Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-9390
  • E-ISSN: 2666-9404

Abstract

Background & Purpose

Diabetes is a disease that has affected many people worldwide. According to the World Health Organization, approximately 80% of humans still rely on conventional or folk medicament in developed countries. The effectiveness of herbal medicines was credited to the phytochemical components.

Objective

This review aims to highlight the pathological pathways of diabetes and the antidiabetic mechanism of phytochemicals.

Materials and Methods

This organized search was compiled from the databases such as PubMed, Scopus, Embase, Science Direct, Web of Science, and Google Scholar till February 2023.

Results

Inflammatory and oxidative stress are mainly two examples of pathological pathways of diabetes that are explored. The reported antidiabetic phytochemicals work by increasing insulin secretion, lowering hepatic glucose output, controlling specific enzymes, and utilizing other mechanisms. For instance, studies on α-glucosidase inhibitors, modulation peroxisome proliferator-activated receptor-α, hypolipidaemic activity, antioxidants, inhibition of glycolytic enzymes like phosphoenolpyruvate carboxykinase, improvement of glycosylated haemoglobin and increased expression of glucose transporters have been conducted.

Conclusion

Many natural secondary metabolites (phytochemicals) have significant potential for the manufacture of marketable, new, and efficient anti-diabetic medicines which can be used for clinical purposes.

Loading

Article metrics loading...

/content/journals/lff/10.2174/2666939001666230718142652
2023-09-25
2024-11-22
Loading full text...

Full text loading...

