Skip to content
2000
Volume 21, Issue 13
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Novel antibiotics are needed to stem the rise of antimicrobial resistance. N-Methyl-2-phenylmaleimide (NMP) compounds previously synthesised by our research group are structural analogues of 2,3,5-substituted perhydropyrrolo[3,4-]isoxazole-4,6-diones found by others to have antibacterial activity.

Objectives

This study aims to explain the significance of NMPs and their antibacterial activity. The antibacterial activity of the NMPs was determined against , , , and . The partition coefficient of the NMPs and a pharmacophore model were used to explain their antibacterial activity.

Methods

The Kirby Bauer Disc diffusion method was used to screen the NMPs for activity, while the broth microdilution method was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the active NMPs. Using the antibacterial activity of 2,3,5-substituted perhydropyrrolo[3,4-]isoxazole-4,6-diones, a common feature pharmacophore model was constructed and validated. The rank score, fit value, enrichment factor (EF20%), and receiver operating characteristic area under the curve (ROC-AUC) were used as validation metrics.

Results

The NMPs were only active against , with compound (4 µg/ml) being the most active. The majority of NMPs were bacteriostatic. A common feature pharmacophore model was validated (rank score: 120.5; fit value: 4; EF20%: 4.3; ROC-AUC: 0.9 ± 0.03) and showed that three hydrogen bond acceptors and a ring aromatic region are important for activity. Comparing the partition coefficient of the NMPs to their MIC a statistically significant correlation was found.

Conclusion

NMPs can be used as lead compounds in future studies. The validated pharmacophore model and partition coefficient can be used to develop more active compounds.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180820666230731144315
2023-10-27
2025-06-30
Loading full text...

Full text loading...

