Skip to content
2000
image of Arylcarboxamide Derivatives as Promising HDAC8 Inhibitors: An Overview in Light of Structure-activity Relationship and Binding Mode of Interaction Analysis

Abstract

HDAC8 is associated with several disease conditions as well as various cancers of several organs and hematological malignancies. To counter such pathophysiological and disease conditions, inhibition of HDAC8 may be a promising approach for anticancer drug development. In this article, a detail of arylcarboxamide-based potential HDAC8 inhibitors has been outlined. Considering their binding pattern of interactions along with the chemical features, effective and selective novel HDAC8 inhibitors can be designed further. Therefore, modification of these compounds provides greater possibilities for the development of novel HDAC8 inhibitors. Nevertheless, structural modification of such arylcarboxamide derivatives may be able to produce potent dual-inhibitory compounds along with HDAC8 inhibition. Thus, this article is quite useful for exploring and identifying several possibilities for arylcarboxamide-based HDAC8 inhibitors. Moreover, it can be concluded that further study of the arylcarboxamide-based HDAC8 inhibitors can be effectively used for the treatment of different cancerous and non-cancerous diseases.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064329669241007060848
2024-10-24
2025-01-09
Loading full text...

Full text loading...

References

  1. Moosavi A. Motevalizadeh Ardekani A. Role of epigenetics in biology and human diseases. Iran. Biomed. J. 2016 20 5 246 258 10.22045/ibj.2016.01 27377127
    [Google Scholar]
  2. Tammen S.A. Friso S. Choi S.W. Epigenetics: The link between nature and nurture. Mol. Aspects Med. 2013 34 4 753 764 10.1016/j.mam.2012.07.018 22906839
    [Google Scholar]
  3. Zhang L. Lu Q. Chang C. Epigenetics in health and disease. Adv. Exp. Med. Biol. 2020 1253 3 55 10.1007/978‑981‑15‑3449‑2_1 32445090
    [Google Scholar]
  4. Nebbioso A. Tambaro F.P. Dell’Aversana C. Altucci L. Cancer epigenetics: Moving forward. PLoS Genet. 2018 14 6 e1007362 10.1371/journal.pgen.1007362 29879107
    [Google Scholar]
  5. Berson A. Nativio R. Berger S.L. Bonini N.M. Epigenetic regulation in neurodegenerative diseases. Trends Neurosci. 2018 41 9 587 598 10.1016/j.tins.2018.05.005 29885742
    [Google Scholar]
  6. Sun L. Zhang H. Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell 2022 13 12 877 919 10.1007/s13238‑021‑00846‑7 34050894
    [Google Scholar]
  7. Ramaiah M.J. Tangutur A.D. Manyam R.R. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci. 2021 277 119504 10.1016/j.lfs.2021.119504 33872660
    [Google Scholar]
  8. Shanmugam G. Rakshit S. Sarkar K. HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl. Oncol. 2022 16 101312 10.1016/j.tranon.2021.101312 34922087
    [Google Scholar]
  9. Liu S.S. Wu F. Jin Y.M. Chang W.Q. Xu T.M. HDAC11: a rising star in epigenetics. Biomed. Pharmacother. 2020 131 110607 10.1016/j.biopha.2020.110607 32841898
    [Google Scholar]
  10. Khan N.M. Haqqi T.M. Epigenetics in osteoarthritis: Potential of HDAC inhibitors as therapeutics. Pharmacol. Res. 2018 128 73 79 10.1016/j.phrs.2017.08.007 28827187
    [Google Scholar]
  11. Hull E.E. Montgomery M.R. Leyva K.J. HDAC inhibitors as epigenetic regulators of the immune system: impacts on cancer therapy and inflammatory diseases. BioMed Res. Int. 2016 2016 1 15 10.1155/2016/8797206 27556043
    [Google Scholar]
  12. Ding P. Ma Z. Liu D. Pan M. Li H. Feng Y. Zhang Y. Shao C. Jiang M. Lu D. Han J. Wang J. Yan X. Lysine acetylation/deacetylation modification of immune-related molecules in cancer immunotherapy. Front. Immunol. 2022 13 865975 10.3389/fimmu.2022.865975 35585975
