Skip to content
2000
Volume 21, Issue 13
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

The investigation is devoted to the assessment of the potential antimicrobial use of new chalcogen-functionalized thiazolo[2,3-]quinazolin-5-ones, halides and trihalides of thiazolo[3,2-]quinazolin-10-ium and tribromides thiazino[3,2-]quinazolin-11-ium. The compounds under study were obtained by electrophilic intramolecular heterocyclization. A high bactericidal and fungicidal effect against some gram-positive and gram-negative bacteria and fungi has been revealed for the investigated compounds. The “structure-activity” relationship has been established; the influence of the chalcogen's nature and the type of substituents in the thiazoline and pyrimidine cycles on the biological activity of the investigated thiazolo- and thiazinoquinazolines is shown. Angular 4-methyl-5-oxo-1-((trihalogenotellanyl)methylidene)-8-(trifluoromethyl)-1,2,4,5-tetrahydrothiazolo[3,2-]quinazolin-10-ium halides have been found to show the highest bactericidal activity to the gram-negative culture of .

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180820666230726160348
2023-09-07
2025-07-15
Loading full text...

Full text loading...

References

  1. AsifM. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives.Int. J. Med. Chem.2014201412710.1155/2014/395637 25692041
    [Google Scholar]
  2. KeshariA.K. SinghA.K. RajV. RaiA. TrivediP. GhoshB. KumarU. RawatA. KumarD. SahaS. p-TSA-promoted syntheses of 5H-benzo[h]thiazolo[2,3-b]quinazoline and indeno[1,2-d]thiazolo[3,2-a]pyrimidine analogs: Molecular modeling and in vitro antitumor activity against hepatocellular carcinoma.Drug Des. Devel. Ther.20171116231642 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5459977/ 10.2147/DDDT.S136692 28615927
    [Google Scholar]
  3. HassanG.S. Synthesis and antitumor activity of certain new thiazolo[2,3-b]quinazoline and thiazolo[3,2-a]pyrimidine analogs.Med. Chem. Res.201423138840110.1007/s00044‑013‑0649‑6
    [Google Scholar]
  4. MirS.A. DashG.C. MeherR.K. MohantaP.P. ChopdarK.S. MohapatraP.K. BaitharuI. BeheraA.K. RavalM.K. NayakB. In silico and in vitro evaluations of fluorophoric thiazolo-[2,3-b]quinazolinones as anti-cancer agents targeting EGFR-TKD.Appl. Biochem. Biotechnol.2022194104292431810.1007/s12010‑022‑03893‑w 35366187
    [Google Scholar]
  5. SangshettiJ.N. LokwaniD.K. ChoutheR.S. GanureA. RavalB. KhanF.A.K. ShindeD.B. Green synthesis and biological evaluation of some new benzothiazolo[2,3-b]quinazolin-1-ones as anticancer agents.Med. Chem. Res.201423114893490010.1007/s00044‑014‑1044‑7
    [Google Scholar]
  6. SafakishM. HajimahdiZ. AghasadeghiM.R. VahabpourR. ZarghiA. Design, synthesis, molecular modeling and Anti-HIV assay of novel quinazolinone incorporated coumarin derivatives.Curr. HIV Res.2020181415110.2174/18734251MTAykODcuw 31820700
    [Google Scholar]
  7. HajimahdiZ. ZabihollahiR. AghasadeghiM.R. ZarghiA. Design, synthesis, docking studies and biological activities novel 2,3- diaryl-4-quinazolinone derivatives as anti-HIV-1 agents.Curr. HIV Res.201917321422210.2174/1570162X17666190911125359 31518225
    [Google Scholar]
  8. LiZ. ZhaoL. BianY. LiY. QuJ. SongF. The antibacterial activity of quinazoline and quinazolinone hybrids.Curr. Top. Med. Chem.202222121035104410.2174/1568026622666220307144015 35255796