References

  1. MurrayC.J.L. IkutaK.S. ShararaF. SwetschinskiL. Robles AguilarG. GrayA. HanC. BisignanoC. RaoP. WoolE. JohnsonS.C. BrowneA.J. ChipetaM.G. FellF. HackettS. Haines-WoodhouseG. Kashef HamadaniB.H. KumaranE.A.P. McManigalB. AchalapongS. AgarwalR. AkechS. AlbertsonS. AmuasiJ. AndrewsJ. AravkinA. AshleyE. BabinF-X. BaileyF. BakerS. BasnyatB. BekkerA. BenderR. BerkleyJ.A. BethouA. BielickiJ. BoonkasidechaS. BukosiaJ. CarvalheiroC. Castañeda-OrjuelaC. ChansamouthV. ChaurasiaS. ChiurchiùS. ChowdhuryF. Clotaire DonatienR. CookA.J. CooperB. CresseyT.R. Criollo-MoraE. CunninghamM. DarboeS. DayN.P.J. De LucaM. DokovaK. DramowskiA. DunachieS.J. Duong BichT. EckmannsT. EibachD. EmamiA. FeaseyN. Fisher-PearsonN. ForrestK. GarciaC. GarrettD. GastmeierP. GirefA.Z. GreerR.C. GuptaV. HallerS. HaselbeckA. HayS.I. HolmM. HopkinsS. HsiaY. IregbuK.C. JacobsJ. JarovskyD. JavanmardiF. JenneyA.W.J. KhoranaM. KhusuwanS. KissoonN. KobeissiE. KostyanevT. KrappF. KrumkampR. KumarA. KyuH.H. LimC. LimK. LimmathurotsakulD. LoftusM.J. LunnM. MaJ. ManoharanA. MarksF. MayJ. MayxayM. MturiN. Munera-HuertasT. MusichaP. MusilaL.A. Mussi-PinhataM.M. NaiduR.N. NakamuraT. NanavatiR. NangiaS. NewtonP. NgounC. NovotneyA. NwakanmaD. ObieroC.W. OchoaT.J. Olivas-MartinezA. OlliaroP. OokoE. Ortiz-BrizuelaE. OunchanumP. PakG.D. ParedesJ.L. PelegA.Y. PerroneC. PheT. PhommasoneK. PlakkalN. Ponce-de-LeonA. RaadM. RamdinT. RattanavongS. RiddellA. RobertsT. RobothamJ.V. RocaA. RosenthalV.D. RuddK.E. RussellN. SaderH.S. SaengchanW. SchnallJ. ScottJ.A.G. SeekaewS. SharlandM. ShivamallappaM. Sifuentes-OsornioJ. SimpsonA.J. SteenkesteN. StewardsonA.J. StoevaT. TasakN. ThaiprakongA. ThwaitesG. TigoiC. TurnerC. TurnerP. van DoornH.R. VelaphiS. VongpradithA. VongsouvathM. VuH. WalshT. WalsonJ.L. WanerS. WangrangsimakulT. WannapinijP. WozniakT. Young SharmaT.E.M.W. YuK.C. ZhengP. SartoriusB. LopezA.D. StergachisA. MooreC. DolecekC. NaghaviM. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis.Lancet20223991032562965510.1016/S0140‑6736(21)02724‑0 35065702
    [Google Scholar]
  2. LaxminarayanR. The overlooked pandemic of antimicrobial resistance.Lancet20223991032560660710.1016/S0140‑6736(22)00087‑3 35065701
    [Google Scholar]
  3. RiceL.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE.J. Infect. Dis.200819781079108110.1086/533452 18419525
    [Google Scholar]
  4. MulaniM.S. KambleE.E. KumkarS.N. TawreM.S. PardesiK.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review.Front. Microbiol.20191053910.3389/fmicb.2019.00539 30988669
    [Google Scholar]
  5. AgirbasH. GunerS. BudakF. KeceliS. KandemirliF. ShvetsN. KovalishynV. DimogloA. Synthesis and structure–antibacterial activity relationship investigation of isomeric 2,3,5-substituted perhydropyrrolo[3,4-d]isoxazole-4,6-diones.Bioorg. Med. Chem.20071562322233310.1016/j.bmc.2007.01.029 17276071
    [Google Scholar]
  6. Manley-KingC.I. Terre’BlancheG. CastagnoliN.Jr BerghJ.J. PetzerJ.P. Inhibition of monoamine oxidase B by N-methyl-2-phenylmaleimides.Bioorg. Med. Chem.20091783104311010.1016/j.bmc.2009.03.005 19324554
    [Google Scholar]
  7. PushpakomS. IorioF. EyersP.A. EscottK.J. HopperS. WellsA. DoigA. GuilliamsT. LatimerJ. McNameeC. NorrisA. SanseauP. CavallaD. PirmohamedM. Drug repurposing: progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.168 30310233
    [Google Scholar]
  8. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: a powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/157340911795677602 21534921
    [Google Scholar]
  9. LeeC.H. HuangH.C. JuanH.F. Reviewing ligand-based rational drug design: the search for an ATP synthase inhibitor.Int. J. Mol. Sci.20111285304531810.3390/ijms12085304 21954360
