Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

The main aim of the present work was to conduct the one-pot microwave-assisted green synthesis of benzil and its derivatives. Benzil is acknowledged as a pivotal scaffold in the realm of medicinal and organic chemistry, owing to its extensive utilities. Due to the various merits of the green technology approach compared to classical methodology and the provision of sustainable chemistry, this reaction has received renewed interest for preparing benzil derivatives in an environmentally friendly manner with improved yields. We have, herein, presented a highly efficient route for the synthesis of benzil derivatives utilizing acetophenone and benzene derivatives as primary substrates. Notably, this synthesis obviates the necessity for any potentially hazardous catalyst and employs microwave irradiation and iodine green oxidant to facilitate the reaction. All synthesized compounds were characterized by spectroscopic techniques, such as IR, 1H NMR, and mass spectrometry. A green and efficient microwave-assisted synthesis methodology for benzil and its derivatives has been developed using iodine green oxidant. This approach has yielded the desired benzil derivatives with remarkable efficiency, achieving yields ranging from 91% to 97% within a short time of 10-15 minutes; the derivatives have been characterized using spectral techniques, ., IR, 1H NMR, and mass spectrometry. It is noteworthy that the entire reaction optimization process has been conducted in an environmentally friendly manner, thereby exemplifying a synthetic methodology being both environmentally sustainable and economically viable, compared to conventional techniques.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786308700240801062008
2024-08-06
2025-04-24
Loading full text...

Full text loading...

