Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Azoles have long been regarded as an ideal scaffold for the development of numerous innovative therapeutic agents as well as other incredibly adaptable and beneficial chemicals with prospective uses in a variety of fields, including materials, energetics (explosophores), and catalysis (azole organocatalytic arbitration). Azoles exhibit promising pharmacological activities, including antimicrobial, antidiabetic, antiviral, antidepressant, antihistaminic, antitumor, antioxidant, antiallergic, antihelmintic, and antihypertensive activity. According to a database analysis of U.S. FDA-approved medications, 59% of specific medications are connected to small molecules that have heterocycles having nitrogen atoms. The azole moiety has impressive electron abundance. Azoles promptly attach to various receptors as well as enzymes in the physiological environment distinct specialized interactions, contributing to their anti-diabetic potential. This review encompasses the recent research progress on potent azole-derived antidiabetic agents that can be used as an alternative for the management of type-2 diabetes.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064289990240524055002
2024-06-04
2025-01-11
Loading full text...

Full text loading...

References

  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus.Diabetes Care2009321S62S67 19118289
    [Google Scholar]
  2. BandayM.Z. SameerA.S. NissarS. Pathophysiology of diabetes: An overview.Avicenna J. Med.202010417418810.4103/ajm.ajm_53_20 33437689
    [Google Scholar]
  3. OzougwuO. ObimbaK.C. BelonwuC.D. UnakalambaC.B. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus.J. Physiol. Pathophysiol.201344465710.5897/JPAP2013.0001
    [Google Scholar]
  4. El KhatabiK. El-MernissiR. HajjiH. SinghA.K. AzizM. LakhlifiT. KumarS. BouachrineM. Identification of novel indole derivatives as potent α-amylase inhibitors for the treatment of type-II diabetes using in-silico approaches.Biointerface Res. Appl. Chem.202313117
    [Google Scholar]
  5. RajaeiE. JalaliM.T. ShahrabiS. AsnafiA.A. PezeshkiS.M.S. HLAs in autoimmune diseases: Dependable diagnostic biomarkers?Curr. Rheumatol. Rev.201915426927610.2174/1573397115666190115143226 30644346
    [Google Scholar]
  6. KühlC. Etiology and pathogenesis of gestational diabetes.Diabetes Care1998212B19B26 9704223
    [Google Scholar]
  7. SaeediP. PetersohnI. SalpeaP. MalandaB. KarurangaS. UnwinN. ColagiuriS. GuariguataL. MotalaA.A. OgurtsovaK. ShawJ.E. IDF diabetes atlas committee global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas.Diabetes Res. Clin. Pract.20191571078431016
    [Google Scholar]
  8. KnipM. SiljanderH. Autoimmune mechanisms in type 1 diabetes.Autoimmun. Rev.20087755055710.1016/j.autrev.2008.04.008 18625444
    [Google Scholar]
  9. KahalyG.J. HansenM.P. Type 1 diabetes associated autoimmunity.Autoimmun. Rev.201615764464810.1016/j.autrev.2016.02.017 26903475
    [Google Scholar]
  10. TanK.T. CheahJ.S. Pathogenesis of type 1 and type 2 diabetes mellitus.Ann. Acad. Med. Singap.1990194506511 2221810
    [Google Scholar]