References

  1. BouyahyaA. OmariEl. Moroccan anti-diabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evidences; challenges, guidance and perspectives for future management of diabetes worldwide.Trends Food Sci. Technol.202111514725410.1016/j.tifs.2021.03.032
    [Google Scholar]
  2. CraigM.E. HattersleyA. DonaghueK.C. Definition, epidemiology and classification of diabetes in children and adolescents.Pediatr. Diabetes20091012Suppl. 1231210.1111/j.1399‑5448.2009.00568.x19754613
    [Google Scholar]
  3. RajlicS. TreedeH. MünzelT. DaiberA. DuerrG.D. Early detection is the best prevention—characterization of oxidative stress in diabetes mellitus and its consequences on the cardiovascular system.Cells202312458310.3390/cells1204058336831253
    [Google Scholar]
  4. McIntyreH.D. CatalanoP. ZhangC. DesoyeG. MathiesenE.R. DammP. Gestational diabetes mellitus.Nat. Rev. Dis. Primers2019514710.1038/s41572‑019‑0098‑831296866
    [Google Scholar]
  5. FaselisC. KatsimardouA. ImprialosK. DeligkarisP. KallistratosM. DimitriadisK. Microvascular complications of Type 2 diabetes mellitus.Curr. Vasc. Pharmacol.202018211712410.2174/157016111766619050210373331057114
    [Google Scholar]
  6. International Diabetes FederationIDF Diabetes Atlas.BelgiumInternational Diabetes Federation2019176
    [Google Scholar]
  7. MedagamaA.B. BandaraR. The use of Complementary and Alternative Medicines (CAMs) in the treatment of diabetes mellitus: Is continued use safe and effective?Nutr. J.201413110210.1186/1475‑2891‑13‑10225331834
    [Google Scholar]
  8. AlqathamaA. AlluhiabiG. BaghdadiH. Herbal medicine from the perspective of type II diabetic patients and physicians: What is the relationship?BMC Complementary Medicine and Therapies20202016510.1186/s12906‑020‑2854‑432111222
    [Google Scholar]
  9. KesavadevJ. SabooB. SadikotS. Unproven therapies for diabetes and their implications.Adv. Ther.2017341607710.1007/s12325‑016‑0439‑x27864668
    [Google Scholar]
  10. ShridharP.B.S. RaoS.M. ByregowdaM.L. Antidiabetic effect of Gymnema sylvestre in streptozotocin induced diabetes in rats.Braz. J. Vet. Pathol.2015823645
    [Google Scholar]
  11. ShanmugasundaramE.R.B. RajeswariG. BaskaranK. KumarB.R.R. ShanmugasundaramK.R. AhmathB.K. Use of Gymnema sylvestre leaf extract in the control of blood glucose in insulin-dependent diabetes mellitus.J. Ethnopharmacol.199030328129410.1016/0378‑8741(90)90107‑52259216
    [Google Scholar]
  12. Al-RomaiyanA. KingA.J. PersaudS.J. JonesP.M. A novel extract of Gymnema sylvestre improves glucose tolerance in vivo and stimulates insulin secretion and synthesis in vitro.Phytother. Res.20132771006101110.1002/ptr.481522911568
    [Google Scholar]
  13. AmeeduzzafarZ. NabilK. Potential of natural bioactive compounds in management of diabetes: Review of preclinical and clinical evidence.Curr. Pharmacol. Rep.2021
    [Google Scholar]
  14. VijayaK. SunithaS.P. HusssainJ.A. SandhyaP. SujathaD. GopireddyG. Synergistic antihyperglycemic, antihyperlipidemic and antioxidant effects of Momordica charantia and metformin in streptozotocin induced diabetic rats.World J. Pharm. Res.2014319011980
    [Google Scholar]
  15. DansA.M.L. VillarruzM.V.C. JimenoC.A. The effect of Momordica charantia capsule preparation on glycemic control in Type 2 Diabetes Mellitus needs further studies.J. Clin. Epidemiol.200760655455910.1016/j.jclinepi.2006.07.00917493509
    [Google Scholar]
  16. XueW.L. LiX.S. ZhangJ. LiuY.H. WangZ.L. ZhangR.J. Effect of Trigonella foenum-graecum (fenugreek) extract on blood glucose, blood lipid and hemorheological properties in streptozotocin-induced diabetic rats.Asia Pac. J. Clin. Nutr.200716S1Suppl. 142242617392143
    [Google Scholar]
  17. MishkinskyJ.S. GoldschmiedA. JosephB. AhronsonZ. SulmanF.G. Hypoglycaemic effect of Trigonella foenum graecum and Lupinus termis (leguminosae) seeds and their major alkaloids in alloxan-diabetic and normal rats.Arch. Int. Pharmacodyn. Ther.1974210127374280278
    [Google Scholar]
  18. JinY. ShiY. ZouY. MiaoC. SunB. LiC. Fenugreek prevents the development of STZ-induced diabetic nephropathy in a rat model of diabetes.Evid. Based Compl. Alternat. Med.2014259368259368
    [Google Scholar]
  19. MohammadY. MohammadI. Clinical evaluation of antidiabetic activity of Trigonella seeds and Aegle marmelos leaves.World Appl. Sci. J.200971012311234
    [Google Scholar]
  20. HlebowiczJ. HlebowiczA. LindstedtS. Effects of 1 and 3 g cinnamon on gastric emptying, satiety, and postprandial blood glucose, insulin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1, and ghrelin concentrations in healthy subjects.Am. J. Clin. Nutr.200989381582110.3945/ajcn.2008.2680719158209
    [Google Scholar]
  21. ZhuR. LiuH. LiuC. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety.Pharmacol. Res.2017122788910.1016/j.phrs.2017.05.01928559210
    [Google Scholar]
  22. ForcadosG.E. JamesD.B. SallauA.B. MuhammadA. MabetaP. Oxidative stress and carcinogenesis: Potential of phytochemicals in breast cancer therapy.Nutr. Cancer201769336537410.1080/01635581.2017.126777728103111
    [Google Scholar]
  23. JensenS.J.K. Oxidative stress and free radicals.J. Mol. Struct. THEOCHEM2003666-66738739210.1016/j.theochem.2003.08.037
    [Google Scholar]
