Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-9390
  • E-ISSN: 2666-9404

Abstract

Cancer is one of the leading causes of death worldwide, with multiple pathological components. Genetic abnormalities, infection or inflammation, poor diet, radiation exposure, work stress, and/or ingestion of toxic substances have all been associated with cancer development and progression. Early detection and treatment of cancer have been shown to increase the chances of survival and recovery and reduce the side effects of anticancer drugs. Anticancer drugs continue to cause negative side effects that negate treatment benefits in terms of hospitalization and survival. Many naturally occurring bioactive compounds are shown to have anticancer properties. That is, they can eliminate altered and cancer cells without harming their healthy counterparts. In particular, the following activities have been reported to support nutrition during cancer treatment: cell growth inhibition, antioxidant activity, anti-inflammatory activity, and minimized negative effects due to natural antioxidants. Keeping the side effects minimum helps patients adhere to anticancer therapy. Among currently available anticancer agents, dietary supplementation can be considered in conjunction with current chemotherapy to improve response and compliance in cancer patients. However, it should be noted that before discussing data from studies on bioactive plant supplements, it is important to ensure that the tests were performed according to protocol.

Loading

Article metrics loading...

/content/journals/lff/10.2174/0126669390272831231227110602
2024-01-25
2024-11-22
Loading full text...

Full text loading...

References

  1. CalvaniM. PashaA. FavreC. Nutraceutical boom in cancer: Inside the labyrinth of reactive oxygen species.Int. J. Mol. Sci.2020216193610.3390/ijms21061936 32178382
    [Google Scholar]
  2. Martín-TimónI. Sevillano-CollantesC. Segura-GalindoA. Del Cañizo-GómezF.J. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength?World J. Diabetes20145444447010.4239/wjd.v5.i4.444 25126392
    [Google Scholar]
  3. KuppusamyP. YusoffM.M. ManiamG.P. IchwanS.J.A. SoundharrajanI. GovindanN. Nutraceuticals as potential therapeutic agents for colon cancer: A review.Acta Pharm. Sin. B20144317318110.1016/j.apsb.2014.04.002 26579381
    [Google Scholar]
  4. PalD. BanerjeeS. GhoshA.K. Dietary-induced cancer prevention: An expanding research arena of emerging diet related to healthcare system.J. Adv. Pharm. Technol. Res.201231162410.4103/2231‑4040.93561 22470889
    [Google Scholar]
  5. LoboV. PatilA. PhatakA. ChandraN. Free radicals, antioxidants and functional foods: Impact on human health.Pharmacogn. Rev.20104811812610.4103/0973‑7847.70902 22228951
    [Google Scholar]
  6. AlAliM. AlqubaisyM. AljaafariM.N. Nutraceuticals: Transformation of conventional foods into health promoters/disease preventers and safety considerations.Molecules2021269254010.3390/molecules26092540 33925346
    [Google Scholar]
  7. ZhangY.J. GanR.Y. LiS. Antioxidant phytochemicals for the prevention and treatment of chronic diseases.Molecules20152012211382115610.3390/molecules201219753 26633317
    [Google Scholar]
  8. StintonL.M. ShafferE.A. Epidemiology of gallbladder disease: Cholelithiasis and cancer.Gut Liver20126217218710.5009/gnl.2012.6.2.172 22570746
    [Google Scholar]
  9. LakaK. MakgooL. MbitaZ. Cholesterol-lowering phytochemicals: Targeting the mevalonate pathway for anticancer interventions.Front. Genet.20221384163910.3389/fgene.2022.841639 35391801