    [Google Scholar]
  13. Banerjee S. Adhikari N. Amin S.A. Jha T. Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: An overview. Eur. J. Med. Chem. 2019 164 214 240 10.1016/j.ejmech.2018.12.039 30594678
    [Google Scholar]
  14. Adhikari N. Jha T. Ghosh B. Dissecting histone deacetylase 3 in multiple disease conditions: Selective inhibition as a promising therapeutic strategy. J. Med. Chem. 2021 64 13 8827 8869 10.1021/acs.jmedchem.0c01676 34161101
    [Google Scholar]
  15. Sarkar R. Banerjee S. Amin S.A. Adhikari N. Jha T. Histone deacetylase 3 (HDAC3) inhibitors as anticancer agents: A review. Eur. J. Med. Chem. 2020 192 112171 10.1016/j.ejmech.2020.112171 32163814
    [Google Scholar]
  16. Ho T.C.S. Chan A.H.Y. Ganesan A. Thirty years of HDAC inhibitors: 2020 insight and hindsight. J. Med. Chem. 2020 63 21 12460 12484 10.1021/acs.jmedchem.0c00830 32608981
    [Google Scholar]
  17. Amin S.A. Adhikari N. Kotagiri S. Jha T. Ghosh B. Histone deacetylase 3 inhibitors in learning and memory processes with special emphasis on benzamides. Eur. J. Med. Chem. 2019 166 369 380 10.1016/j.ejmech.2019.01.077 30735902
    [Google Scholar]
  18. Adhikari N. Amin S.A. Jha T. Selective and nonselective HDAC8 inhibitors: a therapeutic patent review. Pharm. Pat. Anal. 2018 7 6 259 276 10.4155/ppa‑2018‑0019 30632447
    [Google Scholar]
  19. Gallinari P. Marco S.D. Jones P. Pallaoro M. Steinkühler C. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res. 2007 17 3 195 211 10.1038/sj.cr.7310149 17325692
    [Google Scholar]
  20. Amin S.A. Adhikari N. Jha T. Structure-activity relationships of hydroxamate-based histone deacetylase-8 inhibitors: reality behind anticancer drug discovery. Future Med. Chem. 2017 9 18 2211 2237 10.4155/fmc‑2017‑0130 29182018
    [Google Scholar]
  21. Pulya S. Patel T. Paul M. Adhikari N. Banerjee S. Routholla G. Biswas S. Jha T. Ghosh B. Selective inhibition of histone deacetylase 3 by novel hydrazide based small molecules as therapeutic intervention for the treatment of cancer. Eur. J. Med. Chem. 2022 238 114470 10.1016/j.ejmech.2022.114470 35635949
    [Google Scholar]
  22. Pulya S. Amin S.A. Adhikari N. Biswas S. Jha T. Ghosh B. HDAC6 as privileged target in drug discovery: A perspective. Pharmacol. Res. 2021 163 105274 10.1016/j.phrs.2020.105274 33171304
    [Google Scholar]
  23. Adhikari N. Amin S.A. Trivedi P. Jha T. Ghosh B. HDAC3 is a potential validated target for cancer: An overview on the benzamide-based selective HDAC3 inhibitors through comparative SAR/QSAR/QAAR approaches. Eur. J. Med. Chem. 2018 157 1127 1142 10.1016/j.ejmech.2018.08.081 30179749
    [Google Scholar]
  24. Chakrabarti A. Melesina J. Kolbinger F.R. Oehme I. Senger J. Witt O. Sippl W. Jung M. Targeting histone deacetylase 8 as a therapeutic approach to cancer and neurodegenerative diseases. Future Med. Chem. 2016 8 13 1609 1634 10.4155/fmc‑2016‑0117 27572818
    [Google Scholar]
  25. Chakrabarti A. Oehme I. Witt O. Oliveira G. Sippl W. Romier C. Pierce R.J. Jung M. HDAC8: a multifaceted target for therapeutic interventions. Trends Pharmacol. Sci. 2015 36 7 481 492 10.1016/j.tips.2015.04.013 26013035
    [Google Scholar]
  26. Ruzic D. Djoković N. Srdić-Rajić T. Echeverria C. Nikolic K. Santibanez J.F. Targeting histone deacetylases: Opportunities for cancer treatment and chemoprevention. Pharmaceutics 2022 14 1 209 10.3390/pharmaceutics14010209 35057104
    [Google Scholar]