  11. BuchananT.A. XiangA.H. Gestational diabetes mellitus.J. Clin. Invest.2005115348549110.1172/JCI200524531 15765129
    [Google Scholar]
  12. CatalanoP.M. HustonL. AminiS.B. KalhanS.C. Longitudinal changes in glucose metabolism during pregnancy in obese women with normal glucose tolerance and gestational diabetes mellitus.Am. J. Obstet. Gynecol.1999180490391610.1016/S0002‑9378(99)70662‑9 10203659
    [Google Scholar]
  13. LeahyJ.L. HirschI.B. PetersonK.A. SchneiderD. Targeting β-cell function early in the course of therapy for type 2 diabetes mellitus.J. Clin. Endocrinol. Metab.20109594206421610.1210/jc.2010‑0668 20739389
    [Google Scholar]
  14. MuoioD.M. NewgardC.B. Molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes.Nat. Rev. Mol. Cell Biol.20089319320510.1038/nrm2327 18200017
    [Google Scholar]
  15. AzimiF. AzizianH. NajafiM. HassanzadehF. Sadeghi-aliabadiH. GhasemiJ.B. Ali FaramarziM. MojtabaviS. LarijaniB. SaghaeiL. MahdaviM. Design and synthesis of novel quinazolinone-pyrazole derivatives as potential α-glucosidase inhibitors: Structure-activity relationship, molecular modeling and kinetic study.Bioorg. Chem.202111410512710.1016/j.bioorg.2021.105127 34246971
    [Google Scholar]
  16. JoJ. LeeD. ParkY.H. ChoiH. HanJ. ParkD.H. ChoiY.K. KwakJ. YangM.K. YooJ.W. MoonH.R. GeumD. KangK.S. YunH. Discovery and optimization of novel 3-benzyl-N-phenyl-1H-pyrazole-5-carboxamides as bifunctional antidiabetic agents stimulating both insulin secretion and glucose uptake.Eur. J. Med. Chem.202121711332510.1016/j.ejmech.2021.113325 33765605
    [Google Scholar]
  17. NaimM.J. AlamO. AlamM.J. ShaquiquzzamanM. AlamM.M. NaiduV.G.M. Synthesis, docking, in vitro and in vivo antidiabetic activity of pyrazole‐based 2,4‐thiazolidinedione derivatives as PPAR‐γ modulators.Arch. Pharm.20183513-4170022310.1002/ardp.201700223 29400412
    [Google Scholar]
  18. AzimiF. GhasemiJ.B. AzizianH. NajafiM. FaramarziM.A. SaghaeiL. Sadeghi-aliabadiH. LarijaniB. HassanzadehF. MahdaviM. Design and synthesis of novel pyrazole-phenyl semicarbazone derivatives as potential α-glucosidase inhibitor: Kinetics and molecular dynamics simulation study.Int. J. Biol. Macromol.20211661082109510.1016/j.ijbiomac.2020.10.263 33157144
    [Google Scholar]
  19. NaimM.J. AlamO. AlamM.J. HassanM.Q. SiddiquiN. NaiduV.G.M. AlamM.I. Design, synthesis and molecular docking of thiazolidinedione based benzene sulphonamide derivatives containing pyrazole core as potential anti-diabetic agents.Bioorg. Chem.2018769811210.1016/j.bioorg.2017.11.010 29169079
    [Google Scholar]
  20. BansalG. SinghS. MongaV. ThanikachalamP.V. ChawlaP. Synthesis and biological evaluation of thiazolidine-2,4-dione-pyrazole conjugates as antidiabetic, anti-inflammatory and antioxidant agents.Bioorg. Chem.20199210327110.1016/j.bioorg.2019.103271 31536952
    [Google Scholar]
  21. MohamedM.A.A. Abd AllahO.A. BekhitA.A. KadryA.M. El-SaghierA.M.M. Synthesis and antidiabetic activity of novel triazole derivatives containing amino acids.J. Heterocycl. Chem.20205762365237810.1002/jhet.3951
    [Google Scholar]