    [Google Scholar]
  10. AnandP. KunnumakaraA.B. SundaramC. Cancer is a preventable disease that requires major lifestyle changes.Pharm. Res.20082592097211610.1007/s11095‑008‑9661‑9 18626751
    [Google Scholar]
  11. Garcia-OliveiraP. OteroP. PereiraA.G. Status and challenges of plant-anticancer compounds in cancer treatment.Pharmaceuticals202114215710.3390/ph14020157 33673021
    [Google Scholar]
  12. DonaldsonM.S. Nutrition and cancer: A review of the evidence for an anti-cancer diet.Nutr. J.2004311910.1186/1475‑2891‑3‑19 15496224
    [Google Scholar]
  13. HarvieM. Nutritional supplements and cancer: Potential benefits and proven harms.Am. Soc. Clin. Oncol. Educ. Book20142014e478e48610.14694/EdBook_AM.2014.34.e478
    [Google Scholar]
  14. KotechaR. TakamiA. EspinozaJ.L. Dietary phytochemicals and cancer chemoprevention: A review of the clinical evidence.Oncotarget2016732525175252910.18632/oncotarget.9593 27232756
    [Google Scholar]
  15. WillettW.C. KoplanJ.P. NugentR. DusenburyC. PuskaP. GazianoT.A. Prevention of chronic disease by means of diet and lifestyle changes.In: Disease Control Priorities in Developing Countries.2nd ed.Washington (DC)The International Bank for Reconstruction and Development / The World Bank2006
    [Google Scholar]
  16. van de WorpW.R.P.H. ScholsA.M.W.J. TheysJ. van HelvoortA. LangenR.C.J. Nutritional interventions in cancer cachexia: Evidence and perspectives from experimental models.Front. Nutr.2020760132910.3389/fnut.2020.601329 33415123
    [Google Scholar]
  17. GallieD. Increasing vitamin C content in plant foods to improve their nutritional value-successes and challenges.Nutrients2013593424344610.3390/nu5093424 23999762
    [Google Scholar]
  18. ColomboM.L. An update on vitamin E, tocopherol and tocotrienol-perspectives.Molecules20101542103211310.3390/molecules15042103 20428030
    [Google Scholar]
  19. GranatoD. ShahidiF. WrolstadR. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods?Food Chem.201826447147510.1016/j.foodchem.2018.04.012 29853403
    [Google Scholar]
  20. BlackH.S. BoehmF. EdgeR. TruscottT.G. The benefits and risks of certain dietary carotenoids that exhibit both anti- and pro-oxidative mechanisms—a comprehensive review.Antioxidants20209326410.3390/antiox9030264 32210038
    [Google Scholar]
  21. ImranM. GhoratF. Ul-HaqI. Lycopene as a natural antioxidant used to prevent human health disorders.Antioxidants20209870610.3390/antiox9080706 32759751
    [Google Scholar]
  22. BuscemiS. CorleoD. Di PaceF. PetroniM. SatrianoA. MarchesiniG. The effect of lutein on eye and extra-eye health.Nutrients2018109132110.3390/nu10091321 30231532
    [Google Scholar]
  23. SainiR. Coenzyme Q10: The essential nutrient.J. Pharm. Bioallied Sci.20113346646710.4103/0975‑7406.84471 21966175
    [Google Scholar]
  24. GolbidiS. BadranM. LaherI. Diabetes and alpha lipoic Acid.Front. Pharmacol.201126910.3389/fphar.2011.00069 22125537
    [Google Scholar]
  25. ParasuramanS. Anand DavidA.V. ArulmoliR. Overviews of biological importance of quercetin: A bioactive flavonoid.Pharmacogn. Rev.20161020848910.4103/0973‑7847.194044 28082789
    [Google Scholar]
  26. MokhtariV. AfsharianP. ShahhoseiniM. KalantarS.M. MoiniA. A review on various uses of n-acetyl cysteine.Cell J.2017191111710.22074/CELLJ.2016.4872 28367412
    [Google Scholar]
  27. SalehiB. MishraA. NigamM. Resveratrol: A double-edged sword in health benefits.Biomedicines2018639110.3390/biomedicines6030091 30205595
    [Google Scholar]
