Skip to content
2000
Volume 21, Issue 14
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Ursolic acid (UA) is a widely distributed triterpenoid in nature. Due to its easy availability and multiple pharmacological activities, ursolic acid has attracted much attention in the field of medicine and pharmacology. To overcome the disadvantages of bioavailability and poor water solubility during the ursolic acid application, we focused on the synthetic and medicinal properties of UA derivatives modified at C-3 and C-28 sites. This review presents the synthesis of UA derivatives with modification at C-3 and C-28 sites and their pharmacological activity, which may provide some important information for further research and development of UA-based drugs.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180820666230823093545
2024-11-01
2025-01-23
Loading full text...

Full text loading...

References

  1. HodonJ. BorkovaL. PokornyJ. KazakovaA. UrbanM. Design and synthesis of pentacyclic triterpene conjugates and their use in medicinal research.Eur. J. Med. Chem.2019Nov 15 18211165310.1016/j.ejmech.2019.111653 31499360
    [Google Scholar]
  2. HillR.A. ConnollyJ.D. Triterpenoids.Nat. Prod. Rep.202037796299810.1039/C9NP00067D 32055816
    [Google Scholar]
  3. NguyenH.N. UllevigS.L. ShortJ.D. WangL. AhnY.J. AsmisR. Ursolic acid and related analogues: Triterpenoids with broad health benefits.Antioxidants2021108116110.3390/antiox10081161 34439409
    [Google Scholar]
  4. YangH. KimH. KimY. SungS. Cytotoxic activities of naturally occurring oleanane-, ursane-, and lupane-type triterpenes on HepG2 and AGS cells.Pharmacogn. Mag.2017134911812210.4103/0973‑1296.196308 28216894
    [Google Scholar]
  5. ChattopadhyayD. ArunachalamG. MandalA.B. SurT.K. MandalS.C. BhattacharyaS.K. Antimicrobial and anti-inflammatory activity of folklore: Mallotus peltatus leaf extract.J. Ethnopharmacol.2002822-322923710.1016/S0378‑8741(02)00165‑4
    [Google Scholar]
  6. SinghN. MishraB.B. BajpaiS. SinghR.K. TiwariV.K. Natural product based leads to fight against leishmaniasis.Bioorg. Med. Chem.2014221184510.1016/j.bmc.2013.11.048 24355247
    [Google Scholar]
  7. JangS.M. KimM.J. ChoiM.S. KwonE.Y. LeeM.K. Inhibitory effects of ursolic acid on hepatic polyol pathway and glucose production in streptozotocin-induced diabetic mice.Metabolism201059451251910.1016/j.metabol.2009.07.040 19846180
    [Google Scholar]
  8. CheckerR. SandurS.K. SharmaD. PatwardhanR.S. JayakumarS. KohliV. SethiG. AggarwalB.B. SainisK.B. Potent anti-inflammatory activity of ursolic acid, a triterpenoid antioxidant, is mediated through suppression of NF-κB, AP-1 and NF-AT.PLoS One201272e3131810.1371/journal.pone.0031318 22363615
    [Google Scholar]
  9. ChenH. GaoY. WangA. ZhouX. ZhengY. ZhouJ. Evolution in medicinal chemistry of ursolic acid derivatives as anticancer agents.Eur. J. Med. Chem.20159264865510.1016/j.ejmech.2015.01.031 25617694
    [Google Scholar]
  10. DewanganJ. SrivastavaS. MishraS. DivakarA. KumarS. RathS.K. Salinomycin inhibits breast cancer progression via targeting HIF-1α/VEGF mediated tumor angiogenesis in vitro and in vivo.Biochem. Pharmacol.201916432633510.1016/j.bcp.2019.04.026 31028743
    [Google Scholar]
  11. ShanmugamM.K. DaiX. KumarA.P. TanB.K.H. SethiG. BishayeeA. Ursolic acid in cancer prevention and treatment: Molecular targets, pharmacokinetics and clinical studies.Biochem. Pharmacol.201385111579158710.1016/j.bcp.2013.03.006 23499879