  27. Li G. Tian Y. Zhu W.G. The roles of histone deacetylases and their inhibitors in cancer therapy. Front. Cell Dev. Biol. 2020 8 576946 10.3389/fcell.2020.576946 33117804
    [Google Scholar]
  28. Benedetti R. Conte M. Altucci L. Targeting histone deacetylases in diseases: Where Are we? Antioxid. Redox Signal. 2015 23 1 99 126 10.1089/ars.2013.5776 24382114
    [Google Scholar]
  29. Chen J. Cao L. Ma J. Yue C. Zhu D. An R. Wang X. Guo Y. Gu B. HDAC8 promotes liver metastasis of colorectal cancer via inhibition of IRF1 and upregulation of SUCNR1. Oxid. Med. Cell. Longev. 2022 2022 1 23 10.1155/2022/2815187 36035205
    [Google Scholar]
  30. Menbari M.N. Rahimi K. Ahmadi A. Mohammadi-Yeganeh S. Elyasi A. Darvishi N. Hosseini V. Abdi M. Association of HDAC8 expression with pathological findings in triple negative and non-triple negative breast cancer: Implications for diagnosis. Iran. Biomed. J. 2020 24 5 283 289 10.29252/ibj.24.5.283 32429642
    [Google Scholar]
  31. Li Y. Liang R. Sun M. Li Z. Sheng H. Wang J. Xu P. Liu S. Yang W. Lu B. Zhang S. Shan C. AMPK-dependent phosphorylation of HDAC8 triggers PGM1 expression to promote lung cancer cell survival under glucose starvation. Cancer Lett. 2020 478 82 92 10.1016/j.canlet.2020.03.007 32171858
    [Google Scholar]
  32. Kim J.Y. Han S.Y. Yoo J. Kim G.W. Jeon Y.H. Lee S.W. Park J. Kwon S.H. HDAC8-selective inhibition by PCI-34051 enhances the anticancer effects of ACY-241 in ovarian cancer cells. Int. J. Mol. Sci. 2022 23 15 8645 10.3390/ijms23158645 35955780
    [Google Scholar]
  33. Vanaja G.R. Ramulu H.G. Kalle A.M. Overexpressed HDAC8 in cervical cancer cells shows functional redundancy of tubulin deacetylation with HDAC6. Cell Commun. Signal. 2018 16 1 20 10.1186/s12964‑018‑0231‑4 29716651
    [Google Scholar]
  34. Mahajan M. Suryavanshi S. Bhowmick S. Alasmary F.A. Almutairi T.M. Islam M.A. Kaul-Ghanekar R. Matairesinol, an active constituent of HC9 polyherbal formulation, exhibits HDAC8 inhibitory and anticancer activity. Biophys. Chem. 2021 273 106588 10.1016/j.bpc.2021.106588 33848944
    [Google Scholar]
  35. Song S. Wang Y. Xu P. Yang R. Ma Z. Liang S. Zhang G. The inhibition of histone deacetylase 8 suppresses proliferation and inhibits apoptosis in gastric adenocarcinoma. Int. J. Oncol. 2015 47 5 1819 1828 10.3892/ijo.2015.3182 26412386
    [Google Scholar]
  36. Zhang M. Ying J.B. Wang S.S. He D. Zhu H. Zhang C. Tang L. Lin R. Zhang Y. Exploring the binding mechanism of HDAC8 selective inhibitors: Lessons from the modification of Cap group. J. Cell. Biochem. 2020 121 5-6 3162 3172 10.1002/jcb.29583 31907955
    [Google Scholar]
  37. Kang Y. Nian H. Rajendran P. Kim E. Dashwood W.M. Pinto J.T. Boardman L.A. Thibodeau S.N. Limburg P.J. Löhr C.V. Bisson W.H. Williams D.E. Ho E. Dashwood R.H. HDAC8 and STAT3 repress BMF gene activity in colon cancer cells. Cell Death Dis. 2014 5 10 e1476 10.1038/cddis.2014.422 25321483
    [Google Scholar]
  38. Oehme I. Deubzer H.E. Lodrini M. Milde T. Witt O. Targeting of HDAC8 and investigational inhibitors in neuroblastoma. Expert Opin. Investig. Drugs 2009 18 11 1605 1617 10.1517/14728220903241658 19780707
    [Google Scholar]
  39. Lehmann M. Hoffmann M.J. Koch A. Ulrich S.M. Schulz W.A. Niegisch G. Histone deacetylase 8 is deregulated in urothelial cancer but not a target for efficient treatment. J. Exp. Clin. Cancer Res. 2014 33 1 59 10.1186/s13046‑014‑0059‑8 25011684
    [Google Scholar]
  40. Ahn M.Y. Yoon J.H. Histone deacetylase 8 as a novel therapeutic target in oral squamous cell carcinoma. Oncol. Rep. 2017 37 1 540 546 10.3892/or.2016.5280 28004115
    [Google Scholar]
