Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Background

Flavonoids express a wide range of medicinal properties, our study presented results on the anticancer activity of selected compounds using studies.

Objective

In this article, studies were carried out to find promising anticancer lead among selected flavonoid compounds.

Methods

Here, we carried out molecular docking and MD simulation for anticancer screening of flavonoid derivatives against CDK2 and CDK9 proteins.

Results

Among the compounds under investigation, Flavone and Recoflavone had the lowest binding energy against CDK2/CDK9 targets using docking studies and MD simulations.

Conclusion

We can conclude that Flavone and Recoflavone are promising anticancer lead compounds in the development of new anticancer drugs.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064314933240812120123
2024-08-28
2025-05-08
Loading full text...

Full text loading...

References

  1. ZhaoL. YuanX. WangJ. FengY. JiF. LiZ. BianJ. A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs.Bioorg. Med. Chem.201927567768510.1016/j.bmc.2019.01.02730733087
    [Google Scholar]
  2. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.4128620474
    [Google Scholar]
  3. NkweD.O. LotshwaoB. RantongG. MatshweleJ. KwapeT.E. MasisiK. GaobotseG. HefferonK. MakhzoumA. Anticancer mechanisms of bioactive compounds from solanaceae: An update.Cancers20211319498910.3390/cancers1319498934638473
    [Google Scholar]
  4. ErdmanJ.W.Jr CarsonL. Kwik-UribeC. EvansE.M. AllenR.R. AllenR.R. RdM. Effects of cocoa flavanols on risk factors for cardiovascular disease.Asia Pac. J. Clin. Nutr.200817S1Suppl. 128428718296357
    [Google Scholar]
  5. MalumbresM. Cyclin-dependent kinases.Genome Biol.201415612210.1186/gb418425180339
    [Google Scholar]
  6. MalumbresM. BarbacidM. Cell cycle, CDKs and cancer: A changing paradigm.Nat. Rev. Cancer20099315316610.1038/nrc260219238148
    [Google Scholar]
  7. CicenasJ. ValiusM. The CDK inhibitors in cancer research and therapy.J. Cancer Res. Clin. Oncol.2011137101409141810.1007/s00432‑011‑1039‑421877198
    [Google Scholar]
  8. MorganD.O. Principles of CDK regulation.Nature1995374651813113410.1038/374131a0
    [Google Scholar]
  9. PlutaA.J. StudniarekC. MurphyS. NorburyC.J. Cyclindependent kinases: Masters of the eukaryotic universe.Wiley Interdiscip. Rev. RNA2024151e181610.1002/wrna.181637718413
    [Google Scholar]
  10. DingL. CaoJ. LinW. ChenH. XiongX. AoH. YuM. LinJ. CuiQ. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer.Int. J. Mol. Sci.2020216196010.3390/ijms2106196032183020
    [Google Scholar]
  11. PeterM. The regulation of cyclin-dependent kinase inhibitors (CKIs).Prog. Cell Cycle Res.199739910810.1007/978‑1‑4615‑5371‑7_89552409
    [Google Scholar]
  12. Al AboudN.M. TupperC. JialalI. Genetics, Epigenetic Mechanism.StatPearls2023
    [Google Scholar]
  13. MaraisA. JiZ. ChildE.S. KrauseE. MannD.J. SharrocksA.D. Cell cycle-dependent regulation of the forkhead transcription factor FOXK2 by CDK·cyclin complexes.J. Biol. Chem.201028546357283573910.1074/jbc.M110.15400520810654
    [Google Scholar]
  14. NieL. WeiY. ZhangF. HsuY.H. ChanL.C. XiaW. KeB. ZhuC. DengR. TangJ. YaoJ. ChuY.Y. ZhaoX. HanY. HouJ. HuoL. KoH.W. LinW.C. YamaguchiH. HsuJ.M. YangY. PanD.N. HsuJ.L. KleerC.G. DavidsonN.E. HortobagyiG.N. HungM.C. CDK2-mediated site-specific phosphorylation of EZH2 drives and maintains triple-negative breast cancer.Nat. Commun.2019101511410.1038/s41467‑019‑13105‑531704972
    [Google Scholar]
  15. ZhangX. ZhaoY. WangC. JuH. LiuW. ZhangX. MiaoS. WangL. SunQ. SongW. Rhomboid domain-containing protein 1 promotes breast cancer progression by regulating the p-Akt and CDK2 levels.Cell Commun. Signal.20181616510.1186/s12964‑018‑0267‑530286765
    [Google Scholar]
  16. PeterlinB.M. PriceD.H. Controlling the elongation phase of transcription with P-TEFb.Mol. Cell200623329730510.1016/j.molcel.2006.06.01416885020
    [Google Scholar]
  17. SchlafsteinA.J. WithersA.E. RudraS. DaneliaD. SwitchenkoJ.M. MisterD. HarariS. ZhangH. DaddachaW. EhdaivandS. LiX. TorresM.A. YuD.S. CDK9 expression shows role as a potential prognostic biomarker in breast cancer patients who fail to achieve pathologic complete response after neoadjuvant chemotherapy.Int. J. Breast Cancer201820181910.1155/2018/694512930405916
    [Google Scholar]
  18. Del ReM. BertoliniI. CrucittaS. FontanelliL. RofiE. De AngelisC. DiodatiL. CavalleroD. GianfilippoG. SalvadoriB. FogliS. FalconeA. ScatenaC. NaccaratoA.G. RoncellaM. GhilliM. MorgantiR. FontanaA. DanesiR. Overexpression of TK1 and CDK9 in plasma-derived exosomes is associated with clinical resistance to CDK4/6 inhibitors in metastatic breast cancer patients.Breast Cancer Res. Treat.20191781576210.1007/s10549‑019‑05365‑y31346846
    [Google Scholar]
  19. BihareeA. YadavA. JangidK. SinghY. KulkarniS. SawantD.M. KumarP. TharejaS. JainA.K. Flavonoids as promising anticancer agents: An in silico investigation of ADMET, binding affinity by molecular docking and molecular dynamics simulations.J. Biomol. Struct. Dyn.202211210.1080/07391102.2022.212639736165610
    [Google Scholar]
  20. AlsharairiN.A. Quercetin derivatives as potential therapeutic agents: An updated perspective on the treatment of nicotine-induced non-small cell lung cancer.Int. J. Mol. Sci.202324201520810.3390/ijms24201520837894889
    [Google Scholar]
  21. OrfaliG.C. DuarteA.C. BonadioV. MartinezN.P. de AraújoM.E.M.B. PrivieroF.B.M. CarvalhoP.O. PriolliD.G. Review of anticancer mechanisms of isoquercitin.World J. Clin. Oncol.20167218919910.5306/wjco.v7.i2.18927081641
    [Google Scholar]
  22. De AzevedoW.F.Jr Mueller-DieckmannH.J. Schulze-GahmenU. WorlandP.J. SausvilleE. KimS.H. Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase.Proc. Natl. Acad. Sci. USA19969372735274010.1073/pnas.93.7.27358610110
    [Google Scholar]
  23. ŁukasikP. ZałuskiM. GutowskaI. Cyclin-dependent kinases (CDK) and their role in diseases development-review.Int. J. Mol. Sci.2021226293510.3390/ijms2206293533805800
    [Google Scholar]
  24. CassandriM. FioravantiR. PomellaS. ValenteS. RotiliD. Del BaldoG. De AngelisB. RotaR. MaiA. CDK9 as a valuable target in cancer: From natural compounds inhibitors to current treatment in pediatric soft tissue sarcomas.Front. Pharmacol.202011123010.3389/fphar.2020.0123032903585
    [Google Scholar]
  25. AnshaboA.T. MilneR. WangS. AlbrechtH. CDK9: A comprehensive review of its biology, and its role as a potential target for anti-cancer agents.Front. Oncol.20211167855910.3389/fonc.2021.67855934041038