  22. AsgariM.S. TahmasebiB. MojtabaviS. FaramarziM.A. RahimiR. RanjbarP.R. BiglarM. LarijaniB. RastegarH. Mohammadi-KhanaposhtaniM. MahdaviM. Design, synthesis, biological evaluation, and docking study of new acridine‐9‐carboxamide linked to 1,2,3‐triazole derivatives as antidiabetic agents targeting α‐glucosidase.J. Heterocycl. Chem.202057124348435710.1002/jhet.4142
    [Google Scholar]
  23. YeG.J. LanT. HuangZ.X. ChengX.N. CaiC.Y. DingS.M. XieM.L. WangB. Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-Glucosidase inhibition and glucose uptake promotion.Eur. J. Med. Chem.201917736237310.1016/j.ejmech.2019.05.045 31158750
    [Google Scholar]
  24. WangG. PengZ. WangJ. LiX. LiJ. Synthesis, in vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential α-glucosidase inhibitors.Eur. J. Med. Chem.201712542342910.1016/j.ejmech.2016.09.067 27689725
    [Google Scholar]
  25. AyelesoA.O. JosephJ.S. OguntibejuO.O. MukwevhoE. Evaluation of free radical scavenging capacity of methoxy containing-hybrids of thiosemicarbazone-triazole and their influence on glucose transport.BMC Pharmacol. Toxicol.20181918410.1186/s40360‑018‑0266‑6 30522526
    [Google Scholar]
  26. SeverB. AltıntopM.D. DemirY. PekdoğanM. Akalın ÇiftçiG. BeydemirŞ. ÖzdemirA. An extensive research on aldose reductase inhibitory effects of new 4H-1,2,4-triazole derivatives.J. Mol. Struct.2021122412944610.1016/j.molstruc.2020.129446
    [Google Scholar]
  27. ArouaL.M. AlmuhaylanH.R. AlminderejF.M. MessaoudiS. ChigurupatiS. Al-mahmoudS. MohammedH.A. A facile approach synthesis of benzoylaryl benzimidazole as potential α-amylase and α-glucosidase inhibitor with antioxidant activity.Bioorg. Chem.202111410507310.1016/j.bioorg.2021.105073 34153810
    [Google Scholar]
  28. DeswalL. VermaV. KumarD. KaushikC.P. KumarA. DeswalY. PuniaS. Synthesis and antidiabetic evaluation of benzimidazole‐tethered 1,2,3‐triazoles.Arch. Pharm.20203539200009010.1002/ardp.202000090 32567729
    [Google Scholar]
  29. ZawawiN.K.N.A. TahaM. AhmatN. IsmailN.H. WadoodA. RahimF. Synthesis, molecular docking studies of hybrid benzimidazole as α -glucosidase inhibitor.Bioorg. Chem.20177018419110.1016/j.bioorg.2016.12.009 28043716
    [Google Scholar]
  30. AdegboyeA.A. KhanK.M. SalarU. AboabaS.A. Kanwal ChigurupatiS. FatimaI. TahaM. WadoodA. MohammadJ.I. KhanH. PerveenS. 2-Aryl benzimidazoles: Synthesis, In vitro α-amylase inhibitory activity, and molecular docking study.Eur. J. Med. Chem.201815024826010.1016/j.ejmech.2018.03.011 29533872
    [Google Scholar]
  31. AhmadM.U. RafiqM. ZahraB. IslamM. AshrafM. al-RashidaM. KhanA. HussainJ. ShafiqZ. Al-HarrasiA. Synthesis of benzimidazole based hydrazones as non‐sugar based α‐glucosidase inhibitors: Structure activity relation and molecular docking.Drug Dev. Res.20218271033104310.1002/ddr.21807 33665884
    [Google Scholar]
  32. BabkovD.A. ZhukowskayaO.N. BorisovA.V. BabkovaV.A. SokolovaE.V. BrigadirovaA.A. LitvinovR.A. KolodinaA.A. MorkovnikA.S. SochnevV.S. BorodkinG.S. SpasovA.A. Towards multi-target antidiabetic agents: Discovery of biphenyl-benzimidazole conjugates as AMPK activators.Bioorg. Med. Chem. Lett.201929172443244710.1016/j.bmcl.2019.07.035 31358465
