Skip to content
2000
Volume 21, Issue 14
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Methylene blue and some of its analogues have known antibacterial activity, however their exact mechanism of action is unknown.

Objective

In this study, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of several methylene blue analogues were determined against five bacterial strains, whereafter the data were used to create and validate a pharmacophore model.

Methods

The agar dilution method was used to screen the analogues for antibacterial activity, while the broth microdilution method was used to determine their MIC and MBC. A pharmacophore model was constructed and validated using the rank score, fit value, enrichment factor (EF10%), hit rate (HR10%) and receiver operating characteristic area under the curve (ROC-AUC) as metrics.

Results

Against , pyronin B (0.125 µg/ml) was more active than tetracycline 
(1 µg/ml) and pyronin Y (0.5 µg/ml), 1,9-dimethylmethylene blue (2 µg/ml), basic blue 3 (2 µg/ml), new methylene blue (2 µg/ml) and Nile blue (2 µg/ml) had similar activity compared to tetracycline. Pyronin B, 1,9-dimethylmethylene blue and new methylene blue were bactericidal. A pharmacophore model was created (rank score: 36.55, max. fit value: 3), which was able to identify active analogues out of the test set (EF10%: 2.83, HR10%: 28.57%, ROC-AUC: 0.84 ± 0.04). The pharmacophore model highlighted that a positive ionisable, aromatic ring as well as a hydrophobic moiety are important for antibacterial activity.

Conclusion

Methylene blue analogues were found to have potent antibacterial activity and a pharmacophore model was created to understand the structural requirements for activity.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180820666230725110021
2024-11-01
2025-01-24
Loading full text...

Full text loading...