  24. PisoschiA.M. PopA. The role of antioxidants in the chemistry of oxidative stress: A review.Eur. J. Med. Chem.201597557410.1016/j.ejmech.2015.04.04025942353
    [Google Scholar]
  25. DrummondG.R. SelemidisS. GriendlingK.K. SobeyC.G. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets.Nat. Rev. Drug Discov.201110645347110.1038/nrd340321629295
    [Google Scholar]
  26. PitoccoD. TesauroM. AlessandroR. GhirlandaG. CardilloC. Oxidative stress in diabetes: Implications for vascular and other complications.Int. J. Mol. Sci.20131411215252155010.3390/ijms14112152524177571
    [Google Scholar]
  27. Lazo-de-la-Vega-MonroyM-L. Fernández-MejíaC. Oxidative stress in diabetes mellitus and the role of vitamins with antioxidant actions Oxidative Stress and Chronic Degenerative Diseases.LondonIntechOpen Limited2013
    [Google Scholar]
  28. WeberD. DaviesM.J. GruneT. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions.Redox Biol.2015536738010.1016/j.redox.2015.06.00526141921
    [Google Scholar]
  29. YadavN. KumarS. MarloweT. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents.Cell Death Dis.2015611e196910.1038/cddis.2015.30526539916
    [Google Scholar]
  30. BhattacharyaS SilPC Role of plant-derived polyphenols in reducing oxidative stress-mediated diabetic complications.React Oxygen Spec.201851310.20455/ros.2018.811
    [Google Scholar]
  31. SrivastavaK.K. KumarK. Oxidative injury and disease.Indian J. Clin. Biochem.2014301310
    [Google Scholar]
  32. RainsJ.L. JainS.K. Oxidative stress, insulin signaling, and diabetes.Free Radic. Biol. Med.201150556757510.1016/j.freeradbiomed.2010.12.00621163346
    [Google Scholar]
  33. GrimsrudP.A. XieH. GriffinT.J. BernlohrD.A. Oxidative stress and covalent modification of protein with bioactive aldehydes.J. Biol. Chem.200828332218372184110.1074/jbc.R70001920018445586
    [Google Scholar]
  34. MuellenbachE.A. DiehlC.J. TeacheyM.K. Interactions of the advanced glycation end product inhibitor pyridoxamine and the antioxidant α-lipoic acid on insulin resistance in the obese Zucker rat.Metabolism200857101465147210.1016/j.metabol.2008.05.01818803954
    [Google Scholar]
  35. Pérez-MatuteP. Angeles ZuletM. Alfredo MartínezJ. Reactive Species and Diabetes: Counteracting oxidative stress to improve health.Curr. Opin. in Pharmaco.200996771779
    [Google Scholar]
  36. MoreiraP.I. SayreL.M. ZhuX. NunomuraA. SmithM.A. PerryG. Detection and localization of markers of oxidative stress by in situ methods: Application in the study of Alzheimer disease.Methods Mol. Biol.201061041943410.1007/978‑1‑60327‑029‑8_2520013193
    [Google Scholar]
  37. BrownleeM. The pathobiology of diabetic complications: A unifying mechanism.Diabetes20055461615162510.2337/diabetes.54.6.161515919781
    [Google Scholar]
  38. DemirtasI. ErenlerR. ElmastasM. GoktasogluA. Studies on the antioxidant potential of flavones of Allium vineale isolated from its water-soluble fraction.Food Chem.20131361344010.1016/j.foodchem.2012.07.08623017389
    [Google Scholar]
  39. ErenlerR. SenO. AksitH. Isolation and identification of chemical constituents from Origanum majorana and investigation of anti-proliferative and antioxidant activities.J. Sci. Food Agric.201696382283610.1002/jsfa.715525721137
    [Google Scholar]
  40. BaliE. ErginV. RackovaL. BayraktarO. KüçükboyacıN. KarasuÇ. Olive leaf extracts protect cardiomyocytes against 4-hydroxynonenal-induced toxicity in vitro: Comparison with oleuropein, hydroxytyrosol, and quercetin.Planta Med.2014801298499210.1055/s‑0034‑138288125098929
    [Google Scholar]
  41. StefekM. Eye lens in aging and diabetes: Effect of quercetin.Rejuven resear.2011145525534
    [Google Scholar]
  42. ErginV. HariryR.E. KarasuC. Carbonyl stress in aging process: Role of vitamins and phytochemicals as redox regulators.Aging Dis.20134527629410.14336/AD.2013.040027624124633
    [Google Scholar]
  43. DasA. MukhopadhyayS. The evil axis of obesity, inflammation and type-2 diabetes.Endocr. Metab. Immune Disord. Drug Targets2011111233110.2174/18715301179498208621348821
    [Google Scholar]
  44. WangX. ZhangD.M. GuT.T. Morin reduces hepatic inflammation-associated lipid accumulation in high fructose-fed rats via inhibiting sphingosine kinase 1/sphingosine 1-phosphate signaling pathway.Biochem. Pharmacol.201386121791180410.1016/j.bcp.2013.10.00524134913
    [Google Scholar]
  45. ForbesJ.M. CooperM.E. Mechanisms of diabetic complications.Physiol. Rev.201393113718810.1152/physrev.00045.201123303908
    [Google Scholar]
  46. KaramifarH. HabibianN. AmirhakimiG. KaramizadehZ. AlipourA. adiponectin is a good marker for metabolic state among Type 1 diabetes mellitus patients.Iran. J. Pediatr.201323329530123795252
    [Google Scholar]
  47. MogensenT.H. Pathogen recognition and inflammatory signaling in innate immune defenses.Clin. Microbiol. Rev.200922224027310.1128/CMR.00046‑0819366914
    [Google Scholar]
  48. KimJ. SohnE. KimC.S. JoK. KimJ.S. The role of high-mobility group box-1 protein in the development of diabetic nephropathy.Am. J. Nephrol.201133652452910.1159/00032799221606643
    [Google Scholar]
  49. ChenY. QiaoF. ZhaoY. WangY. LiuG. HMGB1 is activated in type 2 diabetes mellitus patients and in mesangial cells in response to high glucose.Int. J. Clin. Exp. Pathol.2015866683669126261550