    [Google Scholar]
  9. JiangZ. HongW.D. CuiX. GaoH. WuP. ChenY. ShenD. YangY. ZhangB. TaylorM.J. WardS.A. O’NeillP.M. ZhaoS. ZhangK. Synthesis and structure–activity relationship of N4 -benzylamine-N 2 -isopropyl-quinazoline-2,4-diamines derivatives as potential antibacterial agents.RSC Advances2017782522275223710.1039/C7RA10352B
    [Google Scholar]
  10. KazemiS.S. KeivanlooA. Nasr-IsfahaniH. BamoniriA. Synthesis of novel 1,5-disubstituted pyrrolo[1,2-a]quinazolines and their evaluation for anti-bacterial and anti-oxidant activities.RSC Advances2016695926639266910.1039/C6RA21219K
    [Google Scholar]
  11. AntypenkoL. KovalenkoS. KarpenkoO. KatsevA. NovikovV. FedyuninaN. 1-R-2-([1,2,4]Triazolo[1,5-c]quinazoline-2-ylthio)etanon(ol)s: Synthesis, bioluminescence inhibition, molecular docking studies, antibacterial and antifungal activities.Curr. Computeraided Drug Des.2016121294110.2174/1573409912666160126142236 27012316
    [Google Scholar]
  12. JiQ. YangD. WangX. ChenC. DengQ. GeZ. YuanL. YangX. LiaoF. Design, synthesis and evaluation of novel quinazoline-2,4-dione derivatives as chitin synthase inhibitors and antifungal agents.Bioorg. Med. Chem.201422133405341310.1016/j.bmc.2014.04.042 24856180
    [Google Scholar]
  13. QinT.H. LiuJ.C. ZhangJ.Y. TangL.X. MaY.N. YangR. Synthesis and biological evaluation of new 2-substituted-4-amino-quinolines and -quinazoline as potential antifungal agents.Bioorg. Med. Chem. Lett.20227212887710.1016/j.bmcl.2022.128877 35788035
    [Google Scholar]
  14. DeckerM. KrausB. HeilmannJ. Design, synthesis and pharmacological evaluation of hybrid molecules out of quinazolinimines and lipoic acid lead to highly potent and selective butyrylcholinesterase inhibitors with antioxidant properties.Bioorg. Med. Chem.20081684252426110.1016/j.bmc.2008.02.083 18343673
    [Google Scholar]
  15. DashB. DashS. LalooD. MedhiC. Design, synthesis and preliminary pharmacological screening (antimicrobial, analgesic and anti-inflammatory activity) of somenovel quinazoline derivatives.J. Appl. Pharm. Sci.2017768396 https://japsonline.com/admin/php/uploads/2297_pdf.pdf
    [Google Scholar]
  16. JainN. JainH. JainA. RavichandranV. JainP. Design, synthesis and evaluation of anti-inflammatory, analgesic and antibacterial activity of 2, 4, 6-trisubstituted quinazoline derivatives.An. Univ. Ovidius Constanta Ser. Chim.20182929710210.2478/auoc‑2018‑0014
    [Google Scholar]
  17. SelvamT.P. KumarP.V. Synthesis of Novel 6,7,8,9-Tetrahydro-5H-5-hydroxyphenyl-2-benzylidine-3-substituted Hydrazino Thiazolo (2,3-b) Quinazoline as Potent Antinociceptive and Anti-inflammatory Agents.Bull. Korean Chem. Soc.201031113265327110.5012/bkcs.2010.31.11.3265
    [Google Scholar]
  18. AbuelizzH.A. DibR.E. MarzoukM. AnouarE.H. A MakladY. N AttiaH. Al-SalahiR. Molecular docking and anticonvulsant activity of newly synthesized quinazoline derivatives.Molecules2017227109410.3390/molecules22071094 28665338
    [Google Scholar]
  19. VoskoboynikO.Y. KolomoetsO.S. PalchikovV.A. KovalenkoS.I. BelenichevI.F. ShishkinaS.V. [1,2,4]Triazino[2,3-с]quinazolines 2*. Synthesis, structure, and anticonvulsant activity of new 3′-R1-spiro[(aza/oxa/thia)cycloalkyl-1(3, 4),6′-[1,2,4]triazino[2,3-c]quinazolin]-2′(7′H)-ones.Chem. Heterocycl. Compd.201753101134114710.1007/s10593‑017‑2184‑8