    [Google Scholar]
  12. BaglinI. PoumarouxA. NourM. TanK. Mitaine-OfferA.C. Lacaille-DuboisM.A. ChauffertB. CavéC. New ursolic and betulinic derivatives as potential cytotoxic agents.J. Enzyme Inhib. Med. Chem.200318211111710.1080/1475636031000093543 12943194
    [Google Scholar]
  13. MaC.M. CaiS.Q. CuiJ.R. WangR.Q. TuP.F. HattoriM. DaneshtalabM. The cytotoxic activity of ursolic acid derivatives.Eur. J. Med. Chem.200540658258910.1016/j.ejmech.2005.01.001 15922841
    [Google Scholar]
  14. TuH.Y. HuangA.M. WeiB.L. GanK.H. HourT.C. YangS.C. PuY.S. LinC.N. Ursolic acid derivatives induce cell cycle arrest and apoptosis in NTUB1 cells associated with reactive oxygen species.Bioorg. Med. Chem.200917207265727410.1016/j.bmc.2009.08.046 19758808
    [Google Scholar]
  15. MengY.Q. LiuD. CaiL.L. ChenH. CaoB. WangY.Z. The synthesis of ursolic acid derivatives with cytotoxic activity and the investigation of their preliminary mechanism of action.Bioorg. Med. Chem.200917284885410.1016/j.bmc.2008.11.036 19091579
    [Google Scholar]
  16. MengY. SongY. YanZ. XiaY. Synthesis and in vitro cytotoxicity of novel ursolic acid derivatives.Molecules20101564033404010.3390/molecules15064033 20657424
    [Google Scholar]
  17. ShaoJ.W. DaiY.C. XueJ.P. WangJ.C. LinF.P. GuoY.H. In vitro and in vivo anticancer activity evaluation of ursolic acid derivatives.Eur. J. Med. Chem.20114672652266110.1016/j.ejmech.2011.03.050 21514015
    [Google Scholar]
  18. BaiK.K. YuZ. ChenF.L. LiF. LiW.Y. GuoY.H. Synthesis and evaluation of ursolic acid derivatives as potent cytotoxic agents.Bioorg. Med. Chem. Lett.20122272488249310.1016/j.bmcl.2012.02.009 22370266
    [Google Scholar]
  19. ThienD.D. TamN.T. ThienD.G. AnhN.T.H. SungT.V. Zeitschrift Fur Naturforschung Section B-a.J. Chem. Sci.2013682201206
    [Google Scholar]
  20. DongH. YangX. XieJ. XiangL. LiY. OuM. ChiT. LiuZ. YuS. GaoY. ChenJ. ShaoJ. JiaL. UP12, a novel ursolic acid derivative with potential for targeting multiple signaling pathways in hepatocellular carcinoma.Biochem. Pharmacol.201593215116210.1016/j.bcp.2014.11.014 25522955
    [Google Scholar]
  21. HuaS.X. HuangR.Z. YeM.Y. PanY.M. YaoG.Y. ZhangY. WangH.S. Design, synthesis and in vitro evaluation of novel ursolic acid derivatives as potential anticancer agents.Eur. J. Med. Chem.20159543545210.1016/j.ejmech.2015.03.051 25841199
    [Google Scholar]
  22. MengY.Q. ZhangL.F. LiuD.Y. LiuL.W. ZhangY. ZhaoM.J. Synthesis and antitumor activity evaluation of novel ursolic acid derivatives.J. Asian Nat. Prod. Res.201618328028810.1080/10286020.2015.1070830 26524942
    [Google Scholar]
  23. ChenY. HouX. ZhiD. LiC. TianT. SunJ. ZhaoL. ZhaoC. Synthesis, characterization and anticancer activity of oleanolic acid and ursolic acid derivatives.Youji Huaxue201636479580210.6023/cjoc201509002
    [Google Scholar]
  24. HuangR.Z. HuaS.X. LiaoZ.X. HuangX.C. WangH.S. Side chain-functionalized aniline-derived ursolic acid derivatives as multidrug resistance reversers that block the nuclear factor-kappa B (NF-κB) pathway and cell proliferation.MedChemComm2017871421143410.1039/C7MD00105C 30108853
    [Google Scholar]
  25. TianT. LiuX. LeeE.S. SunJ. FengZ. ZhaoL. ZhaoC. Synthesis of novel oleanolic acid and ursolic acid in C-28 position derivatives as potential anticancer agents.Arch. Pharm. Res.201740445846810.1007/s12272‑016‑0868‑8 28101738