    [Google Scholar]
  50. JungU. ChoiM.S. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease.Int. J. Mol. Sci.20141546184622310.3390/ijms1504618424733068
    [Google Scholar]
  51. ChawlaA. NguyenK.D. GohY.P.S. Macrophage-mediated inflammation in metabolic disease.Nat. Rev. Immunol.2011111173874910.1038/nri307121984069
    [Google Scholar]
  52. Chinetti-GbaguidiG. StaelsB. Macrophage polarization in metabolic disorders.Curr. Opin. Lipidol.201122536537210.1097/MOL.0b013e32834a77b421825981
    [Google Scholar]
  53. McArdleM.A. FinucaneO.M. ConnaughtonR.M. McMorrowA.M. RocheH.M. Mechanisms of obesity-induced inflammation and insulin resistance: Insights into the emerging role of nutritional strategies.Front. Endocrinol.201345210.3389/fendo.2013.0005223675368
    [Google Scholar]
  54. AtanasovA.G. WaltenbergerB. Pferschy-WenzigE.M. Discovery and resupply of pharmacologically active plant-derived natural products: A review.Biotechnol. Adv.20153381582161410.1016/j.biotechadv.2015.08.00126281720
    [Google Scholar]
  55. ComanC. RuginaO.D. SocaciuC. Plants and natural compounds with anti-diabetic action.Not. Bot. Horti Agrobot. Cluj-Napoca201240131432510.15835/nbha4017205
    [Google Scholar]
  56. ZhangZ. LuoA. ZhongK. α-Glucosidase inhibitory activity by the flower buds of Lonicera japonica Thunb.J. Funct. Foods2013531253125910.1016/j.jff.2013.04.008
    [Google Scholar]
  57. TakahashiT. MiyazawaM. Potent α-glucosidase inhibitors from safflower (Carthamus tinctorius L.) seed.Phytother. Res.201226572272610.1002/ptr.362222021176
    [Google Scholar]
  58. KimS. JwaH. YanagawaY. ParkT. Extract from Dioscorea batatas ameliorates insulin resistance in mice fed a high-fat diet.J. Med. Food201215652753410.1089/jmf.2011.200822424459
    [Google Scholar]
  59. ParkS. KimD.S. KangS. Gastrodia elata Blume water extracts improve insulin resistance by decreasing body fat in diet-induced obese rats: Vanillin and 4-hydroxybenzaldehyde are the bioactive candidates.Eur. J. Nutr.201150210711810.1007/s00394‑010‑0120‑020577883
    [Google Scholar]
  60. KhoM.C. LeeY.J. ChaJ.D. ChoiK.M. KangD.G. LeeH.S. Gastrodia Elata ameliorates high-fructose diet-induced lipid metabolism and endothelial dysfunction.Evid. Based Complement. Alternat. Med.2014201411010.1155/2014/10162424719637
    [Google Scholar]
  61. SenS. ChenS. FengB. WuY. LuiE. ChakrabartiS. Preventive effects of North American ginseng (Panax quinquefolium) on diabetic nephropathy.Phytomedicine201219649450510.1016/j.phymed.2012.01.00122326549
    [Google Scholar]
  62. MadkorH.R. MansourS.W. RamadanG. Modulatory effects of garlic, ginger, turmeric and their mixture on hyperglycaemia, dyslipidaemia and oxidative stress in streptozotocin–nicotinamide diabetic rats.Br. J. Nutr.201110581210121710.1017/S000711451000492721144104
    [Google Scholar]
  63. HaidariF. OmidianK. RafieiH. ZareiM. Mohamad ShahiM. Green tea (Camellia Sinensis) supplementation to diabetic rats improves serum and hepatic oxidative stress markers.Iran. J. Pharm. Res.201312110911424250578
    [Google Scholar]
  64. Abd-AllaI.H. HassanZ.A. SoltanM.M. AbdelwahabB.A. HannaG.H. Potential protein antiglycation, antiproliferation, and in silico study on the anti-diabetic enzymes of bioactive metabolites from Adonis microcarpa DC and their ADMET properties.J. Appl. Pharm. Sci.20221201106119
    [Google Scholar]
  65. PatelO.P.S. MishraA. MauryaR. Naturally occurring carbazole alkaloids from Murraya Koenigii as potential anti-diabetic agents.J. Nat. Prod.20167951276128410.1021/acs.jnatprod.5b0088327136692
    [Google Scholar]
  66. DewanjeeS. DasA.K. SahuR. GangopadhyayM. Antidiabetic activity of Diospyros peregrina fruit: Effect on hyperglycemia, hyperlipidemia and augmented oxidative stress in experimental type 2 diabetes.Food Chem. Toxicol.200947102679268510.1016/j.fct.2009.07.03819660513
    [Google Scholar]
  67. VinayagamR. XuB. Antidiabetic properties of dietary flavonoids: A cellular mechanism review.Nutr. Metab.20151216010.1186/s12986‑015‑0057‑7
    [Google Scholar]
  68. XiaoJ. KaiG. YamamotoK. ChenX. Advance in dietary polyphenols as α-glucosidases inhibitors: A review on structure-activity relationship aspect.Crit. Rev. Food Sci. Nutr.201353881883610.1080/10408398.2011.56137923768145
    [Google Scholar]
  69. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e47e4710.1017/jns.2016.4128620474
    [Google Scholar]
  70. CampaneroM.A. EscolarM. PerezG. Garcia-QuetglasE. SadabaB. AzanzaJ.R. Simultaneous determination of diosmin and diosmetin in human plasma by ion trap liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry: Application to a clinical pharmacokinetic study.J. Pharm. Biomed. Anal.201051487588110.1016/j.jpba.2009.09.01219800189
    [Google Scholar]
  71. PariL. SrinivasanS. Antihyperglycemic effect of diosmin on hepatic key enzymes of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats.Biomed. Pharmacother.201064747748110.1016/j.biopha.2010.02.00120362409
    [Google Scholar]
  72. ConstantinR.P. ConstantinJ. PagadigorriaC.L.S. The actions of fisetin on glucose metabolism in the rat liver.Cell Biochem. Funct.201028214915810.1002/cbf.163520084677
    [Google Scholar]