    [Google Scholar]
  10. VuorinenA. EngeliR. MeyerA. BachmannF. GriesserU.J. SchusterD. OdermattA. Ligand-based pharmacophore modeling and virtual screening for the discovery of novel 17β-hydroxysteroid dehydrogenase 2 inhibitors.J. Med. Chem.201457145995600710.1021/jm5004914 24960438
    [Google Scholar]
  11. PascualR. AlmansaC. Plata-SalamánC. VelaJ.M. A New Pharmacophore Model for the Design of Sigma-1 Ligands Validated on a Large Experimental Dataset.Front. Pharmacol.20191051910.3389/fphar.2019.00519 31214020
    [Google Scholar]
  12. TriballeauN. AcherF. BrabetI. PinJ.P. BertrandH.O. Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4.J. Med. Chem.20054872534254710.1021/jm049092j 15801843
    [Google Scholar]
  13. ThesnaarL. BezuidenhoutJ.J. PetzerA. PetzerJ.P. CloeteT.T. Methylene blue analogues: In vitro antimicrobial minimum inhibitory concentrations and in silico pharmacophore modelling.Eur. J. Pharm. Sci.202115710560310563110.1016/j.ejps.2020.105603 33091571
    [Google Scholar]
  14. HudzickiJ. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol.Am. Soc. Microbiol.20092009123
    [Google Scholar]
  15. CockerillF.R. WiklerM.A. AlderJ. DudleyM.N. EliopoulosG.M. FerraroM.J. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, M07-A9, 32(2).PAClinical and laboratory standards institute2012
    [Google Scholar]
  16. WiegandI. HilpertK. HancockR.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances.Nat. Protoc.20083216317510.1038/nprot.2007.521 18274517
    [Google Scholar]
  17. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution.Clin. Microbiol. Infect.200398ixxv10.1046/j.1469‑0691.2003.00790.x
    [Google Scholar]
  18. HacekD.M. DresselD.C. PetersonL.R. Highly reproducible bactericidal activity test results by using a modified National Committee for Clinical Laboratory Standards broth macrodilution technique.J. Clin. Microbiol.19993761881188410.1128/JCM.37.6.1881‑1884.1999 10325341
    [Google Scholar]
  19. MotylM. DorsoK. BarrettJ. GiacobbeR. Basic microbiological techniques used in antibacterial drug discovery.Curr. Protoc.2005311310.1002/0471141755.ph13a03s31
    [Google Scholar]
  20. ChenH. LyneP.D. GiordanettoF. LovellT. LiJ. On evaluating molecular-docking methods for pose prediction and enrichment factors.J. Chem. Inf. Model.200646140141510.1021/ci0503255 16426074
    [Google Scholar]
  21. WeiB.Q. BaaseW.A. WeaverL.H. MatthewsB.W. ShoichetB.K. A model binding site for testing scoring functions in molecular docking.J. Mol. Biol.2002322233935510.1016/S0022‑2836(02)00777‑5 12217695
    [Google Scholar]
  22. MysingerM.M. CarchiaM. IrwinJ.J. ShoichetB.K. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking.J. Med. Chem.201255146582659410.1021/jm300687e 22716043
    [Google Scholar]
  23. HamzaA. WeiN.N. ZhanC.G. Ligand-based virtual screening approach using a new scoring function.J. Chem. Inf. Model.201252496397410.1021/ci200617d 22486340
    [Google Scholar]
  24. ACD/ChemSketch (Free ware) 2021.1.2; ACD/Labs: Toronto.Available from: http://www.acdlabs.com/resources/freeware/chemsketch 2021
  25. BergazinT.D. TielkerN. ZhangY. MaoJ. GunnerM.R. FranciscoK. BallatoreC. KastS.M. MobleyD.L. Evaluation of log P, pKa, and log D predictions from the SAMPL7 blind challenge.J. Comput. Aided Mol. Des.202135777180210.1007/s10822‑021‑00397‑3 34169394
    [Google Scholar]
  26. BreijyehZ. JubehB. KaramanR. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It.Molecules20202561340136310.3390/molecules25061340 32187986
    [Google Scholar]
  27. ShanholtzerC.J. PetersonL.R. MohnM.L. MoodyJ.A. GerdingD.N. MBCs for Staphylococcus aureus as determined by macrodilution and microdilution techniques.Antimicrob. Agents Chemother.1984262214219 https://doi.org/10.1128%2Faac.26.2.214 10.1128/AAC.26.2.2146486764
