Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

HSP90 assists as a crucial molecular chaperone that responds to environmental stressors and helps in the survival of cells in microorganisms. This protein is integral to the stress response, aiding in the stabilization of various proteins essential for microbial survival. Consequently, the ability of a number of tissues to adjust to endogenous stress depends critically on appropriate chaperone activity. Modulators of chaperone activity, however, have emerged as a novel and developing area of drug discovery due to the association between changed chaperone function and the development of numerous illnesses. Inhibition of HSP90alpha can disrupt proper protein folding, thus impairing growth and virulence in fungi. In this work, we selected novel leads of gallic acid derivatives with the help of OSIRIS Property Explorer and DruLiTo software. Selected leads were subjected to ADME-T studies for further screening. Docking and molecular simulation studies on selected compounds were performed using Schrodinger v21 and GROMACS software to predict the bioactivity of novel leads of 3,4,5 trihydroxy benzoic acid for suppression of the HSP90alpha enzyme. Compounds 4N, 18N, 15N, and 14N showed good docking scores of -6.5, -6.4, -5.91, and -5.98, respectively, which was comparable to standard ciprofloxacin. Compound 4N and compound 14N demonstrated notable binding interactions and were selected for further investigation through molecular dynamics studies with HSP90alpha (PDB ID: 1YC1). RMSD, H BOND, and RMSF analysis confirmed the stable binding of compounds 4N and 14 N with the HSP90 enzyme. The RMSF plot showed less than 0.35 nm fluctuation for the HSP90alpha enzyme in complex with different ligands. It can be concluded that ligand binding can cause stability to the conformation of the protein. Compounds 4N and 14N are considered to be the best theoretical lead, which can further be studied experimentally as HSP90 alpha inhibitors for antimicrobial activity.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786312992240702100154
2024-07-12
2025-04-07
Loading full text...

Full text loading...