  73. PrasathG.S. PillaiS.I. SubramanianS.P. Fisetin improves glucose homeostasis through the inhibition of gluconeogenic enzymes in hepatic tissues of streptozotocin induced diabetic rats.Eur. J. Pharmacol.201474024825410.1016/j.ejphar.2014.06.06525064342
    [Google Scholar]
  74. KimM.S. HurH.J. KwonD.Y. HwangJ.T. Tangeretin stimulates glucose uptake via regulation of AMPK signaling pathways in C2C12 myo-tubes and improves glucose tolerance in high-fat diet-induced obese mice.Mol. Cell. Endocrinol.2012358112713410.1016/j.mce.2012.03.01322476082
    [Google Scholar]
  75. SendrayaperumalV. Iyyam PillaiS. SubramanianS. Design, synthesis and characterization of zinc–morin, a metal flavonol complex and evaluation of its antidiabetic potential in HFD–STZ induced type 2 diabetes in rats.Chem. Biol. Interact.201421991710.1016/j.cbi.2014.05.00324854284
    [Google Scholar]
  76. AbuohashishH.M. Al-RejaieS.S. Al-HosainiK.A. ParmarM.Y. AhmedM.M. Alleviating effects of morin against experimentally-induced diabetic osteopenia.Diabetol. Metab. Syndr.201351510.1186/1758‑5996‑5‑523384060
    [Google Scholar]
  77. VanithaP. UmaC. SuganyaN. Modulatory effects of morin on hyperglycemia by attenuating the hepatic key enzymes of carbohydrate metabolism and β-cell function in streptozotocin-induced diabetic rats.Environ. Toxicol. Pharmacol.201437132633510.1016/j.etap.2013.11.01724384280
    [Google Scholar]
  78. BucoloC. LeggioG.M. DragoF. SalomoneS. Eriodictyol prevents early retinal and plasma abnormalities in streptozotocin-induced diabetic rats.Biochem. Pharmacol.2012841889210.1016/j.bcp.2012.03.01922484312
    [Google Scholar]
  79. EmimJ.A.D.S. OliveiraA.B. LapaA.J. Pharmacological evaluation of the anti-inflammatory activity of a citrus bioflavonoid, hesperidin, and the isoflavonoids, duartin and claussequinone, in rats and mice.J. Pharm. Pharmacol.201146211812210.1111/j.2042‑7158.1994.tb03753.x8021799
    [Google Scholar]
  80. VisnagriA. KandhareA.D. ChakravartyS. GhoshP. BodhankarS.L. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions.Pharm. Biol.201452781482810.3109/13880209.2013.87058424559476
    [Google Scholar]
  81. YoA. SharmaP.K. Hesperidin produces cardioprotective activity via PPARγ pathway in the ischemic heart disease model in diabetic rats.PLoS One2014911111212
    [Google Scholar]
  82. PriscillaD.H. RoyD. SureshA. KumarV. ThirumuruganK. Naringenin inhibits α-glucosidase activity: A promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats.Chem. Biol. Interact.2014210778510.1016/j.cbi.2013.12.01424412302
    [Google Scholar]
  83. PriscillaD.H. JayakumarM. ThirumuruganK. Flavanone naringenin: An effective antihyperglycemic and antihyperlipidemic nutraceutical agent on high fat diet fed streptozotocin induced type 2 diabetic rats.J. Funct. Foods20151436337310.1016/j.jff.2015.02.005
    [Google Scholar]
  84. HossainC.M. GhoshM.K. SatapathyB.S. DeyN.S. MukherjeeB. Apigenin causes biochemical modulation, GLUT4 and CD38 alterations to improve diabetes and to protect damages of some vital organs in experimental diabetes.Am. J. Pharmacol. Toxicol.201491395210.3844/ajptsp.2014.39.52
    [Google Scholar]
  85. StavniichukR. DrelV.R. ShevalyeH. Baicalein alleviates diabetic peripheral neuropathy through inhibition of oxidative–nitrosative stress and p38 MAPK activation.Exp. Neurol.2011230110611310.1016/j.expneurol.2011.04.00221515260
    [Google Scholar]
  86. AhadA. MujeebM. AhsanH. SiddiquiW.A. Prophylactic effect of baicalein against renal dysfunction in type 2 diabetic rats.Biochimie201410610111010.1016/j.biochi.2014.08.00625151412
    [Google Scholar]
  87. LapchakP.A. MaherP. SchubertD. ZivinJ.A. Baicalein, an antioxidant 12/15-lipoxygenase inhibitor improves clinical rating scores following multiple infarct embolic strokes.Neuroscience2007150358559110.1016/j.neuroscience.2007.09.03317942241
    [Google Scholar]
  88. DhawanK. KumarS. SharmaA. Beneficial effects of chrysin and benzoflavone on virility in 2-year-old male rats.J. Med. Food200251434810.1089/10966200275372321412511112
    [Google Scholar]
  89. SirovinaD. OršolićN. KončićM.Z. KovačevićG. BenkovićV. GregorovićG. Quercetin vs chrysin.Hum. Exp. Toxicol.201332101058106610.1177/096032711247299323357962
    [Google Scholar]
  90. DingL. JinD. ChenX. Luteolin enhances insulin sensitivity via activation of PPARγ transcriptional activity in adipocytes.J. Nutr. Biochem.2010211094194710.1016/j.jnutbio.2009.07.00919954946
    [Google Scholar]
  91. LiuY. FuX. LanN. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice.Behav. Brain Res.201426717818810.1016/j.bbr.2014.02.04024667364
    [Google Scholar]
  92. YingD. XuhuiS. XuanyuS. Luteolin prevents uric acid-induced pancreatic b-cell dysfunction.J. Biomed. Res.201428429229810.7555/JBR.28.2013017025050113
    [Google Scholar]
  93. NeuhouserM.L. Dietary flavonoids and cancer risk: Evidence from human population studies.Nutr. Cancer20045011710.1207/s15327914nc5001_115572291
    [Google Scholar]
  94. KuS.K. BaeJ.S. Baicalin, baicalein and wogonin inhibits high glucose-induced vascular inflammation in vitro and in vivo.BMB Rep.201548951952410.5483/BMBRep.2015.48.9.01725739393
    [Google Scholar]
  95. BakE.J. KimJ. ChoiY.H. Wogonin ameliorates hyperglycemia and dyslipidemia via PPARα activation in db/db mice.Clin. Nutr.201433115616310.1016/j.clnu.2013.03.01323623334