    [Google Scholar]
  26. UchidaT. WadaC. IshidaH. WangC. EgawaS. Yoko-yamaE. KameyaT. KoshibaK. p53 mutations and prognosis in bladder tumors.J. Urol.199515341097110410.1016/S0022‑5347(01)67517‑77869472
    [Google Scholar]
  27. WuJ. LiangY. TanY. TangY. SongH. WangZ. LiY. LuM. CDK9 inhibitors reactivate p53 by downregulating iASPP.Cell. Signal.20206710950810.1016/j.cellsig.2019.10950831866490
    [Google Scholar]
  28. YaoJ. Novel CDK9 inhibitor oroxylin a promotes wild-type P53 stability and prevents hepatocellular carcinoma progression by disrupting both MDM2 and SIRT1 signaling.Acta Pharmacol. Sin.20214341033104510.1038/s41401‑021‑00708‑2
    [Google Scholar]
  29. De FerrarsR. CassidyA. CurtisP. CzankC. ZhangQ. KalowoleK. BottingN. KayC.D. Investigating the bioa-vailability of anthocyanin metabolites.Proc. Nutr. Soc.201271E6610.1017/S0029665112001231
    [Google Scholar]
  30. MoriwakiM. TominagaE. KitoK. NakagawaR. KapoorM.P. MatsumiyaY. FukuharaT. KobayashiJ. SatomotoK. YamagataH. KuroiwaY. Bioavailability of flavonoids in ginkgo biloba extract-γ-cyclodextrin complex.Nat. Prod. Commun.202318510.1177/1934578X231170221
    [Google Scholar]
  31. KrogholmK.S. BredsdorffL. KnuthsenP. HaraldsdóttirJ. RasmussenS.E. Relative bioavailability of the flavonoids quercetin, hesperetin and naringenin given simultaneously through diet.Eur. J. Clin. Nutr.201064443243510.1038/ejcn.2010.620125185
    [Google Scholar]
  32. HuM. WuB. LiuZ. Bioavailability of polyphenols and flavonoids in the era of precision medicine.Mol. Pharm.20171492861286310.1021/acs.molpharmaceut.7b00545
    [Google Scholar]
  33. GohlkeA. Bioavailability of flavonoids after intraduodenal administration and their effects on the carbohydrate metabolism of dairy cows, exemplified by quercetin and its glucorhamnoside rutin.PhD Thesis2015
    [Google Scholar]
  34. KamilogluS. TomasM. OzdalT. CapanogluE. Effect of food matrix on the content and bioavailability of flavonoids.Trends Food Sci. Technol.2021117153310.1016/j.tifs.2020.10.030
    [Google Scholar]
  35. GonzalesG.B. SmaggheG. GrootaertC. ZottiM. RaesK. CampJ.V. Flavonoid interactions during digestion, absorption, distribution and metabolism: A sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity.Drug Metab. Rev.201547217519010.3109/03602532.2014.100364925633078
    [Google Scholar]
  36. ŚwiecaM. Gawlik-DzikiU. DzikiD. BaraniakB. CzyżJ. The influence of protein-flavonoid interactions on protein digestibility in vitro and the antioxidant quality of breads enriched with onion skin.Food Chem.2013141145145810.1016/j.foodchem.2013.03.04823768379
    [Google Scholar]
  37. HollmanP.C.H. KatanM.B. Absorption, metabolism and health effects of dietary flavonoids in man.Biomed. Pharmacother.199751830531010.1016/S0753‑3322(97)88045‑69436520
    [Google Scholar]
  38. MaY. ZengM. SunR. HuM. Disposition of flavonoids impacts their efficacy and safety.Curr. Drug Metab.201515984186410.2174/138920021666615020612371925658129
    [Google Scholar]
  39. SunX. Research progress in influence factors of flavonoids compounds bioavailability. China J. Tradit. Chin. Med. Pharmacy201530932313233
    [Google Scholar]
  40. BohnT. Dietary factors affecting polyphenol bioavailability.Nutr. Rev.201472742945210.1111/nure.1211424828476