    [Google Scholar]
  26. SpivakA. KhalitovaR. NedopekinaD. DzhemilevaL. YunusbaevaM. OdinokovV. D’yakonovV. DzhemilevU. Synthesis and evaluation of anticancer activities of novel c-28 guanidine-functionalized triterpene acid derivatives.Molecules20182311300010.3390/molecules23113000 30453551
    [Google Scholar]
  27. FontanaG. BrunoM. NotarbartoloM. LabbozzettaM. PomaP. SpinellaA. RosselliS. Cytotoxicity of oleanolic and ursolic acid derivatives toward hepatocellular carcinoma and evaluation of NF-κB involvement.Bioorg. Chem.20199010305410.1016/j.bioorg.2019.103054 31212180
    [Google Scholar]
  28. PopovS.A. SemenovaM.D. BaevD.S. FrolovaT.S. ShestopalovM.A. WangC. QiZ. ShultsE.E. TurksM. Synthesis and cytotoxicity of hybrids of 1,3,4- or 1,2,5-oxadiazoles tethered from ursane and lupane core with 1,2,3-triazole.Steroids202016210869810.1016/j.steroids.2020.108698 32687846
    [Google Scholar]
  29. ŞenolH. ÇokuludağK. Sena AktaşA. AtasoyS. DağA. TopçuG. Synthesis of new fatty acid derivatives of oleanane and ursane triterpenoids and investigation of their in vitro cytotoxic effects on 3T3 fibroblast and PC3 prostate cancer cell linesLines.Organic Communications202013311412610.25135/acg.oc.84.20.09.1792
    [Google Scholar]
  30. FengB. ZhaoC. LiJ. YuJ. ZhangY. ZhangX. TianT. ZhaoL. The novel synthetic triterpene methyl 3β-<i>o</i>-[4-(2-aminoethylamino)-4-oxo-butyryl]olean-12-ene-28-oate inhibits breast tumor cell growth in vitro and in vivo.Chem. Pharm. Bull.2020681096297010.1248/cpb.c20‑00353 32999148
    [Google Scholar]
  31. da SilvaE.F. de VargasA.S. WilligJ.B. de OliveiraC.B. ZimmerA.R. PilgerD.A. BuffonA. GnoattoS.C.B. Synthesis and antileukemic activity of an ursolic acid derivative: A potential co-drug in combination with imatinib.Chem. Biol. Interact.202134410953510.1016/j.cbi.2021.109535 34051208
    [Google Scholar]
  32. WuP. TuB. LiangJ. GuoS. CaoN. ChenS. LuoZ. LiJ. ZhengW. TangX. LiD. XuX. LiuW. ZhengX. ShengZ. RobertsA.P. ZhangK. HongW.D. Synthesis and biological evaluation of pentacyclic triterpenoid derivatives as potential novel antibacterial agents.Bioorg. Chem.202110910469210.1016/j.bioorg.2021.104692 33626454
    [Google Scholar]
  33. MathersC.D. LoncarD. Projections of global mortality and burden of disease from 2002 to 2030.PLoS Med.2006311e44210.1371/journal.pmed.0030442 17132052
    [Google Scholar]
  34. JungS.H. HaY.J. ShimE.K. ChoiS.Y. JinJ.L. Yun-ChoiH.S. LeeJ.R. Insulin-mimetic and insulin-sensitizing activities of a pentacyclic triterpenoid insulin receptor activator.Biochem. J.2007403224325010.1042/BJ20061123 17201692
    [Google Scholar]
  35. ZhangW. HongD. ZhouY. ZhangY. ShenQ. LiJ. HuL. LiJ. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake.Biochim. Biophys. Acta, Gen. Subj.20061760101505151210.1016/j.bbagen.2006.05.009 16828971
    [Google Scholar]
  36. WuP. HeP. ZhaoS. HuangT. LuY. ZhangK. Effects of ursolic acid derivatives on Caco-2 cells and their alleviating role in streptozocin-induced type 2 diabetic rats.Molecules2014198125591257610.3390/molecules190812559 25153871
    [Google Scholar]
  37. WuP. ZhengJ. HuangT. LiD. HuQ. ChengA. JiangZ. JiaoL. ZhaoS. ZhangK. Synthesis and evaluation of novel triterpene analogues of ursolic acid as potential antidiabetic agent.PLoS One2015109e013876710.1371/journal.pone.0138767 26406581
    [Google Scholar]