References

  1. SingerA.C. KirchhelleC. RobertsA.P. (Inter)nationalising the antibiotic research and development pipeline.Lancet Infect. Dis.2020202e54e6210.1016/S1473‑3099(19)30552‑3 31753765
    [Google Scholar]
  2. AshS.R. SteczkoJ. BrewerL.B. WingerR.K. Microbial inactivation properties of methylene blue-citrate solution.ASAIO J.2006522112010.1097/00002480‑200603000‑00063
    [Google Scholar]
  3. EdwardsK. New twist on an old favorite: Gentian violet and methylene blue antibacterial foams.Adv. Wound Care (New Rochelle)201651111810.1089/wound.2014.0593 26858911
    [Google Scholar]
  4. LiR. ChenJ. CesarioT.C. WangX. YuanJ.S. RentzepisP.M. Synergistic reaction of silver nitrate, silver nanoparticles, and methylene blue against bacteria.Proc. Natl. Acad. Sci. USA201611348136121361710.1073/pnas.1611193113 27849602
    [Google Scholar]
  5. ThesnaarL. BezuidenhoutJ.J. PetzerA. PetzerJ.P. CloeteT.T. Methylene blue analogues: In vitro antimicrobial minimum inhibitory concentrations and in silico pharmacophore modelling.Eur. J. Pharm. Sci.202115710560310.1016/j.ejps.2020.105603 33091571
    [Google Scholar]
  6. AparoyP. Kumar ReddyK. ReddannaP. Structure and ligand based drug design strategies in the development of novel 5- LOX inhibitors.Curr. Med. Chem.201219223763377810.2174/092986712801661112 22680930
    [Google Scholar]
  7. LeeC.H. HuangH.C. JuanH.F. Reviewing ligand-based rational drug design: The search for an ATP synthase inhibitor.Int. J. Mol. Sci.20111285304531810.3390/ijms12085304 21954360
    [Google Scholar]
  8. MacalinoS.J.Y. GosuV. HongS. ChoiS. Role of computer-aided drug design in modern drug discovery.Arch. Pharm. Res.20153891686170110.1007/s12272‑015‑0640‑5 26208641
    [Google Scholar]
  9. HawkinsP.C.D. SkillmanA.G. NichollsA. Comparison of shape-matching and docking as virtual screening tools.J. Med. Chem.2007501748210.1021/jm0603365 17201411
    [Google Scholar]
  10. PascualR. AlmansaC. Plata-SalamánC. VelaJ.M. A new pharmacophore model for the design of sigma-1 ligands validated on a large experimental dataset.Front. Pharmacol.20191051910.3389/fphar.2019.00519 31214020
    [Google Scholar]
  11. WiegandI. HilpertK. HancockR.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances.Nat. Protoc.20083216317510.1038/nprot.2007.521 18274517
    [Google Scholar]
  12. CockerillF.R. WiklerM.A. AlderJ. DudleyM.N. EliopoulosG.M. FerraroM.J. HardyD.J. HechtD.W. HindlerJ.A. PatelJ.B. PowellM. SwensonJ.M. ThomsonR.B. TraczewskiM.M. TurnbrigheJ.D. WeinsteinM.P. ZimmerB.L. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically.9th edWayne, PAClinical and Laboratory Standards Institute2012M07a9
    [Google Scholar]
  13. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution.Clin. Microbiol. Infect.200398ixxv10.1046/j.1469‑0691.2003.00790.x
    [Google Scholar]
  14. HacekD.M. DresselD.C. PetersonL.R. Highly reproducible bactericidal activity test results by using a modified national committee for clinical laboratory standards broth macrodilution technique.J. Clin. Microbiol.19993761881188410.1128/JCM.37.6.1881‑1884.1999 10325341
    [Google Scholar]
  15. EagleH. MusselmanA.D. The slow recovery of bacteria from the toxic effects of penicillin.J. Bacteriol.194958447549010.1128/jb.58.4.475‑490.1949 16561809
    [Google Scholar]
  16. MotylM. DorsoK. BarrettJ. GiacobbeR. Basic microbiological techniques used in antibacterial drug discovery.Curr. Protoc.200531313A10.1002/0471141755.ph13a03s31
    [Google Scholar]
  17. MoutonJ.W. VinksA.A. Relationship between minimum inhibitory concentration and stationary concentration revisited: Growth rates and minimum bactericidal concentrations.Clin. Pharmacokinet.200544776776810.2165/00003088‑200544070‑00007 15966758
    [Google Scholar]
  18. JohnS. ThangapandianS. AroojM. HongJ.C. KimK.D. LeeK.W. Development, evaluation and application of 3D QSAR Pharmacophore model in the discovery of potential human renin inhibitors.BMC Bioinformatics201112S14Suppl. 14S410.1186/1471‑2105‑12‑S14‑S4 22372967
    [Google Scholar]
  19. QingX. LeeX.Y. de RaeymaekerJ. ZhangK.Y. PeiJ. Pharmacophore modeling: Advances, limitations, and current utility in drug discovery.J. Receptor Ligand Channel Res.201478192
    [Google Scholar]
  20. MysingerM.M. CarchiaM. IrwinJ.J. ShoichetB.K. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking.J. Med. Chem.201255146582659410.1021/jm300687e 22716043
    [Google Scholar]
  21. TripathiA.C. SonarP.K. RathoreR. SarafS.K. Structural insights into the molecular design of HER2 inhibitors.Open Pharm. Sci. J.20163116418110.2174/1874844901603010164
    [Google Scholar]
  22. ChenH. LyneP.D. GiordanettoF. LovellT. LiJ. On evaluating molecular-docking methods for pose prediction and enrichment factors.J. Chem. Inf. Model.200646140141510.1021/ci0503255 16426074
    [Google Scholar]