  28. RahmanM.A. AminA.R.M.R. ShinD.M. Chemopreventive potential of natural compounds in head and neck cancer.Nutr. Cancer201062797398710.1080/01635581.2010.509538 20924973
    [Google Scholar]
  29. NasriH. BaradaranA. ShirzadH. Rafieian-KopaeiM. New concepts in nutraceuticals as alternative for pharmaceuticals.Int. J. Prev. Med.201451214871499 25709784
    [Google Scholar]
  30. AndersS. SchroeterC. The impact of nutritional supplement intake on diet behavior and obesity outcomes.PLoS One20171210e018525810.1371/journal.pone.0185258 28991921
    [Google Scholar]
  31. InglisJ.E. LinP.J. KernsS.L. Nutritional interventions for treating cancer-related fatigue: A qualitative review.Nutr. Cancer2019711214010.1080/01635581.2018.1513046 30688088
    [Google Scholar]
  32. OliveraA. MooreT.W. HuF. Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): Anti-inflammatory and anti-cancer properties.Int. Immunopharmacol.201212236837710.1016/j.intimp.2011.12.009 22197802
    [Google Scholar]
  33. BuhrmannC. ShayanP. PopperB. GoelA. ShakibaeiM. Sirt1 is required for resveratrol-mediated chemopreventive effects in colorectal cancer cells.Nutrients20168314510.3390/nu8030145 26959057
    [Google Scholar]
  34. TanabeH. SuzukiT. OhishiT. IsemuraM. NakamuraY. UnnoK. Effects of epigallocatechin-3-gallate on matrix metalloproteinases in terms of its anticancer activity.Molecules202328252510.3390/molecules28020525 36677584
    [Google Scholar]
  35. ZughaibiT.A. SuhailM. TariqueM. TabrezS. Targeting PI3K/Akt/mTOR pathway by different flavonoids: A cancer chemopreventive approach.Int. J. Mol. Sci.202122221245510.3390/ijms222212455 34830339
    [Google Scholar]
  36. SuX. JiangX. MengL. DongX. ShenY. XinY. Anticancer activity of sulforaphane: The epigenetic mechanisms and the Nrf2 signaling pathway.Oxid. Med. Cell. Longev.2018201811010.1155/2018/5438179 29977456
    [Google Scholar]
  37. AssarE.A. VidalleM.C. ChopraM. HafiziS. Lycopene acts through inhibition of IκB kinase to suppress NF-κB signaling in human prostate and breast cancer cells.Tumour Biol.20163779375938510.1007/s13277‑016‑4798‑3 26779636
    [Google Scholar]
  38. BanerjeeS. LiY. WangZ. SarkarF.H. Multi-targeted therapy of cancer by genistein.Cancer Lett.2008269222624210.1016/j.canlet.2008.03.052 18492603
    [Google Scholar]
  39. GiordanoA. TommonaroG. Curcumin and cancer.Nutrients20191110237610.3390/nu11102376 31590362
    [Google Scholar]
  40. SyedD. ChamcheuJ.C. AdhamiV. MukhtarH. Pomegranate extracts and cancer prevention: Molecular and cellular activities.Anticancer. Agents Med. Chem.20131381149116110.2174/1871520611313080003 23094914
    [Google Scholar]
  41. RahalA. KumarA. SinghV. Oxidative stress, prooxidants, and antioxidants: The interplay.BioMed Res. Int.2014201411910.1155/2014/761264 24587990
    [Google Scholar]
  42. JuanC.A. de la LastraJ.M.P. PlouF.J. Pérez-LebeñaE. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies.Int. J. Mol. Sci.202122464210.3390/ijms22094642
    [Google Scholar]
  43. SchieberM. ChandelN.S. ROS function in redox signaling and oxidative stress.Curr. Biol.20142410R453R46210.1016/j.cub.2014.03.034 24845678
    [Google Scholar]
  44. PizzinoG. IrreraN. CucinottaM. Oxidative stress: Harms and benefits for human health.Oxid. Med. Cell. Longev.2017201711310.1155/2017/8416763 28819546
    [Google Scholar]
  45. KurutasE.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state.Nutr. J.20151517110.1186/s12937‑016‑0186‑5 27456681
    [Google Scholar]
  46. HeF. RuX. WenT. NRF2, a transcription factor for stress response and beyond.Int. J. Mol. Sci.20202113477710.3390/ijms21134777 32640524
