Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-9390
  • E-ISSN: 2666-9404

Abstract

The human gut microbiota is part of a delicate ecosystem that also involves the individual in which it is hosted and the environment. Humans and their gut microbiota depend on each other to maintain good health, but many external factors can contribute to the disruption of this balance and lead to diseases. Pesticides are a good example of environmental pollutants to which humans are exposed on a daily basis, mainly through diet. As a result, the composition and functionality of the gut microbiota can be compromised, as the gastrointestinal tract is the first physical and biological barrier with which they interact. Finally, through multiple and complex mechanisms, all this has repercussions on the health status of the host, and the adverse effects of this gut microbiota–pesticide interaction can manifest themselves in various ways, such as alteration of the diversity and abundance of the different bacteria, both beneficial and pathogenic, that colonize the gastrointestinal tract, metabolic and endocrine disorders, inflammation, dysregulation of the immune system and neurological disorders, among many others. Therefore, this work aims to summarize the latest scientific evidence on the effects of pesticides on the gut microbiota and the possible implications for human health as well as animal models and cultures on which the different tests are carried out.

Loading

Article metrics loading...

/content/journals/lff/10.2174/2666939001666230516140536
2022-10-24
2024-11-26
Loading full text...

Full text loading...

References

  1. Wold Health Organization2022 Available From: https://www.who.int/es/news-room/fact-sheets/detail/pesticide-residues-in-food
    [Google Scholar]
  2. YuanX. PanZ. JinC. NiY. FuZ. JinY. Gut microbiota: An underestimated and unintended recipient for pesticide-induced toxicity.Chemosphere201922742543410.1016/j.chemosphere.2019.04.08831003127
    [Google Scholar]
  3. ComisiónEuropeaFood Safety.Clorpirifos y Clorpirifos-metiloAvailable From: https://ec.europa.eu/food/plants/pesticides/approval-active-substances/renewal-approval/chlorpyrifos-chlorpyrifos-methyl_en [Accessed on: Mar 30th, 2022].
    [Google Scholar]
  4. EFSAPlaguicides.2022Available From: https://www.efsa.europa.eu/es/topics/topic/pesticides [Accessed on:April 3, 2022].
    [Google Scholar]
  5. EFSAPesticides: Maximum residue limits.2022Available From: https://www.efsa.europa.eu/es/topics/topic/pesticides#l%C3%ADmites-m%C3%A1ximos-de-residuos [Accessed on: May 7, 2022].
    [Google Scholar]
  6. EPA, United States Enviromental Protection Agency Basic information on pesticide ingredients.2022Available From: https://www.epa.gov/ingredients-used-pesticide-products/basic-information-about-pesticide-ingredients [Accessed on: May 7,2022].
    [Google Scholar]
  7. CodexAlimentarius.Maximum Residue Limits for Pesticides: Glossary of Terms.2022Available From: https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/glossary/es/#:~:text=El%20t%C3%A9rmino%20incluye%20las%20sustancias,proteger%20el%20producto%20 contra%20el [Accessed on: Mar 5, 2022].
  8. GiambòF. TeodoroM. CostaC. FengaC. Toxicology and microbiota: How do pesticides influence gut microbiota? A review.Int. J. Environ. Res. Public Health20211811551010.3390/ijerph1811551034063879
    [Google Scholar]
  9. Andreo-MartínezP. García-MartínezN. Sánchez-SamperE.P. The intestinal microbiota and its relationship with mental illness through the microbiota-gut-brain axis.Journal of Disability, Clinic and Neurosciences201742525810.14198/DCN.2017.4.2.05
    [Google Scholar]
  10. Roca-SaavedraP. Mendez-VilabrilleV. MirandaJ.M. Food additives, contaminants and other minor components: Effects on human gut microbiota—a review.J. Physiol. Biochem.2018741698310.1007/s13105‑017‑0564‑228488210
    [Google Scholar]
  11. SarronE. PérotM. BarbezierN. Delayre-OrthezC. Gay-QuéheillardJ. AntonP.M. Early exposure to food contaminants reshapes matura-tion of the human brain-gut-microbiota axis.World J. Gastroenterol.202026233145316910.3748/wjg.v26.i23.314532684732
    [Google Scholar]
  12. GhaisasS. MaherJ. KanthasamyA. Gut microbiome in health and disease: Linking the microbiome–gut–brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases.Pharmacol. Ther.2016158526210.1016/j.pharmthera.2015.11.01226627987
    [Google Scholar]
  13. JinY. WuS. ZengZ. FuZ. Effects of environmental pollutants on gut microbiota.Environ. Pollut.20172221910.1016/j.envpol.2016.11.04528086130
    [Google Scholar]
  14. TuP. ChiL. BodnarW. Gut microbiome toxicity: Connecting the environment and gut microbiome-associated diseases.Toxics2020811910.3390/toxics801001932178396
    [Google Scholar]
  15. HamplR. StárkaL. Endocrine disruptors and gut microbiome interactions.Physiol. Res.202069Suppl. 2S211S22310.33549/physiolres.93451333094620
    [Google Scholar]
  16. RivesC. FougeratA. Ellero-SimatosS. Oxidative stress in NAFLD: Role of nutrients and food contaminants.Biomolecules20201012170210.3390/biom1012170233371482
    [Google Scholar]
  17. AguileraM. Gálvez-OntiverosY. RivasA. Endobolome, a new concept for determining the influence of microbiota disrupting chemicals (MDC) in relation to specific endocrine pathogenesis.Front. Microbiol.20201157800710.3389/fmicb.2020.57800733329442
    [Google Scholar]
  18. ZhouM. ZhaoJ. A review on the health effects of pesticides based on host gut microbiome and metabolomics.Front. Mol. Biosci.2021863295510.3389/fmolb.2021.63295533628766
    [Google Scholar]
  19. BarnettJ.A. GibsonD.L. Separating the empirical wheat from the pseudoscientific chaff: A critical review of the literature surrounding glyphosate, dysbiosis and wheat-sensitivity.Front. Microbiol.20201155672910.3389/fmicb.2020.55672933101230
    [Google Scholar]
  20. FlandroyL. PoutahidisT. BergG. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems.Sci. Total Environ.20186271018103810.1016/j.scitotenv.2018.01.28829426121
    [Google Scholar]
  21. AbdelsalamN.A. RamadanA.T. ElRakaibyM.T. AzizR.K. Toxicomicrobiomics: The human microbiome vs. pharmaceutical, dietary, and environmental xenobiotics.Front. Pharmacol.20201139010.3389/fphar.2020.0039032372951
    [Google Scholar]
  22. Balaguer-TriasJ. DeepikaD. SchuhmacherM. KumarV. Impact of contaminants on microbiota: Linking the gut–brain axis with neurotoxicity.Int. J. Environ. Res. Public Health2022193136810.3390/ijerph1903136835162390
    [Google Scholar]
  23. Rueda-RuzafaL. CruzF. RomanP. CardonaD. Gut microbiota and neurological effects of glyphosate.Neurotoxicology2019751810.1016/j.neuro.2019.08.00631442459
    [Google Scholar]
  24. Di CiaulaA. BajJ. GarrutiG. Liver steatosis, gut-liver axis, microbiome and environmental factors. A never-ending bidirectional cross-talk.J. Clin. Med.202098264810.3390/jcm908264832823983
    [Google Scholar]
  25. WangH. YangF. ZhangS. XinR. SunY. Genetic and environmental factors in Alzheimer’s and Parkinson’s diseases and promising therapeutic intervention via fecal microbiota transplantation.NPJ Parkinsons Dis.2021717010.1038/s41531‑021‑00213‑734381040
    [Google Scholar]
  26. KoontzJ.M. DancyB.C.R. HortonC.L. StallingsJ.D. DiVitoV.T. LewisJ.A. The role of the human microbiome in chemical toxicity.Int. J. Toxicol.201938425126410.1177/109158181984983331220972
    [Google Scholar]
  27. AtashgahiS. ShettyS.A. SmidtH. de VosW.M. Flux. Impact, and fate of halogenated xenobiotic compounds in the gut.Front. Physiol.2018988810.3389/fphys.2018.0088830042695
    [Google Scholar]
  28. ChiuK. WarnerG. NowakR.A. FlawsJ.A. MeiW. The impact of environmental chemicals on the gut microbiome.Toxicol. Sci.2020176225328410.1093/toxsci/kfaa06532392306
    [Google Scholar]
  29. GilloisK. LévêqueM. ThéodorouV. RobertH. Mercier-BoninM. Mucus: An underestimated gut target for environmental pollutants and food additives.Microorganisms2018625310.3390/microorganisms602005329914144
    [Google Scholar]
  30. ŚrednickaP. Juszczuk-KubiakE. WójcickiM. AkimowiczM. RoszkoM.Ł. Probiotics as a biological detoxification tool of food chemical contamination: A review.Food Chem. Toxicol.202115311230610.1016/j.fct.2021.11230634058235
    [Google Scholar]
  31. GiambòF. CostaC. TeodoroM. FengaC. Role-playing between environmental pollutants and human Gut microbiota: A complex bidirectional interaction.Front. Med. (Lausanne)2022981039710.3389/fmed.2022.81039735252248
    [Google Scholar]
  32. DempseyJ.L. LittleM. CuiJ.Y. Gut microbiome: An intermediary to neurotoxicity.Neurotoxicology201975416910.1016/j.neuro.2019.08.00531454513
    [Google Scholar]
  33. HuangR. Gut microbiota: A key regulator in the effects of environmental hazards on modulates insulin resistance.Front. Cell. Infect. Microbiol.20221180043210.3389/fcimb.2021.80043235111696
    [Google Scholar]
  34. RamakrishnanB. MaddelaN.R. VenkateswarluK. MegharajM. Linkages between plant rhizosphere and animal gut environments: Interaction effects of pesticides with their microbiomes.Environ. Adv.2021510009110.1016/j.envadv.2021.100091
    [Google Scholar]
  35. VelmuruganG. RamprasathT. GillesM. SwaminathanK. RamasamyS. Gut microbiota, endocrine-disrupting chemicals, and the diabetes epidemic.Trends Endocrinol. Metab.201728861262510.1016/j.tem.2017.05.00128571659
    [Google Scholar]
  36. FengP. YeZ. KakadeA. VirkA. LiX. LiuP. A review on gut remediation of selected environmental contaminants: Possible roles of probiotics and gut microbiota.Nutrients20181112210.3390/nu1101002230577661
    [Google Scholar]
  37. RenX.M. KuoY. BlumbergB. Agrochemicals and obesity.Mol. Cell. Endocrinol.202051511092610.1016/j.mce.2020.11092632619583
    [Google Scholar]
  38. TangQ. TangJ. RenX. LiC. Glyphosate exposure induces inflammatory responses in the small intestine and alters gut microbial composition in rats.Environ. Pollut.202026111412910.1016/j.envpol.2020.11412932045792
    [Google Scholar]
  39. LuoT. WangC. PanZ. JinC. FuZ. JinY. Maternal polystyrene microplastic exposure during gestation and lactation altered metabolic homeostasis in the dams and their F1 and F2 offspring.Environ. Sci. Technol.20195318109781099210.1021/acs.est.9b0319131448906
    [Google Scholar]
  40. KalofiriP. BaliasG. TekosF. The EU endocrine disruptors’ regulation and the glyphosate controversy.Toxicol. Rep.202181193119910.1016/j.toxrep.2021.05.01334150528
    [Google Scholar]
  41. NielsenL.N. RoagerH.M. CasasM.E. Glyphosate has limited short-term effects on commensal bacterial community composition in the gut environment due to sufficient aromatic amino acid levels.Environ. Pollut.201823336437610.1016/j.envpol.2017.10.01629096310
    [Google Scholar]
  42. ShehataA.A. SchrödlW. AldinA.A. HafezH.M. KrügerM. The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro.Curr. Microbiol.201366435035810.1007/s00284‑012‑0277‑223224412
    [Google Scholar]
  43. AckermannW. CoenenM. SchrödlW. ShehataA.A. KrügerM. The influence of glyphosate on the microbiota and production of botulinum neurotoxin during ruminal fermentation.Curr. Microbiol.201570337438210.1007/s00284‑014‑0732‑325407376
    [Google Scholar]
  44. DechartresJ. PawluskiJ.L. GueguenM.M. Glyphosate and glyphosate‐based herbicide exposure during the peripartum period affects maternal brain plasticity, maternal behaviour and microbiome.J. Neuroendocrinol.2019319e1273110.1111/jne.1273131066122
    [Google Scholar]
  45. CaioniG. CiminiA. BenedettiE. Food contamination: An unexplored possible link between dietary habits and Parkinson’s disease.Nutrients2022147146710.3390/nu1407146735406080
    [Google Scholar]
  46. KittleR.P. McDermidK.J. MuehlsteinL. BalazsG.H. Effects of glyphosate herbicide on the gastrointestinal microflora of Hawaiian green turtles (Chelonia mydas) Linnaeus.Mar. Pollut. Bull.201812717017410.1016/j.marpolbul.2017.11.03029475651
    [Google Scholar]
  47. AitbaliY. Ba-M’hamedS. ElhidarN. NafisA. SoraaN. BennisM. Glyphosate based- herbicide exposure affects gut microbiota, anxiety and depression-like behaviors in mice.Neurotoxicol. Teratol.201867444910.1016/j.ntt.2018.04.00229635013
    [Google Scholar]
  48. LozanoV.L. DefargeN. RocqueL.M. Sex-dependent impact of Roundup on the rat gut microbiome.Toxicol. Rep.201859610710.1016/j.toxrep.2017.12.00529854581
    [Google Scholar]
  49. MaoQ. ManservisiF. PanzacchiS. The Ramazzini Institute 13-week pilot study on glyphosate and Roundup administered at human-equivalent dose to Sprague Dawley rats: effects on the microbiome.Environ. Health20181715010.1186/s12940‑018‑0394‑x29843725
    [Google Scholar]
  50. KanH. ZhaoF. ZhangX.X. RenH. GaoS. Correlations of gut microbial community shift with hepatic damage and growth inhibition of carassius auratus induced by pentachlorophenol exposure.Environ. Sci. Technol.20154919118941190210.1021/acs.est.5b0299026378342
    [Google Scholar]
  51. RéquiléM. Gonzàlez AlvarezD.O. DelanaudS. Use of a combination of in vitro models to investigate the impact of chlorpyrifos and inulin on the intestinal microbiota and the permeability of the intestinal mucosa.Environ. Sci. Pollut. Res. Int.20182523225292254010.1007/s11356‑018‑2332‑429808406
    [Google Scholar]
  52. ReygnerJ. Joly CondetteC. BruneauA. Changes in composition and function of human intestinal microbiota exposed to chlorpyrifos in oil as assessed by the SHIME(®) model.Int. J. Environ. Res. Public Health20161311108810.3390/ijerph1311108827827942
    [Google Scholar]
  53. Joly CondetteC. BachV. MayeurC. Gay-QuéheillardJ. Khorsi-CauetH. Chlorpyrifos exposure during perinatal period affects intestinal microbiota associated with delay of maturation of digestive tract in rats.J. Pediatr. Gastroenterol. Nutr.2015611304010.1097/MPG.000000000000073425643018
    [Google Scholar]
  54. LiangY. ZhanJ. LiuD. Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota.Microbiome2019711910.1186/s40168‑019‑0635‑430744700
    [Google Scholar]
  55. LiJ.W. FangB. PangG.F. ZhangM. RenF.Z. Age- and diet-specific effects of chronic exposure to chlorpyrifos on hormones, inflammation and gut microbiota in rats.Pestic. Biochem. Physiol.2019159687910.1016/j.pestbp.2019.05.01831400786
    [Google Scholar]
  56. ZhaoY. ZhangY. WangG. HanR. XieX. Effects of chlorpyrifos on the gut microbiome and urine metabolome in mouse (Mus musculus).Chemosphere201615328729310.1016/j.chemosphere.2016.03.05527018521
    [Google Scholar]
  57. FangB. LiJ.W. ZhangM. RenF.Z. PangG.F. Chronic chlorpyrifos exposure elicits diet-specific effects on metabolism and the gut microbiome in rats.Food Chem. Toxicol.201811114415210.1016/j.fct.2017.11.00129109040
    [Google Scholar]
  58. GaoB. BianX. MahbubR. LuK. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions.Environ. Health Perspect.2017125219820610.1289/EHP20227203275
    [Google Scholar]
  59. ZhanJ. LiangY. LiuD. Pectin reduces environmental pollutant-induced obesity in mice through regulating gut microbiota: A case study of p,p′-DDE.Environ. Int.201913010486110.1016/j.envint.2019.05.05531195221
    [Google Scholar]
  60. LiangY. LiuD. ZhanJ. New insight into the mechanism of POP-induced obesity: Evidence from DDE-altered microbiota.Chemosphere202024412512310.1016/j.chemosphere.2019.12512332050320
    [Google Scholar]
  61. JinY. ZengZ. WuY. ZhangS. FuZ. Oral exposure of mice to carbendazim induces hepatic lipid metabolism disorder and gut microbiota dysbiosis.Toxicol. Sci.2015147111612610.1093/toxsci/kfv11526071454
    [Google Scholar]
  62. JinC. ZengZ. WangC. Insights into a possible mechanism underlying the connection of carbendazim-induced lipid metabolism disorder and gut microbiota dysbiosis in mice.Toxicol. Sci.2018166238239310.1093/toxsci/kfy20530496565
    [Google Scholar]
  63. JinC. ZengZ. FuZ. JinY. Oral imazalil exposure induces gut microbiota dysbiosis and colonic inflammation in mice.Chemosphere201616034935810.1016/j.chemosphere.2016.06.10527393971
    [Google Scholar]
  64. YanS. TianS. MengZ. Synergistic effect of ZnO NPs and imidacloprid on liver injury in male ICR mice: Increase the bioavailability of IMI by targeting the gut microbiota.Environ. Pollut.202229411867610.1016/j.envpol.2021.11867634906595
    [Google Scholar]
  65. WuS. JinC. WangY. FuZ. JinY. Exposure to the fungicide propamocarb causes gut microbiota dysbiosis and metabolic disorder in mice.Environ. Pollut.201823777578310.1016/j.envpol.2017.10.12929137890
    [Google Scholar]
  66. ZhangR. PanZ. WangX. Short-term propamocarb exposure induces hepatic metabolism disorder associated with gut microbiota dysbiosis in adult male zebrafish.Acta Biochim. Biophys. Sin. (Shanghai)2018511889610.1093/abbs/gmy15330544157
    [Google Scholar]
  67. MumoloM.G. RetturaF. MelissariS. Is gluten the only culprit for nonceliac gluten/wheat sensitivity?Nutrients20201212378510.3390/nu1212378533321805
    [Google Scholar]
  68. EvaristeL. BarretM. MottierA. MouchetF. GauthierL. PinelliE. Gut microbiota of aquatic organisms: A key endpoint for ecotoxicological studies.Environ. Pollut.201924898999910.1016/j.envpol.2019.02.10131091643
    [Google Scholar]
  69. SilvaM.H. Chlorpyrifos and Δ9 Tetrahydrocannabinol exposure and effects on parameters associated with the endocannabinoid system and risk factors for obesity.Current Research in Toxicology2021229630810.1016/j.crtox.2021.08.00234467221
    [Google Scholar]
  70. MohajerN. DuC.Y. CheckcincoC. BlumbergB. Obesogens: How they are identified and molecular mechanisms underlying their action.Front. Endocrinol. (Lausanne)20211278088810.3389/fendo.2021.78088834899613
    [Google Scholar]
  71. ChenH. RitzB. The search for environmental causes of Parkinson’s disease: Moving forward.J. Parkinsons Dis.20188s1S9S1710.3233/JPD‑18149330584168
    [Google Scholar]
  72. MuturiE.J. DunlapC. SmarttC.T. ShinD. Resistance to permethrin alters the gut microbiota of Aedes aegypti.Sci. Rep.20211111440610.1038/s41598‑021‑93725‑434257327
    [Google Scholar]
  73. SyromyatnikovM.Y. IsuwaM.M. SavinkovaO.V. DerevshchikovaM.I. PopovV.N. The effect of pesticides on the microbiome of animals.Agriculture20201037910.3390/agriculture10030079
    [Google Scholar]
  74. Argou-CardozoI. Zeidán-ChuliáF. Clostridium bacteria and autism spectrum conditions: A systematic review and hypothetical contribution of environmental glyphosate levels.Med. Sci.2018622910.3390/medsci602002929617356
    [Google Scholar]
/content/journals/lff/10.2174/2666939001666230516140536
Loading
/content/journals/lff/10.2174/2666939001666230516140536
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): chlorpyrifos; dysbiosis; glyphosate; gut microbiota; Pesticide; pollutants
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test