl. Biochem. Biotechnol. 2019 187 3 1113 1130 10.1007/s12010‑018‑2868‑2 30167968
    [Google Scholar]
  46. Rathod B. Pawar S. Puri S. Diwan A. Kumar K. Recent advancements and developments in the biological importance of 1,3,5-triazines. ChemistrySelect 2024 9 12 e202303655 10.1002/slct.202303655
    [Google Scholar]
  47. Puri S. Yadav T.T. Chouhan M. Kumar K. Synthetic and clinical perspectives of evotaz: An overview. Mini Rev. Med. Chem. 2024 24 4 372 390 10.2174/1389557523666230707151553 37424344
    [Google Scholar]
  48. Pawar S. Kumawat M.K. Kundu M. Kumar K. Synthetic and medicinal perspective of antileishmanial agents: An overview. J. Mol. Struct. 2023 1271 133977 10.1016/j.molstruc.2022.133977
    [Google Scholar]
  49. Rathod B. Kumar K. Synthetic and medicinal perspective of 1,2,4-triazole as anticancer agents. Chem. Biodivers. 2022 19 11 e202200679 10.1002/cbdv.202200679 36226542
    [Google Scholar]
  50. Konar D. Maru S. Kar S. Kumar K. Synthesis and clinical development of Palbociclib: An overview. Med. Chem. 2022 18 1 2 25 10.2174/1573406417666201204161243 33280599
    [Google Scholar]
  51. Pawar S. Kumar K. Gupta M.K. Rawal R.K. Synthetic and medicinal perspective of fused-thiazoles as anticancer agents. Anticancer. Agents Med. Chem. 2021 21 11 1379 1402 10.2174/1871520620666200728133017 32723259
    [Google Scholar]
  52. Kaur R. Kumar K. Synthetic and medicinal perspective of quinolines as antiviral agents. Eur. J. Med. Chem. 2021 215 113220 113258 10.1016/j.ejmech.2021.113220 33609889
    [Google Scholar]
  53. Kapoor Y. Kumar K. Structural and clinical impact of anti-allergy agents: An overview. Bioorg. Chem. 2020 94 103351 103375 10.1016/j.bioorg.2019.103351 31668464
    [Google Scholar]
  54. Rathod B. Puri S. Juvale K. Ansari I. Patel H. Baldaniya L. Kumar K. Synthesis and evaluation of tryptanthrin derivatives as promising anticancer agents: In vitro, in silico, and SAR insights. J. Mol. Struct. 2024 1311 138365 10.1016/j.molstruc.2024.138365
    [Google Scholar]
  55. Puri S. Ahmad I. Patel H. Kumar K. Juvale K. Evaluation of oxindole derivatives as a potential anticancer agent against breast carcinoma cells: In vitro, in silico, and molecular docking study. Toxicol. In Vitro 2023 86 105517 10.1016/j.tiv.2022.105517 36396119
    [Google Scholar]
  56. Kumawat M.K. Kaur R. Kumar K. In-silico prediction of novel fused quinazoline based topoisomerase inhibitors as anticancer agents. Med. Chem. 2023 19 5 431 444 10.2174/1573406418666221012161111 36237156
    [Google Scholar]
/content/journals/mc/10.2174/0115734064334604241014024205
Loading
/content/journals/mc/10.2174/0115734064334604241014024205
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test