    [Google Scholar]
  33. GaniR.S. KudvaA.K. TimanagoudaK. Raghuveer MujawarS.B.H. JoshiS.D. RaghuS.V. Synthesis of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives as potential glucosidase inhibitors.Bioorg. Chem.202111410504610.1016/j.bioorg.2021.105046 34126575
    [Google Scholar]
  34. NazirM. AbbasiM.A. Aziz-ur-Rehman SiddiquiS.Z. KhanK.M. Kanwal SalarU. ShahidM. AshrafM. Arif LodhiM. Ali KhanF. New indole based hybrid oxadiazole scaffolds with N-substituted acetamides: As potent anti-diabetic agents.Bioorg. Chem.20188125326310.1016/j.bioorg.2018.08.010 30153590
    [Google Scholar]
  35. BhutaniR. PathakD.P. KapoorG. HusainA. KantR. IqbalM.A. Synthesis, molecular modelling studies and ADME prediction of benzothiazole clubbed oxadiazole-Mannich bases, and evaluation of their anti-diabetic activity through in vivo model.Bioorg. Chem.20187761510.1016/j.bioorg.2017.12.037 29316509
    [Google Scholar]
  36. KaurP. BhatZ.R. BhatS. KumarR. KumarR. TikooK. GuptaJ. KhuranaN. KaurJ. KhatikG.L. Synthesis and evaluation of new 1,2,4-oxadiazole based trans- acrylic acid derivatives as potential PPAR-alpha/gamma dual agonist.Bioorg. Chem.202010010386710.1016/j.bioorg.2020.103867 32353564
    [Google Scholar]
  37. HaradaK. MizukamiJ. WatanabeT. MoriG. UbukataM. SuwaK. FukudaS. NegoroT. SatoM. InabaT. Optimization of oxadiazole derivatives with a spirocyclic cyclohexane structure as novel GPR119 agonists.Bioorg. Med. Chem. Lett.201929162100210610.1016/j.bmcl.2019.07.004 31288965
    [Google Scholar]
  38. TahaM. RahimF. ImranS. IsmailN.H. UllahH. SelvarajM. JavidM.T. SalarU. AliM. KhanK.M. Synthesis, α -glucosidase inhibitory activity and in silico study of trisindole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus.Bioorg. Chem.201774304010.1016/j.bioorg.2017.07.009 28750203
    [Google Scholar]
  39. LiZ. ChenY. ZhouZ. DengL. XuY. HuL. LiuB. ZhangL. Discovery of first-in-class thiazole-based dual FFA1/PPARδ agonists as potential anti-diabetic agents.Eur. J. Med. Chem.201916435236510.1016/j.ejmech.2018.12.069 30605833
    [Google Scholar]
  40. CharayaN. PanditaD. GrewalA.S. LatherV. Design, synthesis and biological evaluation of novel thiazol-2-yl benzamide derivatives as glucokinase activators.Comput. Biol. Chem.20187322122910.1016/j.compbiolchem.2018.02.018 29518630
    [Google Scholar]
  41. SeverB. AltıntopM.D. DemirY. Akalın ÇiftçiG. BeydemirŞ. ÖzdemirA. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds.Bioorg. Chem.202010210411010.1016/j.bioorg.2020.104110 32739480
    [Google Scholar]
  42. LiZ. QiuQ. XuX. WangX. JiaoL. SuX. PanM. HuangW. QianH. Design, synthesis and Structure–activity relationship studies of new thiazole-based free fatty acid receptor 1 agonists for the treatment of type 2 diabetes.Eur. J. Med. Chem.201611324625710.1016/j.ejmech.2016.02.040 26945112
    [Google Scholar]
  43. GaoH.D. LiuP. YangY. GaoF. Sulfonamide-1,3,5-triazine–thiazoles: discovery of a novel class of antidiabetic agents via inhibition of DPP-4.RSC Advances2016686834388344710.1039/C6RA15948F
    [Google Scholar]