    [Google Scholar]
  20. ZayedM. IhmaidS. AhmedH. El-AdlK. AsiriA. OmarA. Synthesis, modelling, and anticonvulsant studies of new quinazolines showing three highly active compounds with low toxicity and high affinity to the GABA-A receptor.Molecules201722218810.3390/molecules22020188 28125041
    [Google Scholar]
  21. AlthagafiI. El-MetwalyN. FarghalyT.A. New series of thiazole derivatives: Synthesis, structural elucidation, antimicrobial activity, molecular modeling and MOE docking.Molecules2019249174110.3390/molecules24091741 31060260
    [Google Scholar]
  22. ReddyG.M. GarciaJ.R. ReddyV.H. de AndradeA.M. CamiloA.Jr Pontes RibeiroR.A. de LazaroS.R. Synthesis, antimicrobial activity and advances in structure-activity relationships (SARs) of novel tri-substituted thiazole derivatives.Eur. J. Med. Chem.201612350851310.1016/j.ejmech.2016.07.062 27494167
    [Google Scholar]
  23. FarghalyT.A. AbdallahM.A. KhedrM.A. MahmoudH.K. Synthesis, antimicrobial activity and molecular docking study of thiazole derivatives.J. Heterocycl. Chem.20175442417242510.1002/jhet.2838
    [Google Scholar]
  24. LinoC.I. Gonçalves de SouzaI. BorelliB.M. Silvério MatosT.T. Santos TeixeiraI.N. RamosJ.P. Maria de Souza FagundesE. de Oliveira FernandesP. MaltarolloV.G. JohannS. de OliveiraR.B. Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives.Eur. J. Med. Chem.201815124826010.1016/j.ejmech.2018.03.083 29626797
    [Google Scholar]
  25. OufS.A. GomhaS.M. EwiesM.M. SharawyI.A.A. Synthesis, characterization, and antifungal activity evaluation of some novel arylazothiazoles.J. Heterocycl. Chem.201855125826410.1002/jhet.3040
    [Google Scholar]
  26. KhameesH.A. MohammedY.H.E. SA. Al-OstootF.H. yS. AlghamdiS. KhanumS.A. MadegowdaM. Effect of o-difluoro and p-methyl substituents on the structure, optical properties and anti-inflammatory activity of phenoxy thiazole acetamide derivatives: Theoretical and experimental studies.J. Mol. Struct.2020119912702410.1016/j.molstruc.2019.127024
    [Google Scholar]
  27. WangS.M. ZhaG.F. RakeshK.P. DarshiniN. ShubhavathiT. VivekH.K. MalleshaN. QinH.L. Synthesis of benzo[d]thiazole-hydrazone analogues: Molecular docking and SAR studies of potential H +/K + ATPase inhibitors and anti-inflammatory agents.MedChemComm2017861173118910.1039/C7MD00111H 30108827
    [Google Scholar]
  28. AbhaleY.K. ShindeA. DeshmukhK.K. NawaleL. SarkarD. MhaskeP.C. Synthesis, antitubercular and antimicrobial potential of some new thiazole substituted thiosemicarbazide derivatives.Med. Chem. Res.201726102557256710.1007/s00044‑017‑1955‑1
    [Google Scholar]
  29. OthmanD.I.A. HamdiA. Abdel-AzizM.M. ElfekyS.M. Novel 2-arylthiazolidin-4-one-thiazole hybrids with potent activity against Mycobacterium tuberculosis.Bioorg. Chem.202212410580910.1016/j.bioorg.2022.105809 35447406
    [Google Scholar]
  30. BorceaA.M. IonuțI. CrișanO. OnigaO. An overview of the synthesis and antimicrobial, antiprotozoal, and antitumor activity of thiazole and bisthiazole derivatives.Molecules202126362410.3390/molecules26030624 33504100
    [Google Scholar]
  31. HeH. WangX. ShiL. YinW. YangZ. HeH. LiangY. Synthesis, antitumor activity and mechanism of action of novel 1,3-thiazole derivatives containing hydrazide–hydrazone and carboxamide moiety.Bioorg. Med. Chem. Lett.201626143263327010.1016/j.bmcl.2016.05.059 27262600
