Skip to content
2000
image of An Insight into Signalling Pathways in Cancer: Hedgehog, PI3K, and Notch Pathways and Therapeutic Perspectives

Abstract

Dysregulation of cellular signaling pathways leads to changes in proliferation, differentiation, and apoptosis, leading to cancer. This review aims to provide insight into the major three signaling pathways implicated in cancer development and progression: the Hedgehog (Hh), Phosphoinositide 3-kinase (PI3K), and Notch pathways. Abnormal activation of the Hedgehog pathway, which has been linked to several malignancies, including medulloblastoma and basal cell carcinoma, is primarily responsible for controlling the phases of embryonic development and tissue homeostasis. The intricate involvement of Hh signaling in cancer stem cell maintenance, epithelial-mesenchymal transition, and tumor microenvironment modulation underscores its significance as a therapeutic target. Similarly, dysregulation of the PI3K pathway, a crucial mediator of cell growth, survival, and metabolism, is prevalent across multiple cancer types. Mutations in PI3K pathway components lead to uncontrolled cell proliferation and evasion of apoptosis, highlighting its potential as a therapeutic avenue. Various inhibitors targeting PI3K and its downstream effectors have shown promise in preclinical and clinical settings. Additionally, the Notch signaling pathway, crucial for cell fate determination and tissue patterning during development, exhibits dysregulated activity in numerous cancers. Notch pathway alterations contribute to tumor initiation, progression, and metastasis, presenting opportunities for targeted therapies. The review discusses current therapeutic strategies targeting these pathways, including small-molecule inhibitors, monoclonal antibodies, and combination therapies. Challenges, such as drug resistance and toxicity are addressed, along with emerging therapeutic approaches to enhance treatment efficacy. In conclusion, understanding the intricate crosstalk and dysregulation of signaling pathways in cancer provides valuable insights into disease mechanisms and therapeutic avenues, paving the way for more effective and personalized cancer treatments.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808353919241126110520
2024-11-29
2025-01-05
Loading full text...

Full text loading...