    [Google Scholar]
  96. Rodríguez-RodríguezC. TorresN. Gutiérrez-UribeJ.A. The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity.Food Funct.20156380581510.1039/C4FO01092B25588195
    [Google Scholar]
  97. NirmalaP. RamanathanM. Effect of kaempferol on lipid peroxidation and antioxidant status in 1,2-dimethyl hydrazine induced colorectal carcinoma in rats.Eur. J. Pharmacol.20116541757910.1016/j.ejphar.2010.11.03421172346
    [Google Scholar]
  98. ZhangY. LiuD. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic β-cell viability and insulin secretory function.Eur. J. Pharmacol.2011670132533210.1016/j.ejphar.2011.08.01121914439
    [Google Scholar]
  99. Al-NumairK.S. ChandramohanG. VeeramaniC. AlsaifM.A. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats.Redox Rep.201520519820910.1179/1351000214Y.000000011725494817
    [Google Scholar]
  100. HuangW. ZhangH. LiuW. LiC. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing.J. Zhejiang Univ. Sci. B20121329410210.1631/jzus.B110013722302422
    [Google Scholar]
  101. NitureN.T. AnsariA.A. NaikS.R. Anti-hyperglycemic activity of rutin in streptozotocin-induced diabetic rats: An effect mediated through cytokines, antioxidants and lipid biomarkers.Indian J. Exp. Biol.201452772072725059040
    [Google Scholar]
  102. AlinezhadH. AzimiR. ZareM. Antioxidant and antihemolytic activities of ethanolic extract of flowers, leaves, and stems of Hys-sopus Officinalis L. Var. Angustifolius.Int. J. Food Prop.20131651169117810.1080/10942912.2011.578319
    [Google Scholar]
  103. StewartL.K. WangZ. RibnickyD. SoileauJ.L. CefaluW.T. GettysT.W. Failure of dietary quercetin to alter the temporal progression of insulin resistance among tissues of C57BL/6J mice during the development of diet-induced obesity.Diabetologia200952351452310.1007/s00125‑008‑1252‑019142628
    [Google Scholar]
  104. KoboriM. MasumotoS. AkimotoY. TakahashiY. Dietary quercetin alleviates diabetic symptoms and reduces streptozotocin-induced disturbance of hepatic gene expression in mice.Mol. Nutr. Food Res.200953785986810.1002/mnfr.20080031019496084
    [Google Scholar]
  105. PatisaulH.B. JeffersonW. The pros and cons of phytoestrogens.Front. Neuroendocrinol.201031440041910.1016/j.yfrne.2010.03.00320347861
    [Google Scholar]
  106. ElmarakbyA.A. IbrahimA.S. FaulknerJ. MozaffariM.S. LiouG.I. AbdelsayedR. Tyrosine kinase inhibitor, genistein, reduces renal inflammation and injury in streptozotocin-induced diabetic mice.Vascul. Pharmacol.2011555-614915610.1016/j.vph.2011.07.00721807121
    [Google Scholar]
  107. CheongS.H. FuruhashiK. ItoK. Daidzein promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and improves glucose homeostasis in Type 2 diabetic model mice.J. Nutr. Biochem.201425213614310.1016/j.jnutbio.2013.09.01224445037
    [Google Scholar]
  108. AkkarachiyasitS. CharoenlertkulP. Yibchok-anunS. AdisakwattanaS. Inhibitory activities of cyanidin and its glycosides and synergistic effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase.Int. J. Mol. Sci.20101193387339610.3390/ijms1109338720957102
    [Google Scholar]
  109. ZhuW. JiaQ. WangY. ZhangY. XiaM. The anthocyanin cyanidin-3-O-β-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: Involvement of a cAMP–PKA-dependent signaling pathway.Free Radic. Biol. Med.201252231432710.1016/j.freeradbiomed.2011.10.48322085656
    [Google Scholar]
  110. GharibA. FaezizadehZ. GodarzeeM. Treatment of diabetes in the mouse model by delphinidin and cyanidin hydrochloride in free and liposomal forms.Planta Med.201379171599160410.1055/s‑0033‑135090824108435
    [Google Scholar]
  111. HafizurR.M. HameedA. ShukranaM. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro.Phytomedicine201522229730010.1016/j.phymed.2015.01.00325765836
    [Google Scholar]
  112. AdisakwattanaS. SookkongwareeK. RoengsumranS. Structure–activity relationships of trans-cinnamic acid derivatives on α-glucosidase inhibition.Bioorg. Med. Chem. Lett.200414112893289610.1016/j.bmcl.2004.03.03715125954
    [Google Scholar]
  113. ShibanoM. KakutaniK. TaniguchiM. YasudaM. BabaK. Antioxidant constituents in the dayflower (Commelina communis L.) and their α-glucosidase-inhibitory activity.J. Nat. Med.200862334935310.1007/s11418‑008‑0244‑118409066
    [Google Scholar]
  114. Revilla-MonsalveM.C. Andrade-CettoA. Palomino-GaribayM.A. WiedenfeldH. Islas-AndradeS. Hypoglycemic effect of Cecropia obtusi-folia bertol aqueous extracts on type 2 diabetic patients.J. Ethnopharmacol.2007111363664010.1016/j.jep.2007.01.01417291702
    [Google Scholar]
  115. RoyM. SenS. ChakrabortiA.S. Action of pelargonidin on hyperglycemia and oxidative damage in diabetic rats: Implication for glycation-induced hemoglobin modification.Life Sci.20088221-221102111010.1016/j.lfs.2008.03.01118440560
    [Google Scholar]
  116. MirshekarM. RoghaniM. KhaliliM. BaluchnejadmojaradT. Arab MoazzenS. Chronic oral pelargonidin alleviates streptozotocin-induced diabetic neuropathic hyperalgesia in rat: Involvement of oxidative stress.Iran. Biomed. J.2010141-2333920683496
    [Google Scholar]
  117. ShenX. ZhouN. MiL. HuW. WangL. LiuX. Phloretin exerts hypoglycemic effect in Streptozotocin insulin resistance in vitro.Drug Des. Devel. Ther.201711313324
    [Google Scholar]
  118. FrancisG. KeremZ. MakkarH.P.S. BeckerK. The biological action of saponins in animal systems: A review.Br. J. Nutr.200288658760510.1079/BJN200272512493081
    [Google Scholar]
  119. MetwallyN.S. Chemical constituents of the egyptian plant Anabasis articulata (Forssk) Moq and its anti-diabetic effects on rats with streptozotocin-induced diabetic hepatopathy.J Basic Appl Pharm Sci2012245465
    [Google Scholar]
  120. ZhengT. ShuG. YangZ. MoS. ZhaoY. MeiZ. Antidiabetic effect of total saponins from Entada phaseoloides (L.) Merr. in type 2 diabetic rats.J. Ethnopharmacol.2012139381482110.1016/j.jep.2011.12.02522212505
    [Google Scholar]
  121. FullerS. StephensJ.M. Diosgenin, 4-hydroxyisoleucine, and fiber from fenugreek: Mechanisms of actions and potential effects on metabolic syndrome.Adv. Nutr.20156218919710.3945/an.114.00780725770257
    [Google Scholar]
  122. SmithY.R.A. AdanlawoI.G. OniO.S. Hypoglycaemic effect of saponin from the root of Garcinia Kola (Bitter Kola) on alloxan-induced diabetic rats.J. Drug Deliv. Ther.20122610.22270/jddt.v2i6.338
    [Google Scholar]
  123. LeeK.T. JungT.W. LeeH.J. KimS.G. ShinY.S. WhangW.K. The antidiabetic effect of ginsenoside Rb2 via activation of AMPK.Arch. Pharm. Res.20113471201120810.1007/s12272‑011‑0719‑621811928
    [Google Scholar]
  124. SievenpiperJ.L. ArnasonJ.T. VidgenE. LeiterL.A. VuksanV. A systematic quantitative analysis of the literature of the high variability in ginseng (Panax spp.): Should ginseng be trusted in diabetes?Diabetes Care200427383984010.2337/diacare.27.3.839‑a14988315
    [Google Scholar]
  125. KwonD.Y. KimY.S. RyuS.Y. Platyconic acid, a saponin from Platycodi radix, improves glucose homeostasis by enhancing insulin sensitivity in vitro and in vivo.Eur. J. Nutr.201251552954010.1007/s00394‑011‑0236‑x21847688
    [Google Scholar]
  126. DengY. HeK. YeX. Saponin rich fractions from Polygonatum odoratum (Mill.) Druce with more potential hypoglycemic effects.J. Ethnopharmacol.2012141122823310.1016/j.jep.2012.02.023
    [Google Scholar]
  127. ElekofehintiO.O. KamdemJ.P. KadeI.J. RochaJ.B.T. AdanlawoI.G. Hypoglycemic, antiperoxidative and antihyperlipidemic effects of saponins from Solanum anguivi Lam. fruits in alloxan-induced diabetic rats.S. Afr. J. Bot.201388566110.1016/j.sajb.2013.04.010
    [Google Scholar]
  128. HemalathaT. PulavendranS. BalachandranC. ManoharB.M. PuvanakrishnanR. Arjunolic acid: A novel phytomedicine with multifunctional therapeutic applications.Indian J. Exp. Biol.201048323824721046976
    [Google Scholar]
  129. UemuraT. GotoT. KangM.S. Diosgenin, the main aglycon of fenugreek, inhibits LXRα activity in HepG2 cells and decreases plasma and hepatic triglycerides in obese diabetic mice.J. Nutr.20111411172310.3945/jn.110.12559121106928
    [Google Scholar]
  130. MayakrishnanT. NakkalaJ.R. JeepipalliS.P.K. Fenugreek seed extract and its phytocompounds- trigonelline and diosgenin arbitrate their hepatoprotective effects through attenuation of endoplasmic reticulum stress and oxidative stress in type 2 diabetic rats.Eur. Food Res. Technol.2015240122323210.1007/s00217‑014‑2322‑9
    [Google Scholar]
  131. ZhouJ. ChanL. ZhouS. Trigonelline: A plant alkaloid with therapeutic potential for diabetes and central nervous system disease.Curr. Med. Chem.201219213523353110.2174/09298671280132317122680628
    [Google Scholar]
  132. WilliamJ. Invitation to Organic Chemistry.MassachusettsJones & Bartlett Learning1999
    [Google Scholar]
  133. PareekH. SharmaS. KhajjaB.S. JainK. JainG.C. Evaluation of hypoglycemic and anti-hyperglycemic potential of Tridax procumbens (Linn.).BMC Complement. Altern. Med.2009914810.1186/1472‑6882‑9‑4819943967
    [Google Scholar]
  134. PunithaI.S.R. ShirwaikarA. ShirwaikarA. Antidiabetic activity of benzyl tetra isoquinoline alkaloid berberine in streptozotocin-nicotinamide induced type 2 diabetic rats.Diabetol. Croat.2005344117128
    [Google Scholar]
  135. TiongS. LooiC. HazniH. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don.Molecules20131889770978410.3390/molecules1808977023955322
    [Google Scholar]
  136. AgrawalR. SethiyaN.K. MishraS.H. Antidiabetic activity of alkaloids of Aerva lanata roots on streptozotocin-nicotinamide induced type-II diabetes in rats.Pharm. Biol.201351563564210.3109/13880209.2012.76124423527955
    [Google Scholar]
  137. Abou El-SoudN.H. KhalilM.Y. HusseinJ. Anti-diabetic effects of Fenugreek alkaloid extract in streptozotocin-induced hyperglycemic rats.J. Appl. Sci. Res.200731010731083
    [Google Scholar]
  138. YinJ. XingH. YeJ. Efficacy of berberine in patients with type 2 diabetes mellitus.Metabolism200857571271710.1016/j.metabol.2008.01.01318442638
    [Google Scholar]
  139. ZhangY. LiX. ZouD. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine.J. Clin. Endocrinol. Metab.20089372559256510.1210/jc.2007‑240418397984
    [Google Scholar]
  140. LiuC.S. ZhengY.R. ZhangY.F. LongX.Y. Research progress on berberine with a special focus on its oral bioavailability.Fitoterapia201610927428210.1016/j.fitote.2016.02.00126851175
    [Google Scholar]