  41. Kim J.Y. Cho H. Yoo J. Kim G.W. Jeon Y.H. Lee S.W. Kwon S.H. HDAC8 deacetylates HIF-1α and enhances its protein stability to promote tumor growth and migration in melanoma. Cancers (Basel) 2023 15 4 1123 10.3390/cancers15041123 36831463
    [Google Scholar]
  42. Santos-Barriopedro I. Li Y. Bahl S. Seto E. HDAC8 affects MGMT levels in glioblastoma cell lines via interaction with the proteasome receptor ADRM1. Genes Cancer 2019 10 5-6 119 133 10.18632/genesandcancer.197 31798765
    [Google Scholar]
  43. Lopez G. Bill K.L.J. Bid H.K. Braggio D. Constantino D. Prudner B. Zewdu A. Batte K. Lev D. Pollock R.E. HDAC8, a potential therapeutic target for the treatment of malignant peripheral nerve sheath tumors (MPNST). PLoS One 2015 10 7 e0133302 10.1371/journal.pone.0133302 26200462
    [Google Scholar]
  44. Tian Y. Wong V.W.S. Wong G.L.H. Yang W. Sun H. Shen J. Tong J.H.M. Go M.Y.Y. Cheung Y.S. Lai P.B.S. Zhou M. Xu G. Huang T.H.M. Yu J. To K.F. Cheng A.S.L. Chan H.L.Y. Histone deacetylase HDAC8 promotes insulin resistance and β-catenin activation in NAFLD-associated hepatocellular carcinoma. Cancer Res. 2015 75 22 4803 4816 10.1158/0008‑5472.CAN‑14‑3786 26383163
    [Google Scholar]
  45. Watters J.M. Wright G. Smith M.A. Shah B. Wright K.L. Histone deacetylase 8 inhibition suppresses mantle cell lymphoma viability while preserving natural killer cell function. Biochem. Biophys. Res. Commun. 2021 534 773 779 10.1016/j.bbrc.2020.11.001 33190829
    [Google Scholar]
  46. Balasubramanian S. Ramos J. Luo W. Sirisawad M. Verner E. Buggy J.J. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 2008 22 5 1026 1034 10.1038/leu.2008.9 18256683
    [Google Scholar]
  47. Amin S.A. Adhikari N. Jha T. Is dual inhibition of metalloenzymes HDAC-8 and MMP-2 a potential pharmacological target to combat hematological malignancies? Pharmacol. Res. 2017 122 8 19 10.1016/j.phrs.2017.05.002 28501516
    [Google Scholar]
  48. Spreafico M. Gruszka A.M. Valli D. Mazzola M. Deflorian G. Quintè A. Totaro M.G. Battaglia C. Alcalay M. Marozzi A. Pistocchi A. HDAC8: A promising therapeutic target for acute myeloid leukemia. Front. Cell Dev. Biol. 2020 8 844 10.3389/fcell.2020.00844 33015043
    [Google Scholar]
  49. Zhang P. Brinton L.T. Williams K. Sher S. Orwick S. Tzung-Huei L. Mims A.S. Coss C.C. Kulp S.K. Youssef Y. Chan W.K. Mitchell S. Mustonen A. Cannon M. Phillips H. Lehman A.M. Kauffman T. Beaver L. Canfield D. Grieselhuber N.R. Alinari L. Sampath D. Yan P. Byrd J.C. Blachly J.S. Lapalombella R. Chan. W.K.; Mitchell. S.; Mustonen, A.; Cannon, M.; Phillips, H.; Lehman, A.M.; Kauffman, T.; Beaver, L.; Canfield, D.; Grieselhuber, N.R.; Alinari, L.; Sampath, D.; Yan, P.; Byrd, J.C.; Blachly, J.S.; Lapalombella, R. Targeting DNA damage repair functions of two histone deacetylases, HDAC8 and SIRT6, sensitizes acute myeloid leukemia to NAMPT inhibition. Clin. Cancer Res. 2021 27 8 2352 2366 10.1158/1078‑0432.CCR‑20‑3724 33542077
    [Google Scholar]
  50. Qi J. Singh S. Hua W.K. Cai Q. Chao S.W. Li L. Liu H. Ho Y. McDonald T. Lin A. Marcucci G. Bhatia R. Huang W.J. Chang C.I. Kuo Y.H. HDAC8 inhibition specifically targets Inv(16) acute myeloid leukemic stem cells by restoring p53 acetylation. Cell Stem Cell 2015 17 5 597 610 10.1016/j.stem.2015.08.004 26387755
    [Google Scholar]
  51. Zhao T. Kee H.J. Bai L. Kim M.K. Kee S.J. Jeong M.H. Selective HDAC8 inhibition attenuates isoproterenol-induced cardiac hypertrophy and fibrosis via p38 MAPK pathway. Front. Pharmacol. 2021 12 677757 10.3389/fphar.2021.677757 33959033
    [Google Scholar]