    [Google Scholar]
  41. AlmeidaA.F. BorgeG.I.A. PiskulaM. TudoseA. TudoreanuL. ValentováK. WilliamsonG. SantosC.N. Bio-availability of quercetin in humans with a focus on interindividual variation.Compr. Rev. Food Sci. Food Saf.201817371473110.1111/1541‑4337.1234233350133
    [Google Scholar]
  42. FerreiraM. CostaD. SousaÂ. Flavonoids-based delivery systems towards cancer therapies.Bioengineering20229519710.3390/bioengineering9050197
    [Google Scholar]
  43. BanC. ParkS.J. LimS. ChoiS.J. ChoiY.J. Improving flavonoid bioaccessibility using an edible oil-based lipid nanoparticle for oral delivery.J. Agric. Food Chem.201563215266527210.1021/acs.jafc.5b0149525976277
    [Google Scholar]
  44. WangH. CuiY. FuQ. DengB. LiG. YangJ. WuT. XieY. A phospholipid complex to improve the oral bioavailability of flavonoids.Drug Dev. Ind. Pharm.201541101693170310.3109/03639045.2014.99140225496311
    [Google Scholar]
  45. MicaleN. CitarellaA. MoloniaM.S. SpecialeA. CiminoF. SaijaA. CristaniM. Hydrogels for the delivery of plant-derived (poly)phenols.Molecules20202514325410.3390/molecules25143254
    [Google Scholar]
  46. KandemirK. TomasM. McClementsD.J. CapanogluE. Recent advances on the improvement of quercetin bioavailability.Trends Food Sci. Technol.202211919220010.1016/j.tifs.2021.11.032
    [Google Scholar]
  47. Ayala-FuentesJ.C. Chavez-SantoscoyR.A. Nanotechnology as a key to enhance the benefits and improve the bioavailability of flavonoids in the food industry.Foods20211011270110.3390/foods1011270134828981
    [Google Scholar]
  48. GuanQ. ZhangG. SunS. FanH. SunC. ZhangS. Enhanced oral bioavailability of pueraria flavones by a novel solid selfmicroemulsifying drug delivery system (SMEDDS) dropping pills.Biol. Pharm. Bull.201639576276910.1248/bpb.b15‑0085426935150
    [Google Scholar]
  49. HertogM.G.L. HollmanP.C.H. van de PutteB. Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices.J. Agric. Food Chem.19934181242124610.1021/jf00032a015
    [Google Scholar]
  50. ManiR. NatesanV. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action.Phytochemistry201814518719610.1016/j.phytochem.2017.09.016
    [Google Scholar]
  51. AndreevaO.A. IvashevM.N. OziminaI.I. MaslikovaG.V. Diosmetin glycosides from Caucasian vetch: Isolation and study of biological activity.Pharm. Chem. J.1998321159559710.1007/BF02465832
    [Google Scholar]
  52. GargM. ChaudharyS.K. GoyalA. SarupP. KumariS. GargN. VaidL. ShiveenaB. Comprehensive review on therapeutic and phytochemical exploration of diosmetin: A promising moiety.Phytomedicine Plus20222110017910.1016/j.phyplu.2021.100179
    [Google Scholar]
  53. SahuB.D. KalvalaA.K. KoneruM. Mahesh KumarJ. KunchaM. RachamallaS.S. SistlaR. Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defence.PLoS One201499e10507010.1371/journal.pone.010507025184746
    [Google Scholar]
  54. HostetlerG.L. RalstonR.A. SchwartzS.J. Flavones: Food sources, bioavailability, metabolism, and bioactivity.Adv. Nutr.20178342343510.3945/an.116.01294828507008
    [Google Scholar]
  55. SinghM. KaurM. SilakariO. Flavones: An important scaffold for medicinal chemistry.Eur. J. Med. Chem.20148420623910.1016/j.ejmech.2014.07.01325019478
    [Google Scholar]
