Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1573-4064
  • E-ISSN:

Abstract

Introduction

, an important cattle ectoparasite, is responsible for a substantial negative impact on the economy due to productivity loss. The emergence of resistance to widely used commercial acaricides has sparked efforts to explore alternative products for tick control.

Methods

To address this challenge, innovative solutions targeting essential tick enzymes, like glutathione S-transferase (GST), have gained attention. Dimeric flavonoids, particularly brachydins (BRAs), have demonstrated various biological activities, including antiparasitic effects. The objectives of this study were to isolate four dimeric flavonoids from roots and to evaluate their potential as inhibitors of GST.

Results

assays confirmed the inhibition of GST by BRA-G, BRA-I, BRA-J, and BRA-K with IC values of 0.075, 0.079, 0.075, and 0.058 mg/mL, respectively, with minimal hemolytic effects. Molecular docking of BRA-G, BRA-I, BRA-J, and BRA-K in a three-dimensional model of GST revealed predicted interactions with MolDock Scores of -142.537, -126.831, -108.571, and -123.041, respectively. Both and analyses show that brachydins are potential inhibitors of GST.

Conclusion

The findings of this study deepen our understanding of GST inhibition in ticks, affirming its viability as a drug target. This knowledge contributes to the advancement of treatment modalities and strategies for improved tick control.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064298481240517072216
2024-06-05
2024-11-14
Loading full text...

Full text loading...