References

  1. Reichert J. Wenger J.B. Development trends for new cancer therapeutics and vaccines. Drug Discov. Today 2008 13 1-2 30 37 10.1016/j.drudis.2007.09.003 18190861
    [Google Scholar]
  2. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 2005 5 4 263 274 10.1038/nrc1586 15776005
    [Google Scholar]
  3. Kerru N. Singh P. Koorbanally N. Raj R. Kumar V. Recent advances (2015–2016) in anticancer hybrids. Eur. J. Med. Chem. 2017 142 179 212 10.1016/j.ejmech.2017.07.033 28760313
    [Google Scholar]
  4. Mareel M. Leroy A. Clinical, cellular, and molecular aspects of cancer invasion. Physiol. Rev. 2003 83 2 337 376 10.1152/physrev.00024.2002 12663862
    [Google Scholar]
  5. Wesche J. Haglund K. Haugsten E.M. Fibroblast growth factors and their receptors in cancer. Biochem. J. 2011 437 2 199 213 10.1042/BJ20101603 21711248
    [Google Scholar]
  6. Liu M. Ju X. Zou J. Shi J. Jia G. Recent researches for dual Aurora target inhibitors in antitumor field. Eur. J. Med. Chem. 2020 203 112498 10.1016/j.ejmech.2020.112498 32693295
    [Google Scholar]
  7. Kastan M.B. Bartek J. Cell-cycle checkpoints and cancer. Nature 2004 432 7015 316 323 10.1038/nature03097 15549093
    [Google Scholar]
  8. Koirala M. DiPaola M. Overcoming cancer resistance: Strategies and modalities for effective treatment. Biomedicines 2024 12 8 1801 10.3390/biomedicines12081801 39200265
    [Google Scholar]
  9. Ramos A. Sadeghi S. Tabatabaeian H. Battling chemoresistance in cancer: root causes and strategies to uproot them. Int. J. Mol. Sci. 2021 22 17 9451 10.3390/ijms22179451 34502361
    [Google Scholar]
  10. Assed Bastos D. Coelho Ribeiro S. de Freitas D. Hoff P.M. Review: Combination therapy in high-risk stage II or stage III colon cancer: Current practice and future prospects. Ther. Adv. Med. Oncol. 2010 2 4 261 272 10.1177/1758834010367905 21789139
    [Google Scholar]
  11. Meader N. King K. Moe-Byrne T. Wright K. Graham H. Petticrew M. Power C. White M. Sowden A.J. A systematic review on the clustering and co-occurrence of multiple risk behaviours. BMC Public Health 2016 16 1 657 10.1186/s12889‑016‑3373‑6 27473458
    [Google Scholar]
  12. Taniguchi K. Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol. 2018 18 5 309 324 10.1038/nri.2017.142 29379212
    [Google Scholar]
  13. Gottesman M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med. 2002 53 1 615 627 10.1146/annurev.med.53.082901.103929 11818492
    [Google Scholar]
  14. Holohan C. Van Schaeybroeck S. Longley D.B. Johnston P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013 13 10 714 726 10.1038/nrc3599 24060863
    [Google Scholar]
  15. Gottesman M.M. Fojo T. Bates S.E. Multidrug resistance in cancer: Role of ATP–dependent transporters. Nat. Rev. Cancer 2002 2 1 48 58 10.1038/nrc706 11902585
    [Google Scholar]
  16. Eckford P.D.W. Sharom F.J. ABC efflux pump-based resistance to chemotherapy drugs. Chem. Rev. 2009 109 7 2989 3011 10.1021/cr9000226 19583429
    [Google Scholar]
  17. Kartal-Yandim M. Adan-Gokbulut A. Baran Y. Molecular mechanisms of drug resistance and its reversal in cancer. Crit. Rev. Biotechnol. 2016 36 4 716 726 10.3109/07388551.2015.1015957 25757878
    [Google Scholar]
  18. Seifu M.F. Nath L.K. Polymer-drug conjugates: Novel carriers for cancer chemotherapy. Polymer Plastics Technol. Mater. 2019 58 2 158 171
    [Google Scholar]
  19. Yang S. Liu G. Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma. Oncol. Lett. 2017 13 3 1041 1047 10.3892/ol.2017.5557 28454211
    [Google Scholar]
  20. Mann R.K. Beachy P.A. Novel lipid modifications of secreted protein signals. Annual Rev. Biochem. 2004 73 1 891 923 25924008
    [Google Scholar]
  21. Burke R. Nellen D. Bellotto M. Hafen E. Senti K.A. Dickson B.J. Basler K. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell 1999 99 7 803 815 10.1016/S0092‑8674(00)81677‑3 10619433
    [Google Scholar]
  22. Taipale J. Cooper M.K. Maiti T. Beachy P.A. Patched acts catalytically to suppress the activity of Smoothened. Nature 2002 418 6900 892 896 10.1038/nature00989 12192414
    [Google Scholar]
  23. Yu J.S.L. Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 2016 143 17 3050 3060 10.1242/dev.137075 27578176
    [Google Scholar]
  24. Rascio F. Spadaccino F. Rocchetti M.T. Castellano G. Stallone G. Netti G.S. Ranieri E. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: an updated review. Cancers (Basel) 2021 13 16 3949 10.3390/cancers13163949 34439105
    [Google Scholar]