  52. Yan M. Chen C. Gong W. Yin Z. Zhou L. Chaugai S. Wang D.W. miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc. Res. 2015 105 3 340 352 10.1093/cvr/cvu254 25504627
    [Google Scholar]
  53. Saito S. Zhuang Y. Suzuki T. Ota Y. Bateman M.E. Alkhatib A.L. Morris G.F. Lasky J.A. HDAC8 inhibition ameliorates pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019 316 1 L175 L186 10.1152/ajplung.00551.2017 30358439
    [Google Scholar]
  54. Spreafico M. Cafora M. Bragato C. Capitanio D. Marasca F. Bodega B. De Palma C. Mora M. Gelfi C. Marozzi A. Pistocchi A. Targeting HDAC8 to ameliorate skeletal muscle differentiation in Duchenne muscular dystrophy. Pharmacol. Res. 2021 170 105750 10.1016/j.phrs.2021.105750 34214631
    [Google Scholar]
  55. Xiao T. Fu Y. Zhu W. Xu R. Xu L. Zhang P. Du Y. Cheng J. Jiang H. HDAC8, a potential therapeutic target, regulates proliferation and differentiation of bone marrow stromal cells in fibrous dysplasia. Stem Cells Transl. Med. 2019 8 2 148 161 10.1002/sctm.18‑0057 30426726
    [Google Scholar]
  56. Deardorff M.A. Porter N.J. Christianson D.W. Structural aspects of HDAC8 mechanism and dysfunction in Cornelia de Lange syndrome spectrum disorders. Protein Sci. 2016 25 11 1965 1976 10.1002/pro.3030 27576763
    [Google Scholar]
  57. Mio C. Passon N. Fogolari F. Cesario C. Novelli A. Pittini C. Damante G. A novel de novo HDAC8 missense mutation causing Cornelia de Lange syndrome. Mol. Genet. Genomic Med. 2021 9 9 e1612 10.1002/mgg3.1612 34342180
    [Google Scholar]
  58. Lee C.H. Choi Y. Cho H. Bang I.H. Hao L. Lee S.O. Jeon R. Bae E.J. Park B.H. Histone deacetylase 8 inhibition alleviates cholestatic liver injury and fibrosis. Biochem. Pharmacol. 2021 183 114312 10.1016/j.bcp.2020.114312 33130126
    [Google Scholar]
  59. Zhang Y. Zou J. Tolbert E. Zhao T.C. Bayliss G. Zhuang S. Identification of histone deacetylase 8 as a novel therapeutic target for renal fibrosis. FASEB J. 2020 34 6 7295 7310 10.1096/fj.201903254R 32281211
    [Google Scholar]
  60. Marek M. Kannan S. Hauser A.T. Moraes Mourão M. Caby S. Cura V. Stolfa D.A. Schmidtkunz K. Lancelot J. Andrade L. Renaud J.P. Oliveira G. Sippl W. Jung M. Cavarelli J. Pierce R.J. Romier C. Structural basis for the inhibition of histone deacetylase 8 (HDAC8), a key epigenetic player in the blood fluke Schistosoma mansoni. PLoS Pathog. 2013 9 9 e1003645 10.1371/journal.ppat.1003645 24086136
    [Google Scholar]
  61. Noce B. Di Bello E. Zwergel C. Fioravanti R. Valente S. Rotili D. Masotti A. Salik Zeya Ansari M. Trisciuoglio D. Chakrabarti A. Romier C. Robaa D. Sippl W. Jung M. Häberli C. Keiser J. Mai A. Chemically diverse S. ansoni HDAC8 inhibitors reduce viability in worm larval and adult stages. ChemMedChem 2023 18 3 e202200510 10.1002/cmdc.202200510 36250286
    [Google Scholar]
  62. Yoon J.I. Cho H. Jeon R. Sung M.K. Therapeutic efficacy of novel HDAC inhibitors SPA3052 and SPA3074 against intestinal inflammation in a murine model of colitis. Pharmaceuticals (Basel) 2022 15 12 1515 10.3390/ph15121515 36558966
    [Google Scholar]
  63. Zhou X. Chen H. Shi Y. Li J. Ma X. Du L. Hu Y. Tao M. Zhong Q. Yan D. Zhuang S. Liu N. Histone deacetylase 8 inhibition prevents the progression of peritoneal fibrosis by counteracting the epithelial-mesenchymal transition and blockade of M2 macrophage polarization. Front. Immunol. 2023 14 1137332 10.3389/fimmu.2023.1137332 36911746
    [Google Scholar]
  64. Xia B. Lu J. Wang R. Yang Z. Zhou X. Huang P. miR-21-3p regulates influenza a virus replication by targeting histone deacetylase-8. Front. Cell. Infect. Microbiol. 2018 8 175 10.3389/fcimb.2018.00175 29888214
    [Google Scholar]
  65. Chen Y. Pan C. Lu Y. Miao Y. Xiong B. HDAC8 drives spindle organization during meiotic maturation of porcine oocytes. Cell Prolif. 2021 54 10 e13119 10.1111/cpr.13119 34435400
    [Google Scholar]
  66. Amin S.A. Adhikari N. Jha T. Structure-activity relationships of HDAC8 inhibitors: Non-hydroxamates as anticancer agents. Pharmacol. Res. 2018 131 128 142 10.1016/j.phrs.2018.03.001 29514055
    [Google Scholar]
  67. Mottamal M. Zheng S. Huang T. Wang G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 2015 20 3 3898 3941 10.3390/molecules20033898 25738536
    [Google Scholar]
  68. Somoza J.R. Skene R.J. Katz B.A. Mol C. Ho J.D. Jennings A.J. Luong C. Arvai A. Buggy J.J. Chi E. Tang J. Sang B.C. Verner E. Wynands R. Leahy E.M. Dougan D.R. Snell G. Navre M. Knuth M.W. Swanson R.V. McRee D.E. Tari L.W. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 2004 12 7 1325 1334 10.1016/j.str.2004.04.012 15242608
    [Google Scholar]
  69. Marek M. Shaik T.B. Heimburg T. Chakrabarti A. Lancelot J. Ramos-Morales E. Da Veiga C. Kalinin D. Melesina J. Robaa D. Schmidtkunz K. Suzuki T. Holl R. Ennifar E. Pierce R.J. Jung M. Sippl W. Romier C. Characterization of histone deacetylase 8 (HDAC8) selective inhibition reveals specific active site structural and functional determinants. J. Med. Chem. 2018 61 22 10000 10016 10.1021/acs.jmedchem.8b01087 30347148
    [Google Scholar]
  70. Kozikowski A.P. Chen Y. Gaysin A. Chen B. D’Annibale M.A. Suto C.M. Langley B.C. Functional differences in epigenetic modulators-superiority of mercaptoacetamide-based histone deacetylase inhibitors relative to hydroxamates in cortical neuron neuroprotection studies. J. Med. Chem. 2007 50 13 3054 3061 10.1021/jm070178x 17539623
    [Google Scholar]
  71. Chen Y. Lopez-Sanchez M. Savoy D.N. Billadeau D.D. Dow G.S. Kozikowski A.P. A series of potent and selective, triazolylphenyl-based histone deacetylases inhibitors with activity against pancreatic cancer cells and Plasmodium falciparum. J. Med. Chem. 2008 51 12 3437 3448 10.1021/jm701606b 18494463
    [Google Scholar]
  72. Kozikowski A.P. Tapadar S. Luchini D.N. Kim K.H. Billadeau D.D. Use of the nitrile oxide cycloaddition (NOC) reaction for molecular probe generation: a new class of enzyme selective histone deacetylase inhibitors (HDACIs) showing picomolar activity at HDAC6. J. Med. Chem. 2008 51 15 4370 4373 10.1021/jm8002894 18642892
    [Google Scholar]
  73. He R. Chen Y. Chen Y. Ougolkov A.V. Zhang J.S. Savoy D.N. Billadeau D.D. Kozikowski A.P. Synthesis and biological evaluation of triazol-4-ylphenyl-bearing histone deacetylase inhibitors as anticancer agents. J. Med. Chem. 2010 53 3 1347 1356 10.1021/jm901667k 20055418
    [Google Scholar]
  74. He B. Velaparthi S. Pieffet G. Pennington C. Mahesh A. Holzle D.L. Brunsteiner M. van Breemen R. Blond S.Y. Petukhov P.A. Binding ensemble profiling with photoaffinity labeling (BEProFL) approach: mapping the binding poses of HDAC8 inhibitors. J. Med. Chem. 2009 52 22 7003 7013 10.1021/jm9005077 19886628
    [Google Scholar]
  75. Neelarapu R. Holzle D.L. Velaparthi S. Bai H. Brunsteiner M. Blond S.Y. Petukhov P.A. Design, synthesis, docking, and biological evaluation of novel diazide-containing isoxazole- and pyrazole-based histone deacetylase probes. J. Med. Chem. 2011 54 13 4350 4364 10.1021/jm2001025 21548582
    [Google Scholar]
  76. Vaidya A.S. Neelarapu R. Madriaga A. Bai H. Mendonca E. Abdelkarim H. van Breemen R.B. Blond S.Y. Petukhov P.A. Novel histone deacetylase 8 ligands without a zinc chelating group: Exploring an ‘upside-down’ binding pose. Bioorg. Med. Chem. Lett. 2012 22 21 6621 6627 10.1016/j.bmcl.2012.08.104 23010266