References

  1. GrisiL. LeiteR.C. MartinsJ.R.S. BarrosA.T.M. AndreottiR. CançadoP.H.D. LeónA.A.P. PereiraJ.B. VillelaH.S. Reassessment of the potential economic impact of cattle parasites in Brazil.Rev. Bras. Parasitol. Vet.201423215015610.1590/S1984‑29612014042 25054492
    [Google Scholar]
  2. AgwunobiD.O. YuZ. LiuJ. A retrospective review on ixodid tick resistance against synthetic acaricides: implications and perspectives for future resistance prevention and mitigation.Pestic. Biochem. Physiol.2021173110477610.1016/j.pestbp.2021.104776 33771255
    [Google Scholar]
  3. WaldmanJ. KlafkeG.M. TirloniL. LogulloC. da Silva VazI. Jr Putative target sites in synganglion for novel ixodid tick control strategies.Ticks Tick Borne Dis.202314310212310.1016/j.ttbdis.2023.102123 36716581
    [Google Scholar]
  4. BezerraW.A.S. TavaresC.P. RochaC.Q. Vaz JuniorI.S. MichelsP.A.M. Costa JuniorL.M. SoaresA.M.S. Anonaine from Annona crassiflora inhibits glutathione S-transferase and improves cypermethrin activity on Rhipicephalus (Boophilus) microplus (Canestrini, 1887).Exp. Parasitol.202224310839810.1016/j.exppara.2022.108398 36228702
    [Google Scholar]
  5. OzelameK.P.C. MattiaM.M.C. Dedavid e SilvaL.A. RandallL.M. CorvoI. SaporitiT. SeixasA. da Silva VazI.Jr AlvarezG. Novel tick glutathione transferase inhibitors as promising acaricidal compounds.Ticks Tick Borne Dis.202213510197010.1016/j.ttbdis.2022.101970 35662066
    [Google Scholar]
  6. ThakurA. PatwaJ. SharmaA. FloraS.J.S. Synthesis, molecular docking, BSA, and in vitro reactivation study of imidazopyridine oximes against paraoxon inhibited acetylcholinesterase.Med. Chem.202218227328710.2174/1573406417666210208223240 33563155
    [Google Scholar]
  7. OtarighoB. FaladeM.O. Natural Perylenequinone Compounds as Potent Inhibitors of Schistosoma mansoni Glutathione S-Transferase.Life20231310195710.3390/life13101957 37895339
    [Google Scholar]
  8. TurkanF. Harbi CalimliM. AkgunA. GulbagcaF. SenF. Toxicological effects of some antiparasitic drugs on equine liver glutathione S-Transferase enzyme activity.J. Pharm. Biomed. Anal.202018011304810.1016/j.jpba.2019.113048 31887670
    [Google Scholar]
  9. Costa-JúniorL.M. MillerR.J. AlvesP.B. BlankA.F. LiA.Y. Pérez de LeónA.A. Acaricidal efficacies of Lippia gracilis essential oil and its phytochemicals against organophosphate-resistant and susceptible strains of Rhipicephalus (Boophilus) microplus.Vet. Parasitol.20162281606410.1016/j.vetpar.2016.05.028 27692332
    [Google Scholar]
  10. QuadrosD.G. JohnsonT.L. WhitneyT.R. OliverJ.D. Oliva ChávezA.S. Plant-derived natural compounds for tick pest control in livestock and wildlife: Pragmatism or Utopia?Insects202011849010.3390/insects11080490 32752256
    [Google Scholar]
  11. SellesS.M.A. KouidriM. GonzálezM.G. GonzálezJ. SánchezM. González-ColomaA. SanchisJ. ElhachimiL. OlmedaA.S. TerceroJ.M. ValcárcelF. Acaricidal and repellent effects of essential oils against ticks: a review.Pathogens20211011137910.3390/pathogens10111379 34832535
    [Google Scholar]
  12. El HaddadD. BitamI. BouchenakO. ToubalS. YahiaouiK. ArabK. BoumazaS. Acaricidal activity of flavonoids extract of Borago officinalis L. (Boraginaceae) against brown dog tick, Rhipicephalus sanguineus (Latreille, 1806).Trop. Biomed.2018352383391 33601812
    [Google Scholar]
  13. Cen-PachecoF. Ortiz-CeliseoA. Peniche-CardeñaA. Bravo-RuizO. López-FentanesF.C. Valerio-AlfaroG. FernándezJ.J. Studies on the bioactive flavonoids isolated from Azadirachta indica.Nat. Prod. Res.202034243483349110.1080/14786419.2019.1579808 30835540
    [Google Scholar]
  14. HamedR.R. MaharemT.M. GuneidyR.A. EmamM.A. Abdel KarimG.S.A. Purification of fat body glutathione S ‐transferase from the desert locust Schistocerca gregaria: investigation of flavonoid inhibitory effects on enzyme activity.Physiol. Entomol.2019443-418719910.1111/phen.12289
    [Google Scholar]
  15. InabaK. EbiharaK. SendaM. YoshinoR. SakumaC. KoiwaiK. TakayaD. WatanabeC. WatanabeA. KawashimaY. FukuzawaK. ImamuraR. KojimaH. OkabeT. UemuraN. KasaiS. KanukaH. NishimuraT. WatanabeK. InoueH. FujikawaY. HonmaT. HirokawaT. SendaT. NiwaR. Molecular action of larvicidal flavonoids on ecdysteroidogenic glutathione S-transferase Noppera-bo in Aedes aegypti.BMC Biol.20222014310.1186/s12915‑022‑01233‑2 35172816
    [Google Scholar]
  16. da RochaC.Q. QueirozE.F. MeiraC.S. MoreiraD.R.M. SoaresM.B.P. MarcourtL. VilegasW. WolfenderJ.L. Dimeric flavonoids from Arrabidaea brachypoda and assessment of their anti-Trypanosoma cruzi activity.J. Nat. Prod.20147761345135010.1021/np401060j 24871307