  56. LiuK. ZhaoF. YanJ. XiaZ. JiangD. MaP. Hispidulin: A promising flavonoid with diverse anti-cancer properties.Life Sci.202025911839510.1016/j.lfs.2020.11839532905830
    [Google Scholar]
  57. RoutK.K. KarM.K. AgarwalP.C. DashS.K. Analysis of bioactive hispidulin: An anticancer flavone of Clerodendrum philippinum.J. Planar Chromatogr. Mod. TLC2024371495610.1007/s00764‑023‑00267‑8
    [Google Scholar]
  58. Calderón-MontañoJ.M. Burgos-MorónE. Pérez-GuerreroC. López-LázaroM. A review on the dietary flavonoid kaempferol.Mini Rev. Med. Chem.201111429834410.2174/13895571179530533521428901
    [Google Scholar]
  59. LiuR.H. Health-promoting components of fruits and vegetables in the diet.Adv. Nutr.201343384S392S10.3945/an.112.00351723674808
    [Google Scholar]
  60. KimS.H. ChoiK.C. Anti-cancer effect and underlying mechanism(s) of kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models.Toxicol. Res.201329422923410.5487/TR.2013.29.4.22924578792
    [Google Scholar]
  61. ManzoorM.F. AhmadN. Food Based Phytochemical Luteolin Their Derivatives.Sources and Medicinal Benefits2000
    [Google Scholar]
  62. López-LázaroM. Distribution and biological activities of the flavonoid luteolin.Mini Rev. Med. Chem.200991315910.2174/13895570978700171219149659
    [Google Scholar]
  63. ImranM. RaufA. Abu-IzneidT. NadeemM. ShariatiM.A. KhanI.A. ImranA. OrhanI.E. RizwanM. AtifM. GondalT.A. MubarakM.S. Luteolin, a flavonoid, as an anticancer agent: A review.Biomed. Pharmacother.201911210861210.1016/j.biopha.2019.10861230798142
    [Google Scholar]
  64. JustesenU. KnuthsenP. Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes.Food Chem.200173224525010.1016/S0308‑8146(01)00114‑5
    [Google Scholar]
  65. StewartA.J. BozonnetS. MullenW. JenkinsG.I. LeanM.E.J. CrozierA. Occurrence of flavonols in tomatoes and tomato-based products.J. Agric. Food Chem.20004872663266910.1021/jf000070p10898604
    [Google Scholar]
  66. ZhengW. WangS.Y. Antioxidant activity and phenolic compounds in selected herbs.J. Agric. Food Chem.200149115165517010.1021/jf010697n11714298
    [Google Scholar]
  67. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac95636305812
    [Google Scholar]
  68. Jeremy AppletonN.D. Evaluating the bioavailability of isoquercetin.Nat Med J
    [Google Scholar]
  69. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.23510592235
    [Google Scholar]
  70. BikadiZ. HazaiE. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock.J. Cheminform.2009111510.1186/1758‑2946‑1‑1520150996
    [Google Scholar]
  71. SonyA.S. SureshX. Molecular docking-based screening of natural heterocyclic compounds as a potential drug for COVID-19.Open Med. Chem. J.2023171e18741045230517010.2174/18741045‑v17‑230619‑2023‑7
    [Google Scholar]
  72. HueyR. MorrisG.M. OlsonA.J. GoodsellD.S. A semiempirical free energy force field with charge‐based desolvation.J. Comput. Chem.20072861145115210.1002/jcc.2063417274016
    [Google Scholar]
  73. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDock-Tools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  74. AbrahamM.J. MurtolaT. SchulzR. PállS. SmithJ.C. HessB. LindahlE. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers.SoftwareX20151-2192510.1016/j.softx.2015.06.001
    [Google Scholar]
  75. MaldeA.K. ZuoL. BreezeM. StroetM. PogerD. NairP.C. OostenbrinkC. MarkA.E. An automated force field topology builder (ATB) and repository: Version 1.0.J. Chem. Theory Comput.20117124026403710.1021/ct200196m26598349
    [Google Scholar]
  76. GangadharappaB.S. SharathR. RevanasiddappaP.D. ChandramohanV. BalasubramaniamM. VardhineniT.P. Structural insights of metallo-beta-lactamase revealed an effective way of inhibition of enzyme by natural inhibitors.J. Biomol. Struct. Dyn.202038133757377110.1080/07391102.2019.166726531514687
    [Google Scholar]
  77. GagoF. Molecular simulations of drug-receptor complexes in anticancer research.Future Med. Chem.20124151961197010.4155/fmc.12.14923088276
    [Google Scholar]
  78. DewakerV. PrabhakarY.S. Molecular dynamics simulations of HDAC-ligand complexes towards the design of new anticancer compounds.Curr. Top. Med. Chem.202323292743276410.2174/011568026625092423092004284537779411
    [Google Scholar]
  79. MoulishankarA. LakshmananK. Data on molecular docking of naturally occurring flavonoids with biologically important targets.Data Brief20202910524310.1016/j.dib.2020.10524332072001
    [Google Scholar]
  80. PatilV.M. MasandN. Anticancer potential of flavonoids: Chemistry, biological activities, and future perspectives.Stud. Nat. Prod. Chem.20185940143010.1016/B978‑0‑444‑64179‑3.00012‑8
    [Google Scholar]
  81. KhanA.U. DagurH.S. KhanM. MalikN. AlamM. MushtaqueM. Therapeutic role of flavonoids and flavones in cancer prevention: Current trends and future perspectives.Eur. J. Med. Chem. Rep.2021310001010.1016/j.ejmcr.2021.100010
    [Google Scholar]
  82. SingothuS. BegumP.J. MaddiD. DevsaniN. BhandariV. Unveiling the potential of marine compounds as quorum sensing inhibitors targeting Pseudomonas aeruginosa 's LasI: A computational study using molecular docking and molecular dynamics.J. Cell. Biochem.2023124101573158610.1002/jcb.3046537642215
    [Google Scholar]
  83. RajaG. VenkateshG. Al-OtaibiJ.S. VennilaP. MaryY.S. Sixto-LópezY. Synthesis, characterization, molecular docking and molecular dynamics simulations of benzamide derivatives as potential anti-ovarian cancer agents.J. Mol. Struct.2022126913378510.1016/j.molstruc.2022.133785
    [Google Scholar]
  84. FerreiraR.Q. GrecoS.J. DelarmelinaM. WeberK.C. Electrochemical quantification of the structure/antioxidant activity relationship of flavonoids.Electrochim. Acta201516316116610.1016/j.electacta.2015.02.164
    [Google Scholar]
  85. MandalR. BeckerS. StrebhardtK. Targeting CDK9 for anti-cancer therapeutics.Cancers2021139218110.3390/cancers1309218134062779
    [Google Scholar]
  86. WangL. ShaoX. ZhongT. WuY. XuA. SunX. GaoH. LiuY. LanT. TongY. TaoX. DuW. WangW. ChenY. LiT. MengX. DengH. YangB. HeQ. YingM. RaoY. Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy.Nat. Chem. Biol.202117556757510.1038/s41589‑021‑00742‑533664520
    [Google Scholar]
  87. TadesseS. AnshaboA.T. PortmanN. LimE. TilleyW. CaldonC.E. WangS. Targeting CDK2 in cancer: Challenges and opportunities for therapy.Drug Discov. Today202025240641310.1016/j.drudis.2019.12.00131839441
    [Google Scholar]
/content/journals/mc/10.2174/0115734064314933240812120123
Loading
/content/journals/mc/10.2174/0115734064314933240812120123
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test