  23. WeiB.Q. BaaseW.A. WeaverL.H. MatthewsB.W. ShoichetB.K. A model binding site for testing scoring functions in molecular docking.J. Mol. Biol.2002322233935510.1016/S0022‑2836(02)00777‑5 12217695
    [Google Scholar]
  24. HamzaA. WeiN.N. ZhanC.G. Ligand-based virtual screening approach using a new scoring function.J. Chem. Inf. Model.201252496397410.1021/ci200617d 22486340
    [Google Scholar]
  25. BreijyehZ. JubehB. KaramanR. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it.Molecules2020256134010.3390/molecules25061340 32187986
    [Google Scholar]
  26. ParasuramanP. R y, T.; Shaji, C.; Sharan, A.; Bahkali, A.H.; Al-Harthi, H.F.; Syed, A.; Anju, V.T.; Dyavaiah, M.; Siddhardha, B. Biogenic silver nanoparticles decorated with methylene blue potentiated the photodynamic inactivation of Pseudomonas aeruginosa and Staphylococcus aureus.Pharmaceutics202012870910.3390/pharmaceutics12080709 32751176
    [Google Scholar]
  27. XuX. HuY. ZhangL. LiuB. YangY. TangT. TianJ. PengK. LiuT. Lactic- co -glycolic acid-coated methylene blue nanoparticles with enhanced antibacterial activity for efficient wound healing.RSC Advances20201021123041230710.1039/D0RA01034K 35497590
    [Google Scholar]
  28. ZingueD. BouamA. TianR.B.D. DrancourtM. Buruli ulcer, a prototype for ecosystem-related infection, caused by Mycobacterium ulcerans.Clin. Microbiol. Rev.201731131 29237707
    [Google Scholar]
  29. HeylenE. NeytsJ. JochmansD. Drug candidates and model systems in respiratory syncytial virus antiviral drug discovery.Biochem. Pharmacol.201712711210.1016/j.bcp.2016.09.014 27659812
    [Google Scholar]
  30. VillagraN.A. HidalgoA.A. SantiviagoC.A. SaavedraC.P. MoraG.C. Smva, and not acrb, is the major efflux pump for acriflavine and related compounds in Salmonella enterica serovar typhimurium.J. Antimicrob. Chemother.20086261273127610.1093/jac/dkn407 18819967
    [Google Scholar]
  31. FengJ. ShiW. ZhangS. ZhangY. Identification of new compounds with high activity against stationary phase Borrelia burgdorferi from the NCI compound collection.Emerg. Microbes Infect.20154111510.1038/emi.2015.31 26954881
    [Google Scholar]
  32. GriggG.W. EdwardsM.J. BrownD.J. Effects of coumarin, thiopurines, and pyronin Y on amplification of phleomycin-induced death and deoxyribonucleic acid breakdown in Escherichia coli.J. Bacteriol.1971107359960910.1128/jb.107.3.599‑609.1971 4937777
    [Google Scholar]
  33. KernW.V. SteinkeP. SchumacherA. SchusterS. BaumH. BohnertJ.A. Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli.J. Antimicrob. Chemother.200657233934310.1093/jac/dki445 16354747
    [Google Scholar]
  34. KaatzG.W. MoudgalV.V. SeoS.M. KristiansenJ.E. Phenothiazines and thioxanthenes inhibit multidrug efflux pump activity in Staphylococcus aureus.Antimicrob. Agents Chemother.200347271972610.1128/AAC.47.2.719‑726.2003 12543683
    [Google Scholar]
  35. ShanholtzerC.J. PetersonL.R. MohnM.L. MoodyJ.A. GerdingD.N. MBCs for Staphylococcus aureus as determined by macrodilution and microdilution techniques.Antimicrob. Agents Chemother.198426221421910.1128/AAC.26.2.214 6486764
    [Google Scholar]
  36. JarradA.M. BlaskovichM.A.T. PrasetyoputriA. KaroliT. HansfordK.A. CooperM.A. Detection and investigation of eagle effect resistance to vancomycin in Clostridium difficile With an ATP-bioluminescence assay.Front. Microbiol.20189142010.3389/fmicb.2018.01420 30013531
    [Google Scholar]
  37. WuM.L. TanJ. DickT. Eagle effect in nonreplicating persister mycobacteria.Antimicrob. Agents Chemother.201559127786778910.1128/AAC.01476‑15 26349831
    [Google Scholar]
  38. Gresser-BurnsM.E. ShanholtzerC.J. PetersonL.R. GerdingD.N. Occurrence and reproducibility of the “skip” phenomenon in bactericidal testing of Staphylococcus aureus.Diagn. Microbiol. Infect. Dis.19876433534210.1016/0732‑8893(87)90184‑2 3581738
    [Google Scholar]
  39. Kowalska-KrochmalB. Dudek-WicherR. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance.Pathogens202110216510.3390/pathogens10020165 33557078
    [Google Scholar]
  40. HannanP.C.T. Guidelines and recommendations for antimicrobial minimum inhibitory concentration (MIC) testing against veterinary mycoplasma species.Vet. Res.200031437339510.1051/vetres:2000100 10958240
    [Google Scholar]
  41. WuG. YangQ. LongM. GuoL. LiB. MengY. ZhangA. WangH. LiuS. ZouL. Evaluation of agar dilution and broth microdilution methods to determine the disinfectant susceptibility.J. Antibiot.2015681166166510.1038/ja.2015.51 25944532
    [Google Scholar]
  42. SakkiahS. ThangapandianS. KimY.S. LeeK.W. Pharmacophore modeling and molecular dynamics simulation to find the potent leads for aurora kinase B.Bull. Korean Chem. Soc.201233386988010.5012/BKCS.2012.33.3.869
    [Google Scholar]
/content/journals/lddd/10.2174/1570180820666230725110021
Loading
/content/journals/lddd/10.2174/1570180820666230725110021
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test