    [Google Scholar]
  17. RochaV. Quintino da RochaC. Ferreira QueirozE. MarcourtL. VilegasW. GrimaldiG. FurrerP. AllémannÉ. WolfenderJ.L. SoaresM. Antileishmanial activity of dimeric flavonoids isolated from Arrabidaea brachypoda.Molecules201824111310.3390/molecules24010001 30577423
    [Google Scholar]
  18. SaramagoL. GomesH. AguileraE. CerecettoH. GonzálezM. CabreraM. AlzugarayM. da Silva Vaz JuniorI. Nunes da FonsecaR. Aguirre-LópezB. CabreraN. Pérez-MontfortR. MerlinoA. MoraesJ. ÁlvarezG. Novel and selective Rhipicephalus microplus triosephosphate isomerase inhibitors with acaricidal activity.Vet. Sci.2018537410.3390/vetsci5030074 30142944
    [Google Scholar]
  19. ShakerB. AhmadS. LeeJ. JungC. NaD. In silico methods and tools for drug discovery.Comput. Biol. Med.202113710485110.1016/j.compbiomed.2021.104851 34520990
    [Google Scholar]
  20. BitarR. ParkerM. WalkerJ. Drug discovery. Translational interventional radiology.Elsevier2023515410.1016/B978‑0‑12‑823026‑8.00029‑8
    [Google Scholar]
  21. AdibiH. KhodarahmiR. EzatiM. GhavamipourF. KhosraviN. SajediR.H. ChalabiM. FarokhiA. Synthesis and potential antidiabetic properties of curcumin-based derivatives: an in vitro and in silico study of α-glucosidase and α-amylase inhibition.Med. Chem.20231919911710.2174/1573406418666220509101854 35579152
    [Google Scholar]
  22. da RochaC.Q. de-FariaF.M. MarcourtL. EbrahimiS.N. KitanoB.T. GhilardiA.F. Luiz FerreiraA. de AlmeidaA.C.A. DunderR.J. Souza-BritoA.R.M. HamburgerM. VilegasW. QueirozE.F. WolfenderJ.L. Gastroprotective effects of hydroethanolic root extract of Arrabidaea brachypoda: Evidences of cytoprotection and isolation of unusual glycosylated polyphenols.Phytochemistry20171359310510.1016/j.phytochem.2016.12.002 28010885
    [Google Scholar]
  23. da Silva VazI.Jr Torino LermenT. MichelonA. Sanchez FerreiraC.A. Joaquim de FreitasD.R. TermignoniC. MasudaA. Effect of acaricides on the activity of a Boophilus microplus glutathione S-transferase.Vet. Parasitol.20041192-323724510.1016/j.vetpar.2003.11.004 14746982
    [Google Scholar]
  24. NdawulaC.Jr SabadinG.A. PariziL.F. da Silva VazI.Jr Constituting a glutathione S-transferase-cocktail vaccine against tick infestation.Vaccine201937141918192710.1016/j.vaccine.2019.02.039 30824358
    [Google Scholar]
  25. HabigW.H. PabstM.J. FleischnerG. GatmaitanZ. AriasI.M. JakobyW.B. The identity of glutathione S-transferase B with ligandin, a major binding protein of liver.Proc. Natl. Acad. Sci. USA197471103879388210.1073/pnas.71.10.3879 4139704
    [Google Scholar]
  26. ChoiJ. ReipaV. HitchinsV.M. GoeringP.L. MalinauskasR.A. Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles.Toxicol. Sci.2011123113314310.1093/toxsci/kfr149 21652737
    [Google Scholar]
  27. HanwellM.D. CurtisD.E. LonieD.C. VandermeerschT. ZurekE. HutchisonG.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform.J. Cheminform.2012411710.1186/1758‑2946‑4‑17 22889332
    [Google Scholar]
  28. WadapurkarR.M. ShilpaM.D. KattiA.K.S. SulochanaM.B. In silico drug design for Staphylococcus aureus and development of host-pathogen interaction network.Informatics in Medicine Unlocked201810587010.1016/j.imu.2017.11.002
    [Google Scholar]
  29. TongJ.B. LuoD. BianS. ZhangX. Structural investigation of tetrahydropteridin analogues as selective PLK1 inhibitors for treating cancer through combined QSAR techniques, molecular docking, and molecular dynamics simulations.J. Mol. Liq.202133511623510.1016/j.molliq.2021.116235
    [Google Scholar]
  30. KelleyL.A. MezulisS. YatesC.M. WassM.N. SternbergM.J.E. The Phyre2 web portal for protein modeling, prediction and analysis.Nat. Protoc.201510684585810.1038/nprot.2015.053 25950237
    [Google Scholar]
  31. LaskowskiR.A. MacArthurM.W. MossD.S. ThorntonJ.M. PROCHECK: a program to check the stereochemical quality of protein structures.J. Appl. Cryst.199326228329110.1107/S0021889892009944
    [Google Scholar]
  32. RoditakisE. RoditakisN.E. TsagkarakouA. Insecticide resistance in Bemisia tabaci (Homoptera: Aleyrodidae) populations from Crete.Pest Manag. Sci.200561657758210.1002/ps.1029 15712366
    [Google Scholar]
  33. ObaidM.K. IslamN. AlouffiA. KhanA.Z. da Silva VazI.Jr TanakaT. AliA. Acaricides resistance in ticks: selection, diagnosis, mechanisms, and mitigation.Front. Cell. Infect. Microbiol.20221294183110.3389/fcimb.2022.941831 35873149
    [Google Scholar]
  34. MalakN. AlotaibiB.S. KhanA. KhanA. UllahS. NasreenN. NiazS. ChenC.C. Density functional theory calculations and molecular docking analyses of flavonoids for their possible application against the acetylcholinesterase and triose-phosphate isomerase proteins of Rhipicephalus microplus.Molecules2023288360610.3390/molecules28083606 37110838