References

  1. LindsleyC.W. ZhaoZ. LeisterW.H. RobinsonR.G. BarnettS.F. Defeo-JonesD. JonesR.E. HartmanG.D. HuffJ.R. HuberH.E. DugganM.E. Bioorg. Med. Chem. Lett.200515376176410.1016/j.bmcl.2004.11.011 15664853
    [Google Scholar]
  2. MurataK. OkanoK. MiyagiM. IwaneH. NoyoriR. IkariyaT. Org. Lett.1999171119112110.1021/ol990226a
    [Google Scholar]
  3. SleeD.H. RomanoS.J. YuJ. NguyenT.N. JohnJ.K. RahejaN.K. AxeF.U. JonesT.K. RipkaW.C. J. Med. Chem.200144132094210710.1021/jm000508c 11405647
    [Google Scholar]
  4. DunnavantW.R. JamesF.L. J. Am. Chem. Soc.195678122740274310.1021/ja01593a025
    [Google Scholar]
  5. BuckJ.S. JenkinsS.S. J. Am. Chem. Soc.19295172163216710.1021/ja01382a028
    [Google Scholar]
  6. MoussetC. GiraudA. ProvotO. HamzeA. BignonJ. LiuJ.M. ThoretS. DuboisJ. BrionJ.D. AlamiM. Bioorg. Med. Chem. Lett.200818113266327110.1016/j.bmcl.2008.04.053 18477509
    [Google Scholar]
  7. HaradaT. NakagawaY. WadkinsR.M. PotterP.M. WheelockC.E. Bioorg. Med. Chem.200917114916410.1016/j.bmc.2008.11.008 19062296
    [Google Scholar]
  8. CorralesT. CatalinaF. PeinadoC. AllenN.S. J. Photochem. Photobiol. Chem.2003159210311410.1016/S1010‑6030(03)00175‑8
    [Google Scholar]
  9. ItaB.I. OffiongO.E. Mater. Chem. Phys.200170333033510.1016/S0254‑0584(00)00476‑4
    [Google Scholar]
  10. ZhangG.S. ShiQ.Z. ChenM.F. CaiK. Synth. Commun.199727695395610.1080/00397919708003038
    [Google Scholar]
  11. KhuranaJ.M. KandpalB.M. Tetrahedron Lett.200344264909491210.1016/S0040‑4039(03)01075‑X
    [Google Scholar]
  12. DawP. PetakamsettyR. SarbajnaA. LahaS. RamapanickerR. BeraJ.K. J. Am. Chem. Soc.201413640139871399010.1021/ja5075294 25237828
    [Google Scholar]
  13. PatelA. MehtaM. PatelS. PatelY. ShahD. RathodK. ShahU. PatelM. BambharoliyaT. Lett. Drug Des. Discov.2023201
    [Google Scholar]
  14. PatelA. ShahD. PatelN. PatelK. SoniN. NaganiA. ParikhV. ShahH. BambharoliyaT. Mini Rev. Org. Chem.20211881064108510.2174/1570193X17999201211194908
    [Google Scholar]
  15. BhimaniB. PatelA. ShahD. Mini Rev. Org. Chem.2024211223910.2174/1570193X19666220701111051
    [Google Scholar]
  16. WuX.F. NatteK. Adv. Synth. Catal.2016358333635210.1002/adsc.201501007
    [Google Scholar]
  17. MongaA. BagchiS. SharmaA. New J. Chem.20184231551157610.1039/C7NJ04513A
    [Google Scholar]
  18. LiX. WangX. LiY. XiaoJ. DuY. Org. Biomol. Chem.202220224471449510.1039/D2OB00570K 35593912
    [Google Scholar]
  19. TogoH. IidaS. Synlett20062006142159217510.1055/s‑2006‑950405
    [Google Scholar]
  20. HiebelM.A. Berteina-RaboinS. Green Chem.201517293794410.1039/C4GC01462F
    [Google Scholar]
  21. YangL. HuiR. ShanH. GongK. Chin. J. Org. Chem201737123242324710.6023/cjoc201711015
    [Google Scholar]
  22. GuptaA. DeshmukhM.S. JainN. J. Org. Chem.20178294784479210.1021/acs.joc.7b00464 28406031
    [Google Scholar]
  23. PashaM.A. JayashankaraV.P. Bioorg. Med. Chem. Lett.200717362162310.1016/j.bmcl.2006.11.009 17157011
    [Google Scholar]
  24. WangX. YanF. WangQ. Synth. Commun.202151121763178110.1080/00397911.2021.1904992
    [Google Scholar]
  25. ParvatkarP.T. ManetschR. BanikB.K. Chem. Asian J.201914163010.1002/asia.201801237 30259704
    [Google Scholar]
  26. RenY.M. CaiC. YangR.C. RSC Adv.20133207182720410.1039/c3ra23461d
    [Google Scholar]
  27. ZarnegarZ. SafariJ.J. Exp. Sci.2014109651661
    [Google Scholar]
  28. MoriS. TakuboM. YanaseT. MaegawaT. MonguchiY. SajikiH. Adv. Synth. Catal.2010352101630163410.1002/adsc.201000173
    [Google Scholar]
  29. ByunS. ChungJ. LimT. KwonJ. KimB.M. RSC Adv.2014464340843408810.1039/C4RA04833D
    [Google Scholar]
  30. JadhavV.G. SarodeS.A. NagarkarJ.M. Tetrahedron Lett.201758191834183810.1016/j.tetlet.2017.03.076
    [Google Scholar]
  31. JiangS. LiY. LuoX. HuangG. ShaoY. LiD. LiB. Tetrahedron Lett.201859343249325210.1016/j.tetlet.2018.06.053
    [Google Scholar]
  32. BalalaieS. GolizehM. HashtroudiM.S. Green Chem.20002627727810.1039/b006902g
    [Google Scholar]
  33. GiraudA. ProvotO. PeyratJ-F. AlamiM. BrionJ.D. Tetrahedron200662337667767310.1016/j.tet.2006.05.072
    [Google Scholar]
  34. BraibanteM.E.F. BraibanteH.T.S. UlianaM.P. CostaC.C. SpenazzattoM. J. Braz. Chem. Soc.200819590991310.1590/S0103‑50532008000500015
    [Google Scholar]
  35. TamuliK.J. BordoloiM. ChemistrySelect20183267513751710.1002/slct.201800433
    [Google Scholar]
/content/journals/loc/10.2174/0115701786308700240801062008
Loading
/content/journals/loc/10.2174/0115701786308700240801062008
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test