  25. Fruman D.A. Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat. Rev. Drug Discov. 2014 13 2 140 156 10.1038/nrd4204 24481312
    [Google Scholar]
  26. Carnero A. Blanco-Aparicio C. Renner O. Link W. Leal J. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug Targets 2008 8 3 187 198 10.2174/156800908784293659 18473732
    [Google Scholar]
  27. Sunshine J. Taube J.M. PD-1/PD-L1 inhibitors. Curr. Opin. Pharmacol. 2015 23 32 38 10.1016/j.coph.2015.05.011 26047524
    [Google Scholar]
  28. Xin M. Ji X. De La Cruz L.K. Thareja S. Wang B. Strategies to target the Hedgehog signaling pathway for cancer therapy. Med. Res. Rev. 2018 38 3 870 913 10.1002/med.21482 29315702
    [Google Scholar]
  29. Evangelista M. Tian H. de Sauvage F.J. The hedgehog signaling pathway in cancer. Clin. Cancer Res. 2006 12 20 5924 5928 10.1158/1078‑0432.CCR‑06‑1736 17062662
    [Google Scholar]
  30. McMillan R. Matsui W. Molecular pathways: the hedgehog signaling pathway in cancer. Clin. Cancer Res. 2012 18 18 4883 4888 10.1158/1078‑0432.CCR‑11‑2509 22718857
    [Google Scholar]
  31. Katoh Y. Katoh M. Hedgehog signaling pathway and gastric cancer. Cancer Biol. Ther. 2005 4 10 1050 1054 10.4161/cbt.4.10.2184 16258256
    [Google Scholar]
  32. Gonnissen A. Isebaert S. Haustermans K. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget 2015 6 16 13899 13913 10.18632/oncotarget.4224 26053182
    [Google Scholar]
  33. Li Y. Maitah M.Y. Ahmad A. Kong D. Bao B. Sarkar F.H. Targeting the Hedgehog signaling pathway for cancer therapy. Expert Opin. Ther. Targets 2012 16 1 49 66 10.1517/14728222.2011.617367 22243133
    [Google Scholar]
  34. Jiang J. Hedgehog signaling mechanism and role in cancer. Seminars in Cancer Biology Academic Press 2022 10.1016/j.semcancer.2021.04.003
    [Google Scholar]
  35. Zeng X. Ju D. Hedgehog signaling pathway and autophagy in cancer. Int. J. Mol. Sci. 2018 19 8 2279 10.3390/ijms19082279 30081498
    [Google Scholar]
  36. Siegel R. Naishadham D. Jemal A. Cancer statistics, 2013. CA Cancer J. Clin. 2013 63 1 11 30 10.3322/caac.21166 23335087
    [Google Scholar]
  37. Davidson M.R. Gazdar A.F. Clarke B.E. The pivotal role of pathology in the management of lung cancer. J. Thorac. Dis. 2013 5 Suppl 5 Suppl. 5 S463 S478 24163740
    [Google Scholar]
  38. Watkins D.N. Berman D.M. Baylin S.B. Hedgehog signaling: progenitor phenotype in small-cell lung cancer. Cell Cycle 2003 2 3 195 197 10.4161/cc.2.3.378 12734424
    [Google Scholar]
  39. Simon M. Argiris A. Murren J.R. Progress in the therapy of small cell lung cancer. Crit. Rev. Oncol. Hematol. 2004 49 2 119 133 10.1016/S1040‑8428(03)00118‑5 15012973
    [Google Scholar]
  40. Turrisi A.T. Sherman C.A. The treatment of limited small cell lung cancer. Eur. J. Cancer 2002 38 2 279 291 10.1016/S0959‑8049(01)00364‑1 11803144
    [Google Scholar]
  41. Mizuarai S. Kawagishi A. Kotani H. Inhibition of p70S6K2 down-regulates Hedgehog/GLI pathway in non-small cell lung cancer cell lines. Mol. Cancer 2009 8 1 44 10.1186/1476‑4598‑8‑44 19575820
    [Google Scholar]
  42. Sigafoos A.N. Paradise B.D. Fernandez-Zapico M.E. Hedgehog/GLI signaling pathway: transduction, regulation, and implications for disease. Cancers (Basel) 2021 13 14 3410 10.3390/cancers13143410 34298625
    [Google Scholar]
  43. Hanna A. Shevde L.A. Hedgehog signaling: modulation of cancer properies and tumor mircroenvironment. Mol. Cancer 2016 15 1 24 10.1186/s12943‑016‑0509‑3 26988232
    [Google Scholar]
  44. Langer C.J. Besse B. Gualberto A. Brambilla E. Soria J.C. The evolving role of histology in the management of advanced non-small-cell lung cancer. J. Clin. Oncol. 2010 28 36 5311 5320 10.1200/JCO.2010.28.8126 21079145
    [Google Scholar]
  45. Engelman J.A. Zejnullahu K. Mitsudomi T. Song Y. Hyland C. Park J.O. Lindeman N. Gale C.M. Zhao X. Christensen J. Kosaka T. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007 316 5827 1039 1043
    [Google Scholar]
  46. Katayama R. Shaw A.T. Khan T.M. Mino-Kenudson M. Solomon B.J. Halmos B. Jessop N.A. Wain J.C. Yeo A.T. Benes C. Drew L. Saeh J.C. Crosby K. Sequist L.V. Iafrate A.J. Engelman J.A. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci. Transl. Med. 2012 4 120 120ra17 10.1126/scitranslmed.3003316 22277784
    [Google Scholar]
  47. Kobayashi S. Boggon T.J. Dayaram T. Jänne P.A. Kocher O. Meyerson M. Johnson B.E. Eck M.J. Tenen D.G. Halmos B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 2005 352 8 786 792 10.1056/NEJMoa044238 15728811
    [Google Scholar]
  48. Park K.S. Martelotto L.G. Peifer M. Sos M.L. Karnezis A.N. Mahjoub M.R. