Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-9390
  • E-ISSN: 2666-9404

Abstract

Background

Food waste is a major worldwide problem due to the increasing population and imbalances in supply chains. Waste from fruits and vegetables are a substantial proportion of the overall food waste generated, accounting for approximately 42% of the waste produced. Methane, a strong greenhouse gas with a significant potential for global warming, is produced when these waste products are typically dumped in landfills.

Objectives

The study's goal is to present a thorough overview of the most recent findings and developments in the use of vegetable and fruit waste for creating therapeutic formulations. Recognizing the opportunities and challenges in this developing area of study, as well as the promise that vegetable and fruit waste contains for the creation of environmentally friendly and economically advantageous pharmaceutical formulations.

Methods

A comprehensive review of existing literature on the utilization of vegetable and fruit waste in pharmaceutical formulations was conducted. The review included studies on the chemical composition and bioactive compounds present in various types of vegetable and fruit waste, their extraction methods, and their potential applications in pharmaceutical formulations. Additionally, current waste management practices and challenges associated with waste disposal were also analyzed.

Conclusion

The review highlights the significant potential of vegetable and fruit waste in the development of pharmaceutical formulations. Fruit and vegetable waste offer a wide range of bioactive compounds, such as antioxidants, antimicrobials, and antiinflammatory agents, which could be utilized in drug formulation. Moreover, this approach can promote environmental sustainability by reducing waste generation and enhancing waste utilization. Further research and development efforts should focus on optimizing extraction methods, evaluating the efficacy and safety of waste-derived compounds, and addressing regulatory requirements for integrating vegetable and fruit waste into pharmaceutical products. Harnessing the potential of vegetable and fruit waste in pharmaceutical formulations can lead to sustainable advancements in the pharmaceutical industry while addressing environmental concerns.

Loading

Article metrics loading...

/content/journals/lff/10.2174/0126669390271001231122051310
2024-01-23
2025-01-19
Loading full text...

Full text loading...

References

  1. FierascuR.C. SieniawskaE. OrtanA. FierascuI. XiaoJ. Fruits by-products – a source of valuable active principles. A short review.Front. Bioeng. Biotechnol.2020831910.3389/fbioe.2020.00319 32351951
    [Google Scholar]
  2. LucariniM. DurazzoA. BerniniR. Fruit wastes as a valuable source of value-added compounds: A collaborative perspective.Molecules20212621633810.3390/molecules26216338 34770747
    [Google Scholar]
  3. EsparzaI. Jiménez-MorenoN. BimbelaF. Ancín-AzpilicuetaC. GandíaL.M. Fruit and vegetable waste management: Conventional and emerging approaches.J. Environ. Manage.202026511051010.1016/j.jenvman.2020.110510 32275240
    [Google Scholar]
  4. GaneshK.S. SridharA. VishaliS. Utilization of fruit and vegetable waste to produce value-added products: Conventional utilization and emerging opportunities-A review.Chemosphere2022287Pt 313222110.1016/j.chemosphere.2021.132221 34560492
    [Google Scholar]
  5. GajdaI. GreenmanJ. SantoroC. Multi‐functional microbial fuel cells for power, treatment and electro‐osmotic purification of urine.J. Chem. Technol. Biotechnol.20199472098210610.1002/jctb.5792 31423040
    [Google Scholar]
  6. SheltonA.M. SarwerS.H. HossainM.J. BrookesG. ParanjapeV. Impact of Bt brinjal cultivation in the market value chain in five districts of Bangladesh.Front. Bioeng. Biotechnol.2020849810.3389/fbioe.2020.00498 32528942
    [Google Scholar]
  7. KumariD. JohnS. Health risk assessment of pesticide residues in fruits and vegetables from farms and markets of Western Indian Himalayan region.Chemosphere201922416216710.1016/j.chemosphere.2019.02.091 30822723
    [Google Scholar]
  8. SagarN.A. PareekS. SharmaS. YahiaE.M. LoboM.G. Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization.Compr. Rev. Food Sci. Food Saf.201817351253110.1111/1541‑4337.12330 33350136
    [Google Scholar]
  9. Rodríguez GarcíaS.L. RaghavanV. Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds—A review.Crit. Rev. Food Sci. Nutr.202262236446646610.1080/10408398.2021.1901651 33792417
    [Google Scholar]
  10. NirmalN.P. KhanashyamA.C. MundanatA.S. Valorization of fruit waste for bioactive compounds and their applications in the food industry.Foods202312355610.3390/foods12030556 36766085
    [Google Scholar]
  11. ComanV. TelekyB.E. MitreaL. Bioactive potential of fruit and vegetable wastes.Adv. Food Nutr. Res.20209115722510.1016/bs.afnr.2019.07.001 32035596
    [Google Scholar]
  12. KumarH. BhardwajK. SharmaR. Fruit and vegetable peels: Utilization of high value horticultural waste in novel industrial applications.Molecules20202512281210.3390/molecules25122812 32570836
    [Google Scholar]
  13. PemD. JeewonR. Fruit and vegetable intake: Benefits and progress of nutrition education interventions- narrative review article.Iran. J. Public Health2015441013091321 26576343
    [Google Scholar]
  14. HussainH. MamadalievaN.Z. HussainA. Fruit peels: Food waste as a valuable source of bioactive natural products for drug discovery.Curr. Issues Mol. Biol.20224451960199410.3390/cimb44050134 35678663
    [Google Scholar]
  15. BhardwajK. NajdaA. SharmaR. Fruit and vegetable peel-enriched functional foods: Potential avenues and health perspectives.Evid. Based Complement. Alternat. Med.2022202211410.1155/2022/8543881 35832524
    [Google Scholar]
  16. DengG.F. ShenC. XuX.R. Potential of fruit wastes as natural resources of bioactive compounds.Int. J. Mol. Sci.20121378308832310.3390/ijms13078308 22942704
    [Google Scholar]
  17. AltemimiA. LakhssassiN. BaharloueiA. WatsonD. LightfootD. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts.Plants2017644210.3390/plants6040042 28937585
    [Google Scholar]
  18. SasidharanS. ChenY. SaravananD. SundramK.M. Yoga LathaL. Extraction, isolation and characterization of bioactive compounds from plants’ extracts.Afr. J. Tradit. Complement. Altern. Med.201181110 22238476
    [Google Scholar]
  19. ZhangQ.W. LinL.G. YeW.C. Techniques for extraction and isolation of natural products: A comprehensive review.Chin. Med.20181312010.1186/s13020‑018‑0177‑x 29692864
    [Google Scholar]
  20. HamedI. JakobsenA.N. LerfallJ. Sustainable edible packaging systems based on active compounds from food processing byproducts: A review.Compr. Rev. Food Sci. Food Saf.202221119822610.1111/1541‑4337.12870 34907649
    [Google Scholar]
  21. FranciniA. PintadoM. ManganarisG.A. FerranteA. Editorial: Bioactive compounds biosynthesis and metabolism in fruit and vegetables.Front Plant Sci20201112910.3389/fpls.2020.00129 32140170
    [Google Scholar]
  22. YuM. GouvinhasI. RochaJ. BarrosA.I.R.N.A. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources.Sci. Rep.20211111004110.1038/s41598‑021‑89437‑4 33976317
    [Google Scholar]
  23. Martínez-IndaB EsparzaI MolerJA Jiménez-MorenoN Ancín-AzpilicuetaC Valorization of agri-food waste through the extraction of bioactive molecules. Prediction of their sunscreen action.J Environ Manage2023325Pt B116460
    [Google Scholar]
  24. ANDRICORYAA The differences in food waste management of tesco company and albert heijn company.Doctoral dissertation, Universitas Islam Indonesia
    [Google Scholar]
  25. LombardiA. FochettiA. VignoliniP. Natural active ingredients for poly (lactic acid)-based materials: State of the art and perspectives.Antioxidants20221110207410.3390/antiox11102074 36290797
    [Google Scholar]
  26. SainiR.K. PrasadP. LokeshV. Carotenoids: Dietary sources, extraction, encapsulation, bioavailability, and health benefits—a review of recent advancements.Antioxidants202211479510.3390/antiox11040795 35453480
    [Google Scholar]
  27. MaqboolZ. KhalidW. AtiqH.T. Citrus waste as source of bioactive compounds: Extraction and utilization in health and food industry.Molecules2023284163610.3390/molecules28041636 36838623
    [Google Scholar]
  28. LyuF. LuizS.F. AzeredoD.R.P. CruzA.G. AjlouniS. RanadheeraC.S. Apple pomace as a functional and healthy ingredient in food products: A review.Processes20208331910.3390/pr8030319
    [Google Scholar]
  29. FrumA. DobreaC.M. RusL.L. Valorization of grape pomace and berries as a new and sustainable dietary supplement: Development, characterization, and antioxidant activity testing.Nutrients20221415306510.3390/nu14153065 35893915
    [Google Scholar]
  30. SzaboK. DiaconeasaZ. CătoiA.F. VodnarD.C. Screening of ten tomato varieties processing waste for bioactive components and their related antioxidant and antimicrobial activities.Antioxidants20198829210.3390/antiox8080292 31398838
    [Google Scholar]
  31. GuI. BalogunO. BrownmillerC. KangH.W. LeeS.O. Bioavailability of citrulline in watermelon flesh, rind, and skin using a human intestinal epithelial caco-2 cell model.Appl. Sci.2023138488210.3390/app13084882
    [Google Scholar]
  32. VarillaC. MarconeM. PaivaL. BaptistaJ. Bromelain, a group of pineapple proteolytic complex enzymes (Ananas comosus) and their possible therapeutic and clinical effects. A Summary.Foods20211010224910.3390/foods10102249 34681298
    [Google Scholar]
  33. HikalW.M. Said-Al AhlH.A.H. BratovcicA. Banana peels: A waste treasure for human being.Evid. Based Complement. Alternat. Med.202220221910.1155/2022/7616452 35600962
    [Google Scholar]
  34. AhmadT. CawoodM. IqbalQ. Phytochemicals in daucus carota and their health benefits—review article.Foods20198942410.3390/foods8090424 31546950
    [Google Scholar]
  35. MarefatiN. GhoraniV. ShakeriF. A review of anti-inflammatory, antioxidant, and immunomodulatory effects of Allium cepa and its main constituents.Pharm. Biol.202159128530010.1080/13880209.2021.1874028 33645419
    [Google Scholar]
  36. HussainA. KausarT. SeharS. Utilization of pumpkin, pumpkin powders, extracts, isolates, purified bioactives and pumpkin based functional food products; a key strategy to improve health in current post COVID 19 period; an updated review.Appl Food Res202222100241
    [Google Scholar]
  37. Angulo-LópezJ.E. Flores-GallegosA.C. Ascacio-ValdesJ.A. Antioxidant dietary fiber sourced from agroindustrial byproducts and its applications.Foods202212115910.3390/foods12010159 36613377
    [Google Scholar]
  38. SelimS. AlbqmiM. Al-SaneaM.M. Valorizing the usage of olive leaves, bioactive compounds, biological activities, and food applications: A comprehensive review.Front. Nutr.20229100834910.3389/fnut.2022.1008349 36424930
    [Google Scholar]
  39. BangarS.P. DunnoK. DhullS.B. Avocado seed discoveries: Chemical composition, biological properties, and industrial food applications.Food Chem. X20221610050710.1016/j.fochx.2022.100507 36573158
    [Google Scholar]
  40. MichelettiL.I. ÉricaM.J. LuizaF.V.A. Beet (Beta vulgaris L.) stalk and leaf supplementation changes the glucose homeostasis and inflammatory markers in the liver of mice exposed to a high-fat diet.Food Chemistry: Molecular Sciences2021210001810.1016/j.fochms.2021.100018 35415624
    [Google Scholar]
  41. Salas-AriasK. Irías-MataA. Sánchez-KopperA. Strawberry Fragaria x ananassa cv. festival: A polyphenol-based phytochemical characterization in fruit and leaf extracts.Molecules2023284186510.3390/molecules28041865 36838852
    [Google Scholar]
  42. MukherjeeP.K. NemaN.K. MaityN. SarkarB.K. Phytochemical and therapeutic potential of cucumber.Fitoterapia20138422723610.1016/j.fitote.2012.10.003 23098877
    [Google Scholar]
  43. VieraW. ShinoharaT. SamaniegoI. Phytochemical composition and antioxidant activity of Passiflora spp. germplasm grown in ecuador.Plants202211332810.3390/plants11030328 35161309
    [Google Scholar]
  44. MoY. MaJ. GaoW. Pomegranate peel as a source of bioactive compounds: A mini review on their physiological functions.Front. Nutr.2022988711310.3389/fnut.2022.887113 35757262
    [Google Scholar]
  45. KumarM. TomarM. AmarowiczR. Guava (Psidium guajava L.) leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities.Foods202110475210.3390/foods10040752 33916183
    [Google Scholar]
  46. RanjanA. RamachandranS. GuptaN. Role of phytochemicals in cancer prevention.Int. J. Mol. Sci.20192020498110.3390/ijms20204981 31600949
    [Google Scholar]
  47. KaltW. CassidyA. HowardL.R. Recent research on the health benefits of blueberries and their anthocyanins.Adv. Nutr.202011222423610.1093/advances/nmz065 31329250
    [Google Scholar]
  48. KimY.M. AbasF. ParkY.S. Bioactivities of phenolic compounds from kiwifruit and persimmon.Molecules20212615440510.3390/molecules26154405 34361562
    [Google Scholar]
  49. González de LlanoD. Moreno-ArribasM.V. BartoloméB. Cranberry polyphenols and prevention against urinary tract infections: Relevant considerations.Molecules20202515352310.3390/molecules25153523 32752183
    [Google Scholar]
  50. PavanR. JainS. Shraddha KumarA. Properties and therapeutic application of bromelain: A review.Biotechnol. Res. Int.201220121610.1155/2012/976203 23304525
    [Google Scholar]
  51. ParkY.S. KimI. DhunganaS.K. Quality characteristics and antioxidant potential of lemon (Citrus limon Burm. f.) seed oil extracted by different methods.Front. Nutr.2021864440610.3389/fnut.2021.644406 34568400
    [Google Scholar]
  52. AğagündüzD. ŞahinT.Ö. YılmazB. EkenciK.D. Duyar ÖzerŞ. CapassoR. Cruciferous vegetables and their bioactive metabolites: From prevention to novel therapies of colorectal cancer.Evid. Based Complement. Alternat. Med.2022202212010.1155/2022/1534083 35449807
    [Google Scholar]
  53. KongY.R. JongY.X. BalakrishnanM. Beneficial role of Carica papaya extracts and phytochemicals on oxidative stress and related diseases: A mini review.Biology202110428710.3390/biology10040287 33916114