    [Google Scholar]
  47. ChenY. LiY. HuangL. Antioxidative stress: Inhibiting reactive oxygen species production as a cause of radioresistance and chemoresistance.Oxid. Med. Cell. Longev.2021202111610.1155/2021/6620306 33628367
    [Google Scholar]
  48. MaiuoloJ. GliozziM. CarresiC. Nutraceuticals and cancer: Potential for natural polyphenols.Nutrients20211311383410.3390/nu13113834 34836091
    [Google Scholar]
  49. HooperL. MartinN. JimohO.F. KirkC. FosterE. AbdelhamidA.S. Reduction in saturated fat intake for cardiovascular disease.Cochrane Libr.202020208CD01173710.1002/14651858.CD011737.pub3 32827219
    [Google Scholar]
  50. GabrielA. NinomiyaK. UneyamaH. The role of the japanese traditional diet in healthy and sustainable dietary patterns around the world.Nutrients201810217310.3390/nu10020173 29401650
    [Google Scholar]
  51. RathodN.B. ElabedN. PuniaS. OzogulF. KimS.K. RochaJ.M. Recent developments in polyphenol applications on human health: A review with current knowledge.Plants2023126121710.3390/plants12061217 36986905
    [Google Scholar]
  52. CaoF. LiuT. XuY. XuD. FengS. Curcumin inhibits cell proliferation and promotes apoptosis in human osteoclastoma cell through MMP-9, NF-κB and JNK signaling pathways.Int. J. Clin. Exp. Pathol.20158660376045 26261481
    [Google Scholar]
  53. ChaiR. FuH. ZhengZ. LiuT. JiS. LiG. Resveratrol inhibits proliferation and migration through SIRT1 mediated post-translational modification of PI3K/AKT signaling in hepatocellular carcinoma cells.Mol. Med. Rep.20171668037804410.3892/mmr.2017.7612 28983625
    [Google Scholar]
  54. AbotalebM. SamuelS. VargheseE. Flavonoids in cancer and apoptosis.Cancers20181112810.3390/cancers11010028 30597838
    [Google Scholar]
  55. SinghB.N. ShankarS. SrivastavaR.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications.Biochem. Pharmacol.201182121807182110.1016/j.bcp.2011.07.093 21827739
    [Google Scholar]
  56. TuliH.S. TuorkeyM.J. ThakralF. Molecular mechanisms of action of genistein in cancer: Recent advances.Front. Pharmacol.201910133610.3389/fphar.2019.01336 31866857
    [Google Scholar]
  57. HolzapfelN. HolzapfelB. ChampS. FeldthusenJ. ClementsJ. HutmacherD. The potential role of lycopene for the prevention and therapy of prostate cancer: From molecular mechanisms to clinical evidence.Int. J. Mol. Sci.2013147146201464610.3390/ijms140714620 23857058
    [Google Scholar]
  58. AmjadA.I. ParikhR.A. ApplemanL.J. HahmE.R. SinghK. SinghS.V. Broccoli-derived sulforaphane and chemoprevention of prostate cancer: From bench to bedside.Curr. Pharmacol. Rep.20151638239010.1007/s40495‑015‑0034‑x 26557472
    [Google Scholar]
  59. ShanJ. XuanY. ZhengS. DongQ. ZhangS. Ursolic acid inhibits proliferation and induces apoptosis of HT-29 colon cancer cells by inhibiting the EGFR/MAPK pathway.J. Zhejiang Univ. Sci. B200910966867410.1631/jzus.B0920149 19735099
    [Google Scholar]
  60. KasperczykH. La Ferla-BrühlK. WesthoffM.A. Betulinic acid as new activator of NF-κB: molecular mechanisms and implications for cancer therapy.Oncogene200524466945695610.1038/sj.onc.1208842 16007147
    [Google Scholar]
  61. KumarS. MathewS.O. AharwalR.P. Withaferin A: A pleiotropic anticancer agent from the Indian medicinal plant withania somnifera (L.) dunal.Pharmaceuticals202316216010.3390/ph16020160 37259311
    [Google Scholar]
  62. PfefferC. SinghA. Apoptosis: A target for anticancer therapy.Int. J. Mol. Sci.201819244810.3390/ijms19020448 29393886
    [Google Scholar]
  63. WongR.S.Y. Apoptosis in cancer: From pathogenesis to treatment.J. Exp. Clin. Cancer Res.20113018710.1186/1756‑9966‑30‑87 21943236