    [Google Scholar]
  28. EagleH. MusselmanA.D. The slow recovery of bacteria from the toxic effects of penicilin.J. Bacteriol.194958447549010.1128/jb.58.4.475‑490.1949 16561809
    [Google Scholar]
  29. JarradA.M. BlaskovichM.A.T. PrasetyoputriA. KaroliT. HansfordK.A. CooperM.A. Detection and investigation of eagle effect resistance to vancomycin in Clostridium difficile With an ATP-bioluminescence assay.Front. Microbiol.201891420142010.3389/fmicb.2018.01420 30013531
    [Google Scholar]
  30. HuH. XiaJ. WangD. WangX. WuS. A Thoroughly Validated Virtual Screening Strategy for Discovery of Novel HDAC3 Inhibitors.Int. J. Mol. Sci.201718113710.3390/ijms18010137 28106794
    [Google Scholar]
  31. TromelinA. KoensgenF. AudouzeK. GuichardE. Thomas-DanguinT. Exploring the Characteristics of an Aroma-Blending Mixture by Investigating the Network of Shared Odors and the Molecular Features of Their Related Odorants.Molecules20202513303210.3390/molecules25133032 32630789
    [Google Scholar]
  32. SakkiahS. ThangapandianS. KimY.S. LeeK.W. Pharmacophore Modeling and Molecular Dynamics Simulation to Find the Potent Leads for Aurora Kinase B.Bull. Korean Chem. Soc.201233386988010.5012/bkcs.2012.33.3.869
    [Google Scholar]
  33. GaoY. GesenbergC. ZhengW. Oral Formulations for Preclinical Studies.Developing Solid Oral Dosage Forms QiuY. ZhangG.G. MantriR.V. ChenY. YuL. Elsevier201745549510.1016/B978‑0‑12‑802447‑8.00017‑0
    [Google Scholar]
  34. MandalA. PatelM. ShengY. MitraA.K. Design of Lipophilic Prodrugs to Improve Drug Delivery and Efficacy.Curr. Drug Targets201617151773179810.2174/1389450117666151209115431 26648076
    [Google Scholar]
  35. TokuyamaR. TakahashiY. TomitaY. TsubouchiM. YoshidaT. IwasakiN. KadoN. OkezakiE. NagataO. Structure-activity relationship (SAR) studies on oxazolidinone antibacterial agents. 2. Relationship between lipophilicity and antibacterial activity in 5-thiocarbonyl oxazolidinones.Chem. Pharm. Bull. (Tokyo)200149435336010.1248/cpb.49.353 11310657
    [Google Scholar]
  36. EcheverríaJ. OpazoJ. MendozaL. UrzúaA. WilkensM. Structure-Activity and Lipophilicity Relationships of Selected Antibacterial Natural Flavones and Flavanones of Chilean Flora.Molecules201722460810.3390/molecules22040608 28394271
    [Google Scholar]
  37. BrownP. AbdulleO. BoakesS. DivallN. DuperchyE. GaneshwaranS. LesterR. MossS. RiversD. SimonovicM. SinghJ. StanwayS. WilsonA. DawsonM.J. Influence of Lipophilicity on the Antibacterial Activity of Polymyxin Derivatives and on Their Ability to Act as Potentiators of Rifampicin.ACS Infect. Dis.20217489490510.1021/acsinfecdis.0c00917 33688718
    [Google Scholar]
  38. Podunavac-KuzmanovicS.O. CvetkovicD.D. BarnaD.J. The effect of lipophilicity on the antibacterial activity of some 1-benzylbenzimidazole derivatives.J. Serb. Chem. Soc.2008731096797810.2298/JSC0810967P
    [Google Scholar]
  39. SalewskaN. Boros-MajewskaJ. ŁąckaI. ChylińskaK. SabiszM. MilewskiS. MilewskaM.J. Chemical reactivity and antimicrobial activity of N -substituted maleimides.J. Enzyme Inhib. Med. Chem.201227111712410.3109/14756366.2011.580455 21612375
    [Google Scholar]
  40. SadiqA. MahmoodF. UllahF. AyazM. AhmadS. HaqF.U. KhanG. JanM.S. Synthesis, anticholinesterase and antioxidant potentials of ketoesters derivatives of succinimides: a possible role in the management of Alzheimer’s.Chem. Cent. J.2015913110.1186/s13065‑015‑0107‑2 26064188
    [Google Scholar]
/content/journals/lddd/10.2174/1570180820666230731144315
Loading
/content/journals/lddd/10.2174/1570180820666230731144315
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test