  44. GummidiL. KerruN. EbenezerO. AwoladeP. SanniO. IslamM.S. SinghP. Multicomponent reaction for the synthesis of new 1,3,4-thiadiazole-thiazolidine-4-one molecular hybrids as promising antidiabetic agents through α-glucosidase and α-amylase inhibition.Bioorg. Chem.202111510521010.1016/j.bioorg.2021.105210 34332231
    [Google Scholar]
  45. AlomariM. TahaM. RahimF. SelvarajM. IqbalN. ChigurupatiS. HussainS. UddinN. AlmandilN.B. NawazM. Khalid FarooqR. KhanK.M. Synthesis of indole-based-thiadiazole derivatives as a potent inhibitor of α-glucosidase enzyme along with in silico study.Bioorg. Chem.202110810463810.1016/j.bioorg.2021.104638 33508679
    [Google Scholar]
  46. HichriF. OmriA. HossanA.S.M. Ben JannetH. Alpha-glucosidase and amylase inhibitory effects of Eruca vesicaria subsp. longirostris essential oils: synthesis of new 1,2,4-triazole-thiol derivatives and 1,3,4-thiadiazole with potential inhibitory activity.Pharm. Biol.201957156457010.1080/13880209.2019.1642363 31454271
    [Google Scholar]
  47. VaishnavY. DewanganD. VermaS. MishraA. ThakurA.S. KashyapP. VermaS.K. PPAR gamma targeted molecular docking and synthesis of some new amide and urea substituted 1, 3, 4‐thiadiazole derivative as antidiabetic compound.J. Heterocycl. Chem.20205752213222410.1002/jhet.3941
    [Google Scholar]
  48. HameedS.A. VarkeyJ. JayasekharP. In Silico design, synthesis and in vitro antidiabetic activity of novel 5-furyl-1, 3, 4-thiadiazolimines.Int. J. Pharm. Sci. Res.20201106152159
    [Google Scholar]
  49. SelvarasuS. SrinivasanP. MannathusamyG. Maria SusaiB. Synthesis, characterization, in silico molecular modeling, anti-diabetic and antimicrobial screening of novel 1-aryl-N-tosyl-1H-tetrazole-5-carboxamide derivatives.Chem. Dat.Coll.20213210064810.1016/j.cdc.2021.100648
    [Google Scholar]
  50. MaheshwariN. KarthikeyanC. BhadadaS.V. VermaA.K. SahiC. MoorthyN.S.H.N. TrivediP. Design, synthesis and biological evaluation of some tetrazole acetamide derivatives as novel non-carboxylic PTP1B inhibitors.Bioorg. Chem.20199210322110.1016/j.bioorg.2019.103221 31499261
    [Google Scholar]
  51. KattimaniP.P. SomagondS.M. BayannavarP.K. KambleR.R. BijjaragiS.C. HunnurR.K. JoshiS.D. Novel 5‐(1‐aryl‐1 H ‐pyrazol‐3‐yl)‐1 H ‐tetrazoles as glycogen phosphorylase inhibitors: An in vivo antihyperglycemic activity study.Drug Dev. Res.2020811708410.1002/ddr.21606 31696542
    [Google Scholar]
  52. KaushikN. KumarN. KumarA. Synthesis, antioxidant and antidiabetic activity of 1-[(5-substituted phenyl)-4, 5-dihydro-1H-pyrazol-3-yl]-5-phenyl-1H-tetrazole.Indian J. Pharm. Sci.201678335235910.4172/pharmaceutical‑sciences.1000125
    [Google Scholar]
  53. HuangH. WintersM.P. MeegallaS.K. ArnoultE. Paul LeeS. ZhaoS. MartinT. RadyB. LiuJ. TowersM. OtienoM. XuF. LimH.K. SilvaJ. PocaiA. PlayerM.R. Discovery of novel benzo[b]thiophene tetrazoles as non-carboxylate GPR40 agonists.Bioorg. Med. Chem. Lett.201828342943610.1016/j.bmcl.2017.12.022 29258772
    [Google Scholar]
  54. BhutaniR. PathakD.P. KapoorG. HusainA. IqbalM.A. Novel hybrids of benzothiazole-1,3,4-oxadiazole-4-thiazolidinone: Synthesis, in silico ADME study, molecular docking and in vivo anti-diabetic assessment.Bioorg. Chem.20198361910.1016/j.bioorg.2018.10.025 30339863