    [Google Scholar]
  54. BatihaG.E.S. AlqahtaniA. OjoO.A. Biological properties, bioactive constituents, and pharmacokinetics of some capsicum spp. and capsaicinoids.Int. J. Mol. Sci.20202115517910.3390/ijms21155179 32707790
    [Google Scholar]
  55. AminiM.R. SheikhhosseinF. TalebyanA. BazshahiE. DjafariF. HekmatdoostA. Effects of artichoke supplementation on liver enzymes: A systematic review and meta-analysis of randomized controlled trials.Clin. Nutr. Res.202211322823910.7762/cnr.2022.11.3.228 35949559
    [Google Scholar]
  56. KimH. Castellon-ChicasM.J. ArbizuS. Mango (Mangifera indica L.) Polyphenols: Anti-Inflammatory Intestinal Microbial Health Benefits, and Associated Mechanisms of Actions.Molecules2021269273210.3390/molecules26092732 34066494
    [Google Scholar]
  57. SzymanowskaU. BaraniakB. Antioxidant and potentially anti-inflammatory activity of anthocyanin fractions from pomace obtained from enzymatically treated raspberries.Antioxidants20198829910.3390/antiox8080299 31405151
    [Google Scholar]
  58. Pérez-GálvezA. VieraI. RocaM. Carotenoids and chlorophylls as antioxidants.Antioxidants20209650510.3390/antiox9060505 32526968
    [Google Scholar]
  59. HongS.Y. LanskyE. KangS.S. YangM. A review of pears (Pyrus spp.), ancient functional food for modern times.BMC Complement. Med. Ther.202121121910.1186/s12906‑021‑03392‑1 34470625
    [Google Scholar]
  60. Laveriano-SantosE.P. López-YerenaA. Jaime-RodríguezC. Sweet potato is not simply an abundant food crop: A comprehensive review of its phytochemical constituents, biological activities, and the effects of processing.Antioxidants2022119164810.3390/antiox11091648 36139723
    [Google Scholar]
  61. BeconciniD. FeliceF. FabianoA. SarmentoB. ZambitoY. Di StefanoR. Antioxidant and anti-inflammatory properties of cherry extract: Nanosystems-based strategies to improve endothelial function and intestinal absorption.Foods20209220710.3390/foods9020207 32079234
    [Google Scholar]
  62. ManivannanA. KimJ.H. KimD.S. LeeE.S. LeeH.E. Deciphering the nutraceutical potential of raphanus sativus—A comprehensive overview.Nutrients201911240210.3390/nu11020402 30769862
    [Google Scholar]
  63. MitraS. EmranT.B. ChandranD. Cruciferous vegetables as a treasure of functional foods bioactive compounds: Targeting p53 family in gastrointestinal tract and associated cancers.Front. Nutr.2022995193510.3389/fnut.2022.951935 35990357
    [Google Scholar]
  64. Condurache LazărN.N. CroitoruC. EnachiE. BahrimG.E. StănciucN. RâpeanuG. Eggplant peels as a valuable source of anthocyanins: Extraction, thermal stability and biological activities.Plants202110357710.3390/plants10030577 33803722
    [Google Scholar]
  65. AkhoneM.A. BainsA. TosifM.M. ChawlaP. FogarasiM. FogarasiS. Apricot kernel: Bioactivity, characterization, applications, and health attributes.Foods20221115218410.3390/foods11152184 35892769
    [Google Scholar]
  66. KootiW. DaraeiN. A review of the antioxidant activity of celery (Apium graveolens L).J. Evid. Based Complementary Altern. Med.20172241029103410.1177/2156587217717415 28701046
    [Google Scholar]
  67. MawaS. HusainK. JantanI. Ficus carica L. (Moraceae): Phytochemistry, traditional uses and biological activities.Evid. Based Complement. Alternat. Med.201320131810.1155/2013/974256 24159359
    [Google Scholar]
  68. KoboG.K. KasekeT. FawoleO.A. Micro-encapsulation of phytochemicals in passion fruit peel waste generated on an organic farm: Effect of carriers on the quality of encapsulated powders and potential for value-addition.Antioxidants2022118157910.3390/antiox11081579 36009296
    [Google Scholar]
  69. CastaldoL. IzzoL. GaspariA. Chemical composition of green pea (Pisum sativum L.) pods extracts and their potential exploitation as ingredients in nutraceutical formulations.Antioxidants202111110510.3390/antiox11010105 35052609