References

  1. NyamboK. TapfumaK.I. Adu-AmankwaahF. JuliusL. BaatjiesL. NiangI.S. SmithL. GovenderK.K. NgxandeM. WatsonD.J. WiesnerL. MavumengwanaV. Sci. Rep.2024141679410.1038/s41598‑024‑57124‑9 38514663
    [Google Scholar]
  2. BatkoJoanna Antosz Katarzyna; Miśków, Weronika; Pszczołowska, Magdalena; Walczak, Kamil; Leszek, Jerzy.Int. J. Mol. Sci.2024256340110.3390/ijms25063401
    [Google Scholar]
  3. MishraS.J. KhandelwalA. BanerjeeM. BalchM. PengS. DavisR.E. MerfeldT. MunthaliV. DengJ. MattsR.L. BlaggB.S.J. Angew. Chem. Int. Ed.20216019105471055110.1002/anie.202015422 33621416
    [Google Scholar]
  4. WeianW. YunxinY. ZiyanW. QianzhouJ. LvhuaG. Biomater. Sci.20241261405142410.1039/D3BM01925J
    [Google Scholar]
  5. ChenZ.H. ZhengC.J. SunL.P. PiaoH.R. Eur. J. Med. Chem.201045125739574310.1016/j.ejmech.2010.09.031 20889240
    [Google Scholar]
  6. PearlL.H. Biopolymers2016105859460710.1002/bip.22835 26991466
    [Google Scholar]
  7. ThallaM. KantK. Dalchand RawatR. BanerjeeS. J. Biomol. Struct. Dyn.202038175195520310.1080/07391102.2019.1697369 31779532
    [Google Scholar]
  8. MengX.Y. ZhangH.X. MezeiM. CuiM. Curr. Computeraided Drug Des.20117214615710.2174/157340911795677602 21534921
    [Google Scholar]
  9. SubhaswarajP SiddhardhaB Comput. Approaches Novel Ther. Diagn. Designing Mitigate SARS-CoV-2 Infect.202220724610.1016/B978‑0‑323‑91172‑6.00007‑8
    [Google Scholar]
  10. MohantyM. MohantyP.S. Monatsh. Chem.2023154768370710.1007/s00706‑023‑03076‑1 37361694
    [Google Scholar]
  11. RawatR. KantK. KumarA. BhatiK. VermaS.M. HeroM.D. Future Med. Chem.202113544745610.4155/fmc‑2020‑0191 33496197
    [Google Scholar]
  12. KraiemM. Ben HamoudaS. ElerouiM. AjalaM. FekiA. DghimA. BoujhoudZ. BouhamedM. BadraouiR. PujoJ.M. Essafi-BenkhadirK. KallelH. Ben AmaraI. Mar. Drugs20242228510.3390/md22020085 38393056
    [Google Scholar]
  13. ZhaX. JiR. LiY. CaoR. ZhouS. Mol. Divers.202410.1007/s11030‑024‑10822‑y 38504075
    [Google Scholar]
  14. SchmidN. EichenbergerA.P. ChoutkoA. RinikerS. WingerM. MarkA.E. van GunsterenW.F. Eur. Biophys. J.201140784385610.1007/s00249‑011‑0700‑9 21533652
    [Google Scholar]
  15. ShivakumarD. WilliamsJ. WuY. DammW. ShelleyJ. ShermanW. J. Chem. Theory Comput.2010651509151910.1021/ct900587b 26615687
    [Google Scholar]
  16. KaminskiG.A. FriesnerR.A. Tirado-RivesJ. JorgensenW.L. J. Phys. Chem. B2001105286474648710.1021/jp003919d
    [Google Scholar]
  17. BhutaniR. PathakD.P. KapoorG. HusainA. KantR. IqbalM.A. Bioorg. Chem.20187761510.1016/j.bioorg.2017.12.037 29316509
    [Google Scholar]
  18. ShinodaW. MikamiM. J. Comput. Chem.200324892093010.1002/jcc.10249 12720312
    [Google Scholar]
  19. MartynaG.J. KleinM.L. TuckermanM. J. Chem. Phys.19929742635264310.1063/1.463940
    [Google Scholar]
  20. MartynaG.J. TobiasD.J. KleinM.L. J. Chem. Phys.199410154177418910.1063/1.467468
    [Google Scholar]
  21. BekkerH. BerendsenH.J.C. DijkstraE.J. AchteropS. van DrunenR. van der SpoelD. SijbersA. KeegstraH. Phys. Comp.199392252256
    [Google Scholar]
  22. GanesanA. CooteM.L. BarakatK. Drug Discov. Today201722224926910.1016/j.drudis.2016.11.001 27890821
    [Google Scholar]
  23. van AaltenD.M.F. BywaterR. FindlayJ.B.C. HendlichM. HooftR.W.W. VriendG. J. Comput. Aided Mol. Des.199610325526210.1007/BF00355047 8808741
    [Google Scholar]
  24. MarkP. NilssonL. J. Phys. Chem. A2001105439954996010.1021/jp003020w
    [Google Scholar]
  25. Van GunsterenW.F. BerendsenH.J.C. Mol. Simul.19881317318510.1080/08927028808080941
    [Google Scholar]
  26. BerendsenH.J.C. van der SpoelD. van DrunenR. Comput. Phys. Commun.1995911-3435610.1016/0010‑4655(95)00042‑E
    [Google Scholar]
  27. HessB. BekkerH. BerendsenH.J.C. FraaijeJ.G.E.M. J. Comput. Chem.199718121463147210.1002/(SICI)1096‑987X(199709)18:12<1463:AID‑JCC4>3.0.CO;2‑H
    [Google Scholar]
  28. Di PierroM. ElberR. LeimkuhlerB. J. Chem. Theory Comput.201511125624563710.1021/acs.jctc.5b00648 26616351
    [Google Scholar]
  29. HumphreyW. DalkeA. SchultenK. J. Mol. Graph.1996141 333827-28.10.1016/0263‑7855(96)00018‑5 8744570
    [Google Scholar]
  30. SharmaK. SharmaA. SandujaM. KumarA. ChemistrySelect2024916e20240019410.1002/slct.202400194
    [Google Scholar]
/content/journals/loc/10.2174/0115701786312992240702100154
Loading
/content/journals/loc/10.2174/0115701786312992240702100154
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test