    [Google Scholar]
  55. KharbandaC. AlamM.S. HamidH. JavedK. BanoS. AliY. DhulapA. AlamP. PashaM.A.Q. Novel benzothiazole based sulfonylureas/sulfonylthioureas: Design, synthesis and evaluation of their antidiabetic potential.New J. Chem.20164086777678610.1039/C5NJ03589A
    [Google Scholar]
  56. KumarS. MittalA. PathakA. SahuS.K. Biological assessments of substituted benzothiazole derivatives in streptozocin induced diabetes rats.Plant Arch.20202032503253
    [Google Scholar]
  57. GongZ. PengY. QiuJ. CaoA. WangG. PengZ. Synthesis, in vitro α-glucosidase inhibitory activity and molecular docking studies of novel benzothiazole-triazole derivatives.Molecules2017229155510.3390/molecules22091555 28914795
    [Google Scholar]
  58. ShahS. Arshia JavaidK. ZafarH. Mohammed KhanK. KhalilR. Ul-HaqZ. PerveenS. Iqbal ChoudharyM. Synthesis, and In vitro and in silico α-glucosidase inhibitory studies of 5-chloro-2-aryl benzo [d] thiazoles.Bioorg. Chem.20187826927910.1016/j.bioorg.2018.02.013 29614438
    [Google Scholar]
  59. AdibM. PeytamF. ShourgeshtyR. Mohammadi-KhanaposhtaniM. JahaniM. ImanparastS. FaramarziM.A. LarijaniB. MoghadamniaA.A. EsfahaniE.N. BandarianF. MahdaviM. Design and synthesis of new fused carbazole-imidazole derivatives as anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and in silico studies.Bioorg. Med. Chem. Lett.201929571371810.1016/j.bmcl.2019.01.012 30661823
    [Google Scholar]
  60. AsgariM.S. Mohammadi-KhanaposhtaniM. SharafiZ. FaramarziM.A. RastegarH. Nasli EsfahaniE. BandarianF. Ranjbar RashidiP. RahimiR. BiglarM. MahdaviM. LarijaniB. Design and synthesis of 4,5-diphenyl-imidazol-1,2,3-triazole hybrids as new anti-diabetic agents: in vitro α-glucosidase inhibition, kinetic and docking studies.Mol. Divers.202125287788810.1007/s11030‑020‑10072‑8 32189236
    [Google Scholar]
  61. LohithaN. VijayakumarV. Imidazole appended novel phenoxyquinolines as new inhibitors of α-amylase and α-glucosidase evidenced with molecular docking studies.Polycycl. Aromat. Compd.20224285521553310.1080/10406638.2021.1939069
    [Google Scholar]
  62. KyriakisE. KarraA.G. PapaioannouO. SolovouT. SkamnakiV.T. LiggriP.G.V. ZographosS.E. SzennyesE. BokorÉ. KunS. PsarraA.M.G. SomsákL. LeonidasD.D. The architecture of hydrogen and sulfur σ-hole interactions explain differences in the inhibitory potency of C-β-d-glucopyranosyl thiazoles, imidazoles and an N-β-d glucopyranosyl tetrazole for human liver glycogen phosphorylase and offer new insights to structure-based design.Bioorg. Med. Chem.202028111519610.1016/j.bmc.2019.115196 31767404
    [Google Scholar]
  63. WangG. PengZ. WangJ. LiJ. LiX. Synthesis and biological evaluation of novel 2,4,5-triarylimidazole–1,2,3-triazole derivatives via click chemistry as α-glucosidase inhibitors.Bioorg. Med. Chem. Lett.201626235719572310.1016/j.bmcl.2016.10.057 27810241
    [Google Scholar]
/content/journals/mc/10.2174/0115734064289990240524055002
Loading
/content/journals/mc/10.2174/0115734064289990240524055002
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test