    [Google Scholar]
  70. DottoJ.M. ChachaJ.S. The potential of pumpkin seeds as a functional food ingredient: A review.Sci. Am.202010e00575
    [Google Scholar]
  71. AllaqabandS. DarA.H. PatelU. Utilization of fruit seed-based bioactive compounds for formulating the nutraceuticals and functional food: A review.Front. Nutr.2022990255410.3389/fnut.2022.902554 35677543
    [Google Scholar]
  72. ObidiegwuJ.E. LyonsJ.B. ChilakaC.A. The Dioscorea Genus (Yam)—an appraisal of nutritional and therapeutic potentials.Foods202099130410.3390/foods9091304 32947880
    [Google Scholar]
  73. GambaM. AsllanajE. RaguindinP.F. Nutritional and phytochemical characterization of radish (Raphanus sativus): A systematic review.Trends Food Sci. Technol.202111320521810.1016/j.tifs.2021.04.045
    [Google Scholar]
  74. SorrentiV. BuròI. ConsoliV. VanellaL. Recent advances in health benefits of bioactive compounds from food wastes and by-products: Biochemical aspects.Int. J. Mol. Sci.2023243201910.3390/ijms24032019 36768340
    [Google Scholar]
  75. TlaisA.Z.A. FiorinoG.M. PoloA. FilanninoP. Di CagnoR. High-value compounds in fruit, vegetable and cereal byproducts: An overview of potential sustainable reuse and exploitation.Molecules20202513298710.3390/molecules25132987 32629805
    [Google Scholar]
  76. RaoV.A. KimJ.J. PatelD.S. RainsK. EstollC.R. A comprehensive scientific survey of excipients used in currently marketed, therapeutic biological drug products.Pharm. Res.2020371020010.1007/s11095‑020‑02919‑4 32968854
    [Google Scholar]
  77. ŽagarJ. MiheličJ. Big data collection in pharmaceutical manufacturing and its use for product quality predictions.Sci. Data2022919910.1038/s41597‑022‑01203‑x 35322032
    [Google Scholar]
  78. BenucciI. LombardelliC. MazzocchiC. EstiM. Natural colorants from vegetable food waste: Recovery, regulatory aspects, and stability—A review.Compr. Rev. Food Sci. Food Saf.20222132715273710.1111/1541‑4337.12951 35368140
    [Google Scholar]
  79. TylewiczU. TappiS. NowackaM. WiktorA. Safety, quality, and processing of fruits and vegetables.Foods201981156910.3390/foods8110569 31766141
    [Google Scholar]
  80. SlavinJ.L. LloydB. Health benefits of fruits and vegetables.Adv. Nutr.20123450651610.3945/an.112.002154 22797986
    [Google Scholar]
  81. SharmaS. SinghA. SharmaS. Functional foods as a formulation ingredients in beverages: Technological advancements and constraints.Bioengineered2021122110551107510.1080/21655979.2021.2005992 34783642
    [Google Scholar]
  82. NasriH. BaradaranA. ShirzadH. Rafieian-KopaeiM. New concepts in nutraceuticals as alternative for pharmaceuticals.Int. J. Prev. Med.201451214871499 25709784
    [Google Scholar]
  83. Puebla-BarraganS. ReidG. Probiotics in cosmetic and personal care products: Trends and challenges.Molecules2021265124910.3390/molecules26051249 33652548
    [Google Scholar]
  84. WilliamsP.E.V. Engineering plants for animal feed for improved nutritional value.Proc. Nutr. Soc.200362230130910.1079/PNS2003250 14506877
    [Google Scholar]
  85. BaghiF. GharsallaouiA. DumasE. GhnimiS. Advancements in biodegradable active films for food packaging: Effects of nano/microcapsule incorporation.Foods202211576010.3390/foods11050760 35267394
    [Google Scholar]
  86. BušićA. KundasS. MorzakG. Recent trends in biodiesel and biogas production.Food Technol. Biotechnol.201856215217310.17113/ftb.56.02.18.5547 30228791
    [Google Scholar]
  87. BoeingH. BechtholdA. BubA. Critical review: Vegetables and fruit in the prevention of chronic diseases.Eur. J. Nutr.201251663766310.1007/s00394‑012‑0380‑y 22684631
    [Google Scholar]
  88. WangP.Y. FangJ.C. GaoZ.H. ZhangC. XieS.Y. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta‐analysis.J. Diabetes Investig.201671566910.1111/jdi.12376 26816602
    [Google Scholar]
  89. PostemaP. WildeA. The measurement of the QT interval.Curr. Cardiol. Rev.201410328729410.2174/1573403X10666140514103612 24827793
    [Google Scholar]
  90. KoK. DadmohammadiY. AbbaspourradA. Nutritional and bioactive components of pomegranate waste used in food and cosmetic applications: A review.Foods202110365710.3390/foods10030657 33808709
    [Google Scholar]
  91. BaroiA.M. PopitiuM. FierascuI. SărdărescuI.D. FierascuR.C. Grapevine wastes: A rich source of antioxidants and other biologically active compounds.Antioxidants202211239310.3390/antiox11020393 35204275
    [Google Scholar]
  92. HughesR.G. BlegenM.A. Medication administration safety.In: Patient safety and quality: An evidence-based handbook for nurses.2008
    [Google Scholar]
  93. ClaudioL. Our food: Packaging & public health.Environ. Health Perspect.20121206A232A23710.1289/ehp.120‑a232 22659036
    [Google Scholar]
  94. Pérez-MarroquínX.A. Estrada-FernándezA.G. García-CejaA. Aguirre-ÁlvarezG. León-LópezA. Agro-food waste as an ingredient in functional beverage processing: Sources, functionality, market and regulation.Foods2023128158310.3390/foods12081583 37107379
    [Google Scholar]
  95. MüllerP. SchmidM. Intelligent packaging in the food sector: A brief overview.Foods2019811610.3390/foods8010016 30621006
    [Google Scholar]
  96. NcubeL.K. UdeA.U. OgunmuyiwaE.N. ZulkifliR. BeasI.N. Environmental impact of food packaging materials: A review of contemporary development from conventional plastics to polylactic acid based materials.Materials20201321499410.3390/ma13214994 33171895
    [Google Scholar]
  97. LebeloK. MaleboN. MochaneM.J. MasindeM. Chemical contamination pathways and the food safety implications along the various stages of food production: A review.Int. J. Environ. Res. Public Health20211811579510.3390/ijerph18115795 34071295
    [Google Scholar]
  98. PalleriaC. Di PaoloA. GiofrèC. Pharmacokinetic drug-drug interaction and their implication in clinical management.J. Res. Med. Sci.2013187601610 24516494
    [Google Scholar]
  99. CamposD.A. Gómez-GarcíaR. Vilas-BoasA.A. MadureiraA.R. PintadoM.M. Management of fruit industrial by-products—a case study on circular economy approach.Molecules202025232010.3390/molecules25020320 31941124
    [Google Scholar]
  100. LaufenbergG. KunzB. NystroemM. Transformation of vegetable waste into value added products.Bioresour. Technol.200387216719810.1016/S0960‑8524(02)00167‑0 12765356
    [Google Scholar]
  101. BhatiaL. JhaH. SarkarT. SarangiP.K. Food waste utilization for reducing carbon footprints towards sustainable and cleaner environment: A review.Int. J. Environ. Res. Public Health2023203231810.3390/ijerph20032318 36767685
    [Google Scholar]
  102. YangM. ChenL. WangJ. Circular economy strategies for combating climate change and other environmental issues.Environ. Chem. Lett.2023211558010.1007/s10311‑022‑01499‑6
    [Google Scholar]
  103. NcubeL.K. UdeA.U. OgunmuyiwaE.N. ZulkifliR. BeasI.N. An overview of plastic waste generation and management in food packaging industries.Recycling2021611210.3390/recycling6010012
    [Google Scholar]
  104. Marcillo-ParraV. Tupuna-YeroviD.S. GonzálezZ. RualesJ. Encapsulation of bioactive compounds from fruit and vegetable by-products for food application – A review.Trends Food Sci. Technol.2021116112310.1016/j.tifs.2021.07.009
    [Google Scholar]
  105. PradhanP. KriewaldS. CostaL. Urban food systems: How regionalization can contribute to climate change mitigation.Environ. Sci. Technol.20205417105511056010.1021/acs.est.0c02739 32701271
    [Google Scholar]
  106. BaranwalJ. BarseB. FaisA. DeloguG.L. KumarA. Biopolymer: A sustainable material for food and medical applications.Polymers202214598310.3390/polym14050983 35267803
    [Google Scholar]
/content/journals/lff/10.2174/0126669390271001231122051310
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test