    [Google Scholar]
  32. KhanM.H. HameedS. AkhtarT. Al-MasoudiN.A. Al-MasoudiW.A. JonesP.G. PannecouqueC. Synthesis, crystal structure, anti-HIV, and antiproliferative activity of new oxadiazole and thiazole analogs.Med. Chem. Res.201625102399240910.1007/s00044‑016‑1669‑9
    [Google Scholar]
  33. RaufA. KashifM.K. SaeedB.A. Al-MasoudiN.A. HameedS. Synthesis, anti-HIV activity, molecular modeling study and QSAR of new designed 2-(2-arylidenehydrazinyl)-4-arylthiazoles.J. Mol. Struct.2019119812686610.1016/j.molstruc.2019.07.113
    [Google Scholar]
  34. DjukicM. FesatidouM. XenikakisI. GeronikakiA. AngelovaV.T. SavicV. PasicM. KrilovicB. DjukicD. GobeljicB. PavlicaM. DjuricA. StanojevicI. VojvodicD. SasoL. In vitro antioxidant activity of thiazolidinone derivatives of 1,3-thiazole and 1,3,4-thiadiazole.Chem. Biol. Interact.201828611913110.1016/j.cbi.2018.03.013 29574026
    [Google Scholar]
  35. MicM. PîrnăuA. FloareC.G. MarcG. FranchiniA.H. OnigaO. VlaseL. BogdanM. Synthesis and molecular interaction study of a diphenolic hidrazinyl-thiazole compound with strong antioxidant and antiradical activity with HSA.J. Mol. Struct.2021124413127810.1016/j.molstruc.2021.131278
    [Google Scholar]
  36. KutM.M. OnyskoM.Y. Synthesis of functionalized azolo(azino)quinazolines by electrophilic cyclization (microreview).Chem. Heterocycl. Compd.202157552853010.1007/s10593‑021‑02937‑z
    [Google Scholar]
  37. KutM. OnyskoM. LendelV. The influence of condensed cycle on regiochemistry of electrophilic heterocyclization of 3-alkenyl-2-thioxopyrimidin-4-one by p -alkoxyphenyltellurium trichloride.J. Heterocycl. Chem.201855488889210.1002/jhet.3114
    [Google Scholar]
  38. KutD.Z. KutM.M. OnyskoM.Y. LendelV.G. Electrophilic cyclization of propargyl thioethers of 3-methyl(phenyl)-2-(prop-2-yn-1-ylthio)-7-(trifluoromethyl)quinazolin-4(3H)-ones by tellurium tetrahalides.Voprosy Khimii i Khimicheskoi Tekhnologii202166404410.32434/0321‑4095‑2021‑139‑6‑40‑44
    [Google Scholar]
  39. KutD. KutM. SvalyavinO. OnyskoM. LendelV. Halogenoheterocyclization of terminal and internal 2-allylthio-3-methyl(phenyl)-7-trifluoromethylquinazolin-4-ones.Phosphorus Sulfur Silicon Relat. Elem.2022197121255126210.1080/10426507.2022.2085275
    [Google Scholar]
  40. GarkavenkoT.O. GorbatyukO.I. KozytskaT.G. AndriyashchukV.O. GarkavenkoV.M. DybkovaS.M. AzirkinI.B. Methodical recommendations for determining the sensitivity of microorganisms to antimicrobial drugs: Methodical recommendations.KyivState Research Institute for Laboratory Diagnostics and Veterinary Sanitary Examination2021
    [Google Scholar]
  41. RayenkoG.F. AvksentievO.S. SaberovV.Sh. RyabitskyA.B. YenyaV.I. Komarovska-PorokhnyavetsO.Z. LubenetsV.I. KorotkikhN.I. Synthesis and the antimicrobial activity of salt carbenoid compounds.Adv. Res.202220210.24959/ophcj.22.258880
    [Google Scholar]
  42. KutD. KutМ.М. OnyskoM. BalogI. LendelV. Chalcogenation of N-alkenyl derivatives of 2-thioxo-2,3-dihydro quinazoline-4(1H)-one.Sci. Bull. Uzhhorod Univ2021451909410.24144/2414‑0260.2021.1.90‑94
    [Google Scholar]
/content/journals/lddd/10.2174/1570180820666230726160348
Loading
/content/journals/lddd/10.2174/1570180820666230726160348
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test