    [Google Scholar]
  35. de LimaC.A. CuberoM.C.Z. FrancoY.E.M. RodriguesC.D.P. do NascimentoJ.R. Vendramini-CostaD.B. ScianiJ.M. da RochaC.Q. LongatoG.B. Antiproliferative activity of two unusual dimeric flavonoids, brachydin E and brachydin F, isolated from Fridericia platyphylla (Cham.) LG Lohmann: in vitro and molecular docking evaluation.BioMed Res. Int.2022202211210.1155/2022/3319203 35187163
    [Google Scholar]
  36. BoušováI. SkálováL. Inhibition and induction of glutathione S-transferases by flavonoids: possible pharmacological and toxicological consequences.Drug Metab. Rev.201244426728610.3109/03602532.2012.713969 22998389
    [Google Scholar]
  37. MakrisS.L. KimJ.H. EllisA. FaberW. HarroukW. LewisJ.M. PauleM.G. SeedJ. TassinariM. TylR. Current and future needs for developmental toxicity testing.Birth Defects Res. B Dev. Reprod. Toxicol.201192538439410.1002/bdrb.20335 21922641
    [Google Scholar]
  38. AromeD. ChineduE. The importance of toxicity testing.Journal of Pharmaceutical BioSciences.20134146148
    [Google Scholar]
  39. AtaA. UdenigweC. The discovery and application of inhibitors of glutathione S-transferase as therapeutic agents-a review.Curr. Bioact. Compd.200841415010.2174/157340708784533384
    [Google Scholar]
  40. ThomsenR. ChristensenM.H. MolDock: a new technique for high-accuracy molecular docking.J. Med. Chem.200649113315332110.1021/jm051197e 16722650
    [Google Scholar]
  41. XavierM.M. HeckG.S. de AvilaM.B. LevinN.M.B. PintroV.O. CarvalhoN.L. de AzevedoW.F. SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions.Comb. Chem. High Throughput Screen.2016191080181210.2174/1386207319666160927111347 27686428
    [Google Scholar]
  42. LiuZ. WangG. LiZ. WangR. Geometrical preferences of the hydrogen bonds on protein−ligand binding interface derived from statistical surveys and quantum mechanics calculations.J. Chem. Theory Comput.20084111959197310.1021/ct800267x 26620338
    [Google Scholar]
  43. BianchiV. GherardiniP.F. Helmer-CitterichM. AusielloG. Identification of binding pockets in protein structures using a knowledge-based potential derived from local structural similarities.BMC Bioinformatics201213S4Suppl. 4S1710.1186/1471‑2105‑13‑S4‑S17 22536963
    [Google Scholar]
  44. PavlidiN. KhalighiM. MyridakisA. DermauwW. WybouwN. TsakireliD. StephanouE.G. LabrouN.E. VontasJ. Van LeeuwenT. A glutathione-S-transferase (TuGSTd05) associated with acaricide resistance in Tetranychus urticae directly metabolizes the complex II inhibitor cyflumetofen.Insect Biochem. Mol. Biol.20178010111510.1016/j.ibmb.2016.12.003 27932274
    [Google Scholar]
  45. HouT. WangJ. LiY. ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine.J. Chem. Inf. Model.20074762408241510.1021/ci7002076 17929911
    [Google Scholar]
  46. HouT. WangJ. ZhangW. XuX. ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification.J. Chem. Inf. Model.200747120821810.1021/ci600343x 17238266
    [Google Scholar]
  47. ErlejmanA.G. VerstraetenS.V. FragaC.G. OteizaP.I. The interaction of flavonoids with membranes: potential determinant of flavonoid antioxidant effects.Free Radic. Res.200438121311132010.1080/10715760400016105 15763955
    [Google Scholar]
  48. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  49. LeesonP.D. DavisA.M. Time-related differences in the physical property profiles of oral drugs.J. Med. Chem.200447256338634810.1021/jm049717d 15566303
    [Google Scholar]
  50. O’SheaR. MoserH.E. Physicochemical properties of antibacterial compounds: implications for drug discovery.J. Med. Chem.200851102871287810.1021/jm700967e 18260614
    [Google Scholar]
  51. AbdelmohsenU.R. BalasubramanianS. OelschlaegerT.A. GrkovicT. PhamN.B. QuinnR.J. HentschelU. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections.Lancet Infect. Dis.2017172e30e4110.1016/S1473‑3099(16)30323‑1 27979695
    [Google Scholar]
  52. WiedemarN HauserDA MäserP 100 years of suramin.Antimicrobi. agen. chemother.202064311410.1128/AAC.01168‑19
    [Google Scholar]
  53. AdenubiO.T. AhmedA.S. FasinaF.O. McGawL.J. EloffJ.N. NaidooV. Pesticidal plants as a possible alternative to synthetic acaricides in tick control: A systematic review and meta-analysis.Ind. Crops Prod.2018123177980610.1016/j.indcrop.2018.06.075
    [Google Scholar]
/content/journals/mc/10.2174/0115734064298481240517072216
Loading
/content/journals/mc/10.2174/0115734064298481240517072216
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test