    [Google Scholar]
  64. TomkoA.M. WhynotE.G. EllisL.D. DupréD.J. Anti-cancer potential of cannabinoids, terpenes, and flavonoids present in cannabis.Cancers2020127198510.3390/cancers12071985 32708138
    [Google Scholar]
  65. MusolinoV. GliozziM. ScaranoF. Bergamot polyphenols improve dyslipidemia and pathophysiological features in a mouse model of non-alcoholic fatty liver disease.Sci. Rep.2020101256510.1038/s41598‑020‑59485‑3 32054943
    [Google Scholar]
  66. XuX.Y. MengX. LiS. GanR.Y. LiY. LiH.B. Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives.Nutrients20181010155310.3390/nu10101553 30347782
    [Google Scholar]
  67. PratheeshkumarP. SreekalaC. ZhangZ. Cancer prevention with promising natural products: Mechanisms of action and molecular targets.Anticancer. Agents Med. Chem.201212101159118410.2174/187152012803833035 22583402
    [Google Scholar]
  68. NitaM. GrzybowskiA. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults.Oxid. Med. Cell. Longev.2016201612310.1155/2016/3164734 26881021
    [Google Scholar]
  69. Sharifi-RadM. Anil KumarN.V. ZuccaP. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases.Front. Physiol.20201169410.3389/fphys.2020.00694 32714204
    [Google Scholar]
  70. AhmadA. PrakashR. KhanM.S. Enhanced antioxidant effects of naringenin nanoparticles synthesized using the high-energy ball milling method.ACS Omega2022738344763448410.1021/acsomega.2c04148 36188293
    [Google Scholar]
  71. MonjotinN. AmiotM.J. FleurentinJ. MorelJ.M. RaynalS. Clinical evidence of the benefits of phytonutrients in human healthcare.Nutrients2022149171210.3390/nu14091712 35565680
    [Google Scholar]
  72. YangC.S. LambertJ.D. SangS. Antioxidative and anti-carcinogenic activities of tea polyphenols.Arch. Toxicol.2009831112110.1007/s00204‑008‑0372‑0 19002670
    [Google Scholar]
  73. SalvioliS. SikoraE. CooperE.L. FranceschiC. Curcumin in cell death processes: A challenge for CAM of age-related pathologies.Evid. Based Complement. Alternat. Med.20074218119010.1093/ecam/nem043 17549234
    [Google Scholar]
  74. KoJ.H. SethiG. UmJ.Y. The role of resveratrol in cancer therapy.Int. J. Mol. Sci.20171812258910.3390/ijms18122589 29194365
    [Google Scholar]
  75. RatherR.A. BhagatM. Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health.Cancer Med.20209249181919210.1002/cam4.1411 31568659
    [Google Scholar]
  76. AlmatroodiS.A. AlmatroudiA. KhanA.A. AlhumaydhiF.A. AlsahliM.A. RahmaniA.H. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer.Molecules20202514314610.3390/molecules25143146 32660101
    [Google Scholar]
  77. van BreemenR.B. PajkovicN. Multitargeted therapy of cancer by lycopene.Cancer Lett.2008269233935110.1016/j.canlet.2008.05.016 18585855
    [Google Scholar]
  78. Sharifi-RadJ. QuispeC. CastilloC.M.S. Ellagic acid: A review on its natural sources, chemical stability, and therapeutic potential.Oxid. Med. Cell. Longev.2022202212410.1155/2022/3848084 35237379
    [Google Scholar]
  79. KarimiG. VahabzadehM. LariP. RashediniaM. MoshiriM. “Silymarin”, a promising pharmacological agent for treatment of diseases.Iran. J. Basic Med. Sci.2011144308317 23492971
    [Google Scholar]
  80. JavedZ. KhanK. Herrera-BravoJ. Genistein as a regulator of signaling pathways and microRNAs in different types of cancers.Cancer Cell Int.202121138810.1186/s12935‑021‑02091‑8 34289845
    [Google Scholar]
  81. MansuyI.M. MohannaS. Epigenetics and the human brain: Where nurture meets nature.Cerebrum201120118 23447777
    [Google Scholar]
  82. SharmaS. KellyT.K. JonesP.A. Epigenetics in cancer.Carcinogenesis2010311273610.1093/carcin/bgp220 19752007
    [Google Scholar]
  83. HandyD.E. CastroR. LoscalzoJ. Epigenetic modifications.Circulation2011123192145215610.1161/CIRCULATIONAHA.110.956839 21576679
    [Google Scholar]
  84. HenningS.M. WangP. CarpenterC.L. HeberD. Epigenetic effects of green tea polyphenols in cancer.Epigenomics20135672974110.2217/epi.13.57 24283885
    [Google Scholar]
  85. BagA. BagN. Tea polyphenols and prevention of epigenetic aberrations in cancer.J. Nat. Sci. Biol. Med.2018912510.4103/jnsbm.JNSBM_46_17 29456384
    [Google Scholar]
  86. FarhanM. UllahM. FaisalM. Differential methylation and acetylation as the epigenetic basis of resveratrol’s anticancer activity.Medicines2019612410.3390/medicines6010024 30781847
    [Google Scholar]
  87. Fabianowska-MajewskaK. Kaufman-SzymczykA. Szymanska-KolbaA. JakubikJ. MajewskiG. LubeckaK. Curcumin from turmeric rhizome: A potential modulator of DNA methylation machinery in breast cancer inhibition.Nutrients202113233210.3390/nu13020332 33498667
    [Google Scholar]
  88. ShengJ. ShiW. GuoH. The inhibitory effect of (−)-epigallocatechin-3-gallate on breast cancer progression via reducing SCUBE2 methylation and DNMT activity.Mol201924289910.3390/molecules24162899
    [Google Scholar]
  89. AlnuqaydanA.M. Targeting micro-RNAs by natural products: A novel future therapeutic strategy to combat cancer.Am. J. Transl. Res.202012735313556 32774718
    [Google Scholar]
  90. XieQ. BaiQ. ZouL.Y. Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells.Genes Chromosomes Cancer201453542243110.1002/gcc.22154 24532317
    [Google Scholar]
  91. HoE. ClarkeJ.D. DashwoodR.H. Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention.J. Nutr.2009139122393239610.3945/jn.109.113332 19812222
    [Google Scholar]
  92. BouayedJ. BohnT. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses.Oxid. Med. Cell. Longev.20103422823710.4161/oxim.3.4.12858 20972369
    [Google Scholar]
  93. HashiguchiA. ZhuW. TianJ. KomatsuS. Proteomics and metabolomics-driven pathway reconstruction of mung bean for nutraceutical evaluation.Biochim. Biophys. Acta. Proteins Proteomics2017186581057106610.1016/j.bbapap.2017.05.006 28502799
    [Google Scholar]
  94. BoyerJ. LiuR.H. Apple phytochemicals and their health benefits.Nutr. J.200431510.1186/1475‑2891‑3‑5 15140261
    [Google Scholar]
  95. Cháirez-RamírezM.H. de la Cruz-LópezK.G. García-CarrancáA. Polyphenols as antitumor agents targeting key players in cancer-driving signaling pathways.Front. Pharmacol.20211271030410.3389/fphar.2021.710304 34744708
    [Google Scholar]
  96. AltemimiA. LakhssassiN. BaharloueiA. WatsonD. LightfootD. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts.Plants2017644210.3390/plants6040042 28937585
    [Google Scholar]
  97. NdhlalaA. MoyoM. Van StadenJ. Natural antioxidants: Fascinating or mythical biomolecules?Molecules201015106905693010.3390/molecules15106905 20938402
    [Google Scholar]
  98. BudisanL. GuleiD. ZanoagaO. Dietary intervention by phytochemicals and their role in modulating coding and non-coding genes in cancer.Int. J. Mol. Sci.2017186117810.3390/ijms18061178 28587155
    [Google Scholar]
  99. KangH. MicroRNA-mediated health-promoting effects of phytochemicals.Int. J. Mol. Sci.20192010253510.3390/ijms20102535 31126043
    [Google Scholar]
  100. BhaskaranM. MohanM. MicroRNAs.Vet. Pathol.201451475977410.1177/0300985813502820 24045890
    [Google Scholar]
  101. RoguckiM. BuczyńskaA. KrętowskiA.J. Popławska-KitaA. The importance of miRNA in the diagnosis and prognosis of papillary thyroid cancer.J. Clin. Med.20211020473810.3390/jcm10204738 34682861
    [Google Scholar]
  102. GanapathyA. EzekielU. Phytochemical modulation of MiRNAs in colorectal cancer.Medicines2019624810.3390/medicines6020048 30959836
    [Google Scholar]
  103. KhanS.A. DamanhouriG. AliA. Precipitating factors and targeted therapies in combating the perils of sickle cell disease--- A special nutritional consideration.Nutr. Metab.20161315010.1186/s12986‑016‑0109‑7 27508000
    [Google Scholar]
  104. RajendranP. AbdelsalamS.A. RenuK. VeeraraghavanV. Ben AmmarR. AhmedE.A. Polyphenols as potent epigenetics agents for cancer.Int. J. Mol. Sci.202223191171210.3390/ijms231911712 36233012
    [Google Scholar]
  105. SurguchovA. BernalL. SurguchevA.A. Phytochemicals as regulators of genes involved in synucleinopathies.Biomolecules202111562410.3390/biom11050624 33922207
    [Google Scholar]
  106. LiS. WuH. TollefsbolT.O. Combined broccoli sprouts and green tea polyphenols contribute to the prevention of estrogen receptor–negative mammary cancer via cell cycle arrest and inducing apoptosis in HER2/neu mice.J. Nutr.20211511738410.1093/jn/nxaa315 33188406
    [Google Scholar]
  107. Castro-MuñozL. UlloaE. SahlgrenC. LizanoM. De La Cruz-HernándezE. Contreras-ParedesA. Modulating epigenetic modifications for cancer therapy (Review).Oncol. Rep.20234935910.3892/or.2023.8496 36799181
    [Google Scholar]
  108. KhanM.I. RathS. AdhamiV.M. MukhtarH. Targeting epigenome with dietary nutrients in cancer: Current advances and future challenges.Pharmacol. Res.201812937538710.1016/j.phrs.2017.12.008 29233676
    [Google Scholar]
  109. Carlos-ReyesÁ. López-GonzálezJ.S. Meneses-FloresM. Dietary compounds as epigenetic modulating agents in cancer.Front. Genet.2019107910.3389/fgene.2019.00079 30881375
    [Google Scholar]
  110. SinghK. BhoriM. KasuY.A. BhatG. MararT. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity – Exploring the armoury of obscurity.Saudi Pharm. J.201826217719010.1016/j.jsps.2017.12.013 30166914
    [Google Scholar]
  111. LopesC.M. DouradoA. OliveiraR. Phytotherapy and nutritional supplements on breast cancer.BioMed Res. Int.2017201714210.1155/2017/7207983 28845434
    [Google Scholar]
  112. ConklinK.A. Dietary antioxidants during cancer chemotherapy: Impact on chemotherapeutic effectiveness and development of side effects.Nutr. Cancer200037111810.1207/S15327914NC3701_1 10965514
    [Google Scholar]
  113. Mut-SaludN. ÁlvarezP.J. GarridoJ.M. CarrascoE. AránegaA. Rodríguez-SerranoF. Antioxidant intake and antitumor therapy: Toward nutritional recommendations for optimal results.Oxid. Med. Cell. Longev.2016201611910.1155/2016/6719534 26682013
    [Google Scholar]
  114. ChimentoA. D’AmicoM. De LucaA. ConfortiF.L. PezziV. De AmicisF. Resveratrol, epigallocatechin gallate and curcumin for cancer therapy: Challenges from their pro-apoptotic properties.Life202313226110.3390/life13020261 36836619
    [Google Scholar]
  115. RudzińskaA. JuchaniukP. OberdaJ. Phytochemicals in cancer treatment and cancer prevention—review on epidemiological data and clinical trials.Nutrients2023158189610.3390/nu15081896 37111115
    [Google Scholar]
/content/journals/lff/10.2174/0126669390272831231227110602
Loading
/content/journals/lff/10.2174/0126669390272831231227110602
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): apoptosis; bergamot; curcumin; oleuropein; Polyphenols; quercetin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test