    [Google Scholar]
  77. Zhang Y. Feng J. Jia Y. Xu Y. Liu C. Fang H. Xu W. Design, synthesis and primary activity assay of tripeptidomimetics as histone deacetylase inhibitors with linear linker and branched cap group. Eur. J. Med. Chem. 2011 46 11 5387 5397 10.1016/j.ejmech.2011.08.045 21924799
    [Google Scholar]
  78. Zhang L. Wang X. Li X. Zhang L. Xu W. Discovery of a series of hydroximic acid derivatives as potent histone deacetylase inhibitors. J. Enzyme Inhib. Med. Chem. 2014 29 4 582 589 10.3109/14756366.2013.827678 24059701
    [Google Scholar]
  79. Andrianov V. Gailite V. Lola D. Loza E. Semenikhina V. Kalvinsh I. Finn P. Petersen K.D. Ritchie J.W.A. Khan N. Tumber A. Collins L.S. Vadlamudi S.M. Björkling F. Sehested M. Novel amide derivatives as inhibitors of histone deacetylase: Design, synthesis and SAR. Eur. J. Med. Chem. 2009 44 3 1067 1085 10.1016/j.ejmech.2008.06.020 18672316
    [Google Scholar]
  80. Wang H. Lim Z.Y. Zhou Y. Ng M. Lu T. Lee K. Sangthongpitag K. Goh K.C. Wang X. Wu X. Khng H.H. Goh S.K. Ong W.C. Bonday Z. Sun E.T. Acylurea connected straight chain hydroxamates as novel histone deacetylase inhibitors: Synthesis, SAR, and in vivo antitumor activity. Bioorg. Med. Chem. Lett. 2010 20 11 3314 3321 10.1016/j.bmcl.2010.04.041 20451378
    [Google Scholar]
  81. Marek L. Hamacher A. Hansen F.K. Kuna K. Gohlke H. Kassack M.U. Kurz T. Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells. J. Med. Chem. 2013 56 2 427 436 10.1021/jm301254q 23252603
    [Google Scholar]
  82. Wagner F.F. Olson D.E. Gale J.P. Kaya T. Weïwer M. Aidoud N. Thomas M. Davoine E.L. Lemercier B.C. Zhang Y.L. Holson E.B. Potent and selective inhibition of histone deacetylase 6 (HDAC6) does not require a surface-binding motif. J. Med. Chem. 2013 56 4 1772 1776 10.1021/jm301355j 23368884
    [Google Scholar]
  83. Tashima T. Murata H. Kodama H. Design and synthesis of novel and highly-active pan-histone deacetylase (pan-HDAC) inhibitors. Bioorg. Med. Chem. 2014 22 14 3720 3731 10.1016/j.bmc.2014.05.001 24864038
    [Google Scholar]
  84. Raji I. Yadudu F. Janeira E. Fathi S. Szymczak L. Kornacki J.R. Komatsu K. Li J.D. Mrksich M. Oyelere A.K. Bifunctional conjugates with potent inhibitory activity towards cyclooxygenase and histone deacetylase. Bioorg. Med. Chem. 2017 25 3 1202 1218 10.1016/j.bmc.2016.12.032 28057407
    [Google Scholar]
  85. Wang X. Li X. Li J. Hou J. Qu Y. Yu C. He F. Xu W. Wu J. Design, synthesis, and preliminary bioactivity evaluation of N 1 ‐hydroxyterephthalamide derivatives with indole cap as novel histone deacetylase inhibitors. Chem. Biol. Drug Des. 2017 89 1 38 46 10.1111/cbdd.12819 27416889
    [Google Scholar]
  86. Guerrant W. Patil V. Canzoneri J.C. Oyelere A.K. Dual targeting of histone deacetylase and topoisomerase II with novel bifunctional inhibitors. J. Med. Chem. 2012 55 4 1465 1477 10.1021/jm200799p 22260166
    [Google Scholar]
  87. Santo L. Hideshima T. Kung A.L. Tseng J.C. Tamang D. Yang M. Jarpe M. van Duzer J.H. Mazitschek R. Ogier W.C. Cirstea D. Rodig S. Eda H. Scullen T. Canavese M. Bradner J. Anderson K.C. Jones S.S. Raje N. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 2012 119 11 2579 2589 10.1182/blood‑2011‑10‑387365 22262760
    [Google Scholar]
  88. Trivedi P. Adhikari N. Amin S.A. Bobde Y. Ganesh R. Jha T. Ghosh B. Design, synthesis, biological evaluation and molecular docking study of arylcarboxamido piperidine and piperazine-based hydroxamates as potential HDAC8 inhibitors with promising anticancer activity. Eur. J. Pharm. Sci. 2019 138 105046 10.1016/j.ejps.2019.105046 31421254