  38. HuangT. WuP. ChengA. QinJ. ZhangK. ZhaoS. A hydrophilic conjugate approach toward the design and synthesis of ursolic acid derivatives as potential antidiabetic agent.RSC Advances2015555442344424610.1039/C5RA05450H
    [Google Scholar]
  39. WuP.P. ZhangB.J. CuiX.P. YangY. JiangZ.Y. ZhouZ.H. ZhongY.Y. MaiY.Y. OuyangZ. ChenH.S. ZhengJ. ZhaoS.Q. ZhangK. Synthesis and biological evaluation of novel ursolic acid analogues as potential α-glucosidase inhibitors.Sci. Rep.2017714557810.1038/srep45578 28358057
    [Google Scholar]
  40. WangC.M. ChenH.T. WuZ.Y. JhanY.L. ShyuC.L. ChouC.H. Antibacterial and synergistic activity of pentacyclic triterpenoids isolated from alstonia scholaris.Molecules201621213910.3390/molecules21020139 26821000
    [Google Scholar]
  41. CunhaW.R. CrevelinE.J. ArantesG.M. CrottiA.E.M. SilvaM.L.A. FurtadoN.A.J.C. AlbuquerqueS. FerreiraD.S. A study of the trypanocidal activity of triterpene acids isolated fromMiconia species.Phytother. Res.200620647447810.1002/ptr.1881 16619351
    [Google Scholar]
  42. TanachatchairatanaT. BremnerJ.B. ChokchaisiriR. SuksamrarnA. Antimycobacterial activity of cinnamate-based esters of the triterpenes betulinic, oleanolic and ursolic acids.Chem. Pharm. Bull.200856219419810.1248/cpb.56.194 18239308
    [Google Scholar]
  43. do NascimentoP. LemosT. BizerraA. ArriagaÂ. FerreiraD. SantiagoG. Braz-FilhoR. CostaJ. Antibacterial and antioxidant activities of ursolic acid and derivatives.Molecules20141911317132710.3390/molecules19011317 24451251
    [Google Scholar]
  44. SilvaG.N.S. Primon-BarrosM. MacedoA.J. GnoattoS.C.B. Triterpene derivatives as relevant scaffold for new antibiofilm drugs.Biomolecules2019925810.3390/biom9020058 30754716
    [Google Scholar]
  45. WuJ. MaS. ZhangT.Y. WeiZ.Y. WangH.M. GuoF.Y. ZhengC.J. PiaoH.R. Synthesis and biological evaluation of ursolic acid derivatives containing an aminoguanidine moiety.Med. Chem. Res.201928795997310.1007/s00044‑019‑02349‑x
    [Google Scholar]
  46. de Brum VieiraP. GiordaniR.B. MacedoA.J. TascaT. Natural and synthetic compound anti-Trichomonas vaginalis: An update review.Parasitol. Res.201511441249126110.1007/s00436‑015‑4340‑3 25786392
    [Google Scholar]
  47. PeixotoJ.A. Andrade e SilvaM.L. CrottiA.E.M. Cassio Sola VenezianiR. GimenezV.M.M. JanuárioA.H. GroppoM. MagalhãesL.G. Dos SantosF.F. AlbuquerqueS. Da Silva FilhoA.A. CunhaW.R. Antileishmanial activity of the hydroalcoholic extract of Miconia langsdorffii, isolated compounds, and semi-synthetic derivatives.Molecules20111621825183310.3390/molecules16021825 21343887
    [Google Scholar]
  48. InnocenteA. SilvaG. CruzL. MoraesM. NakabashiM. SonnetP. GosmannG. GarciaC. GnoattoS. Synthesis and antiplasmodial activity of betulinic acid and ursolic acid analogues.Molecules20121710120031201410.3390/molecules171012003 23085651
    [Google Scholar]
  49. da SilvaG.N.S. MariaN.R.G. SchuckD.C. CruzL.N. de MoraesM.S. NakabashiM. GraebinC. GosmannG. GarciaC.R.S. GnoattoS.C.B. Two series of new semisynthetic triterpene derivatives: differences in anti-malarial activity, cytotoxicity and mechanism of action.Malar. J.20131218910.1186/1475‑2875‑12‑89 23497003
    [Google Scholar]
  50. BitencourtF.G. de Brum VieiraP. MeirellesL.C. RigoG.V. da SilvaE.F. GnoattoS.C.B. TascaT. Anti-Trichomonas vaginalis activity of ursolic acid derivative: a promising alternative.Parasitol. Res.201811751573158010.1007/s00436‑018‑5839‑1 29572567
    [Google Scholar]
  51. CargninS.T. StaudtA.F. MedeirosP. de Medeiros Sol SolD. de Azevedo dos SantosA.P. ZanchiF.B. GosmannG. PuyetA. Garcia TelesC.B. GnoattoS.B. Semisynthesis, cytotoxicity, antimalarial evaluation and structure-activity relationship of two series of triterpene derivatives.Bioorg. Med. Chem. Lett.201828326527210.1016/j.bmcl.2017.12.060 29326018
    [Google Scholar]
  52. CargninS.T. StaudtA.F. MenezesC. AzevedoA.P. FialhoS.N. TascaT. TelesC.B.G. GnoattoS.B. Evaluation of triterpenes derivatives in the viability of leishmania amazonensis and trichomonas vaginalis.Braz. J. Pharm. Sci.201955e1748110.1590/s2175‑97902019000317481
    [Google Scholar]
  53. LuanT. JinC. JinC.M. GongG.H. QuanZ.S. Synthesis and biological evaluation of ursolic acid derivatives bearing triazole moieties as potential anti- Toxoplasma gondii agents.J. Enzyme Inhib. Med. Chem.201934176177210.1080/14756366.2019.1584622 30836795
    [Google Scholar]
  54. SuhN. HondaT. FinlayH.J. BarchowskyA. WilliamsC. BenoitN.E. XieQ.W. NathanC. GribbleG.W. SpornM.B. Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) in mouse macrophages.Cancer Res.1998584717723 9485026
    [Google Scholar]
  55. ZerinT. LeeM. JangW.S. NamK.W. SongH.Y. Anti-inflammatory potential of ursolic acid in Mycobacterium tuberculosis-sensitized and Concanavalin A-stimulated cells.Mol. Med. Rep.20161332736274410.3892/mmr.2016.4840 26847129
    [Google Scholar]
  56. WeiZ.Y. ChiK.Q. WangK.S. WuJ. LiuL.P. PiaoH.R. Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents.Bioorg. Med. Chem. Lett.201828101797180310.1016/j.bmcl.2018.04.021 29678461
    [Google Scholar]
  57. LiC. ChenJ. YuanW. ZhangW. ChenH. TanH. Preventive effect of ursolic acid derivative on particulate matter 2.5‐induced chronic obstructive pulmonary disease involves suppression of lung inflammation.IUBMB Life202072463264010.1002/iub.2201 31840927
    [Google Scholar]
  58. ZhangT.Y. LiC.S. CaoL.T. BaiX.Q. ZhaoD.H. SunS.M. New ursolic acid derivatives bearing 1,2,3-triazole moieties: Design, synthesis and anti-inflammatory activity in vitro and in vivo.Mol. Divers.20222621129113910.1007/s11030‑021‑10236‑0 34080112
    [Google Scholar]
  59. DengS.L. BaglinI. NourM. FlekhterO. VitaC. CavéC. Synthesis of ursolic phosphonate derivatives as potential anti-hiv agents.Phosphorus Sulfur Silicon Relat. Elem.2007182595196710.1080/10426500601088838
    [Google Scholar]
  60. KazakovaO.B. GiniyatullinaG.V. YamansarovE.Y. TolstikovG.A. Betulin and ursolic acid synthetic derivatives as inhibitors of Papilloma virus.Bioorg. Med. Chem. Lett.201020144088409010.1016/j.bmcl.2010.05.083 20558062
    [Google Scholar]
  61. da SilvaG.N.S. TrindadeF.T.T. dos SantosF. GosmannG. e SilvaA.A. GnoattoS.C.B. Larvicidal activity of natural and modified triterpenoids against Aedes aegypti (Diptera: Culicidae).Pest Manag. Sci.201672101883188710.1002/ps.4221 27501778
    [Google Scholar]
  62. ZouL.W. DouT.Y. WangP. LeiW. WengZ.M. HouJ. WangD.D. FanY.M. ZhangW.D. GeG.B. YangL. Structure-Activity Relationships of Pentacyclic Triterpenoids as Potent and Selective Inhibitors against Human Carboxylesterase 1.Front. Pharmacol.2017843510.3389/fphar.2017.00435 28713276
    [Google Scholar]
/content/journals/lddd/10.2174/1570180820666230823093545
Loading
/content/journals/lddd/10.2174/1570180820666230823093545
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test