  141. NehligA. DavalJ.L. DebryG. Caffeine and the central nervous system: Mechanisms of action, biochemical, metabolic and psychostimulant effects.Brain Res. Brain Res. Rev.199217213917010.1016/0165‑0173(92)90012‑B1356551
    [Google Scholar]
  142. MonteiroM. FarahA. PerroneD. TrugoL.C. DonangeloC. Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans.J. Nutr.2007137102196220110.1093/jn/137.10.219617884997
    [Google Scholar]
  143. DineshkumarB. AnalavaM. ManjunathaM. Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from Murraya-koenigii (rutaceae) leaves.Inter Jour Phyto201022230
    [Google Scholar]
  144. VattemD.A. GhaedianR. ShettyK. Enhancing health benefits of berries through phenolic antioxidant enrichment: Focus on cranberry.Asia Pac. J. Clin. Nutr.200514212013015927928
    [Google Scholar]
  145. KasaliF.M. WendoF.M. MuyisaS.K. KadimaJ.N. Comparative hypoglycemic activity of flavonoids and tannins fractions of Stachytarpheta Indica (L.) Vahl leaves extracts in guinea-pigs and rabbits.Int. Jou. Phar. Pharm. Res.2016524857
    [Google Scholar]
  146. KunyangaC.N. ImungiJ.K. OkothM. MomanyiC. BiesalskiH.K. VadivelV. Antioxidant and antidiabetic properties of condensed tannins in acetonic extract of selected raw and processed indigenous food ingredients from Kenya.J. Food Sci.2011764C560C56710.1111/j.1750‑3841.2011.02116.x22417336
    [Google Scholar]
  147. ZhangZ. JiangJ. YuP. ZengX. LarrickJ.W. WangY. Hypoglycemic and beta cell protective effects of andrographolide analogue for diabetes treatment.J. Transl. Med.2009716210.1186/1479‑5876‑7‑6219607676
    [Google Scholar]
  148. HuangX.Y. FuJ.F. DiD-L. Preparative isolation and purification of steviol glycosides from Stevia rebaudiana bertoni using high-speed counter-current chromatography.Separ. Purif. Tech.201071222022410.1016/j.seppur.2009.11.025
    [Google Scholar]
  149. RothB.L. BanerK. WestkaemperR. A potent naturally occurring nonnitrogenous κ opioid selective agonist.Proc. Natl. Acad. Sci. USA20029918119341193910.1073/pnas.18223439912192085
    [Google Scholar]
  150. OnakpaM.M. AsuzuI.U. Histological changes and anti-diabetic activities of Icacina trichanta tuber extract in beta cells of alloxan-induced diabetic rats.Asian Pac. J. Trop. Biomed.201538628633
    [Google Scholar]
  151. TanM.J. YeJ.M. TurnerN. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway.Chem. Biol.200815326327310.1016/j.chembiol.2008.01.01318355726
    [Google Scholar]
  152. AbaP.E. AsuzuI.U. 1H-Proton NMR spectra of antihyperglycemic triterpenoid isolated from Cussonia arborea.J. Nat. Prod.2016917
    [Google Scholar]
  153. FariasR. RaoV. VianaG. SilveiraE. MacielM. PinoA. Hypoglycemic effect of trans-dehydrocrotonin, a nor-clerodane diterpene from Croton cajucara.Planta Med.199763655856010.1055/s‑2006‑9577669434613
    [Google Scholar]
  154. LailerdN. SaengsirisuwanV. SlonigerJ.A. ToskulkaoC. HenriksenE.J. Effects of stevioside on glucose transport activity in insulin-sensitive and insulin-resistant rat skeletal muscle.Metabolism200453110110710.1016/j.metabol.2003.07.01414681850
    [Google Scholar]
  155. ChenT.H. ChenS.C. ChanP. ChuY.L. YangH.Y. ChengJ.T. Mechanism of the hypoglycemic effect of stevioside, a glycoside of Stevia rebaudiana.Planta Med.200571210811310.1055/s‑2005‑83777515729617
    [Google Scholar]
  156. HouW. LiY. ZhangQ. Triterpene acids isolated from Lagerstroemia speciosa leaves as α -glucosidase inhibitors.Phytother. Res.200923561461810.1002/ptr.266119107840
    [Google Scholar]
  157. El-BazF.K. AlyH.F. Abd-AllaH.I. SaadS.A. Bioactive flavonoid glycosides and anti-diabetic activity of Jatropha Curcas on streptozotocin-induced diabetic rats.Int. J. Pharm. Sci. Rev. Res.2014292143156
    [Google Scholar]
  158. NakamuraY. TsumuraY. TonogaiY. ShibataT. Fecal steroid excretion is increased in rats by oral administration of gymnemic acids contained in Gymnema sylvestre leaves.J. Nutr.199912961214122210.1093/jn/129.6.121410356090
    [Google Scholar]
  159. TofighiZ. Moradi-AfrapoliF. EbrahimiS.N. Securigenin glycosides as hypoglycemic principles of Securigera securidaca seeds.J. Nat. Med.201771127228010.1007/s11418‑016‑1060‑727848204
    [Google Scholar]
  160. ZangY. SatoH. IgarashiK. Anti-diabetic effects of a kaempferol glycoside-rich fraction from unripe soybean (Edamame, Glycine max L. Merrill. ‘Jindai’) leaves on KK-A(y) mice.Biosci. Biotechnol. Biochem.20117591677168410.1271/bbb.11016821897048
    [Google Scholar]
  161. EidH.M. MartineauL.C. SaleemA. Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea.Mol. Nutr. Food Res.2010547991100310.1002/mnfr.20090021820087853
    [Google Scholar]
  162. JayasooriyaA.P. SakonoM. YukizakiC. KawanoM. YamamotoK. FukudaN. Effects of Momordica charantia powder on serum glucose levels and various lipid parameters in rats fed with cholesterol-free and cholesterol-enriched diets.J. Ethnopharmacol.2000721-233133610.1016/S0378‑8741(00)00259‑210967491
    [Google Scholar]
  163. SarkarS. PranavaM. MaritaR. Demonstration of the hypoglycemic action of Momordica charantia in a validated animal model of diabetes.Pharmacol. Res.19963311410.1006/phrs.1996.00018817639
    [Google Scholar]
/content/journals/lff/10.2174/2666939001666230718142652
Loading
/content/journals/lff/10.2174/2666939001666230718142652
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test