    [Google Scholar]
  89. Amin S.A. Trivedi P. Adhikari N. Routholla G. Vijayasarathi D. Das S. Ghosh B. Jha T. Quantitative activity–activity relationship (QAAR) driven design to develop hydroxamate derivatives of pentanoic acids as selective HDAC8 inhibitors: synthesis, biological evaluation and binding mode of interaction studies. New J. Chem. 2021 45 37 17149 17162 10.1039/D1NJ02636D
    [Google Scholar]
  90. Patel H.K. Siklos M.I. Abdelkarim H. Mendonca E.L. Vaidya A. Petukhov P.A. Thatcher G.R.J. A chimeric SERM-histone deacetylase inhibitor approach to breast cancer therapy. ChemMedChem 2014 9 3 602 613 10.1002/cmdc.201300270 23956109
    [Google Scholar]
  91. Halder A.K. Mallick S. Shikha D. Saha A. Saha K.D. Jha T. Design of dual MMP-2/HDAC-8 inhibitors by pharmacophore mapping, molecular docking, synthesis and biological activity. RSC Advances 2015 5 88 72373 72386 10.1039/C5RA12606A
    [Google Scholar]
  92. Dutta S. Halder A.K. Adhikari N. Amin S.A. Das S. Saha A. Jha T. Synthesis, anticancer activity, structure-activity relationship and binding mode of interaction studies of substituted pentanoic acids. Future Med. Chem. 2019 11 14 1679 1702 10.4155/fmc‑2018‑0361 31370697
    [Google Scholar]
  93. Datta S. Halder A.K. Adhikari N. Amin S.A. Das S. Jha T. Synthesis, anticancer activity, SAR and binding mode of interaction studies of substituted pentanoic acids: part II. Future Med. Chem. 2022 14 1 17 34 10.4155/fmc‑2021‑0049 34818903
    [Google Scholar]
  94. Muthyala R. Shin W.S. Xie J. Sham Y.Y. Discovery of 1-hydroxypyridine-2-thiones as selective histone deacetylase inhibitors and their potential application for treating leukemia. Bioorg. Med. Chem. Lett. 2015 25 19 4320 4324 10.1016/j.bmcl.2015.07.065 26264503
    [Google Scholar]
  95. Suzuki N. Suzuki T. Ota Y. Nakano T. Kurihara M. Okuda H. Yamori T. Tsumoto H. Nakagawa H. Miyata N. Design, synthesis, and biological activity of boronic acid-based histone deacetylase inhibitors. J. Med. Chem. 2009 52 9 2909 2922 10.1021/jm900125m 19419205
    [Google Scholar]
  96. Botta C.B. Cabri W. Cini E. De Cesare L. Fattorusso C. Giannini G. Persico M. Petrella A. Rondinelli F. Rodriquez M. Russo A. Taddei M. Oxime amides as a novel zinc binding group in histone deacetylase inhibitors: synthesis, biological activity, and computational evaluation. J. Med. Chem. 2011 54 7 2165 2182 10.1021/jm101373a 21417297
    [Google Scholar]
  97. Stunkel W. Wang H. Yin Z. Biaryl linked hydroxamates: Preparation and pharmaceutical applications. WO Patent 2005040161 2005
  98. Lim Z.-Y. Wang H. Zhou Y. Acylurea connected and sulfonylurea connected hydroxamates. WO Patent 2005040101 2005
  99. Ashwell M.A. Tandon M. Namdew N.D. Lapierre J.M. Liu Y. Wu H. Hdac inhibitors. WO Patent 2009026446 2009
  100. Oyelere A. Inhibitors and Methods of Making and Using Thereof. U.S. Patent 20100197622 2010
  101. Cossío Mora F.P. Olascoaga A.Z. Salazar Y.I.V. Larzabal E.S.S. Ansa D.O. Margalef M.C.M. Aldaba Arévalo F. New histone deacetylase inhibitors based simultaneously on trisubstituted 1h-pyrroles and aromatic and heteroaromatic spacers. EP Patent 2305643A1 2011
  102. Banerjee S. Ghosh B. Jha T. Adhikari N. A patent review of histone deacetylase 8 (HDAC8) inhibitors (2013–present). Expert Opin. Ther. Pat. 2024 1 27 10.1080/13543776.2024.2391289 39121339
    [Google Scholar]
/content/journals/mc/10.2174/0115734064329669241007060848
Loading
/content/journals/mc/10.2174/0115734064329669241007060848
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test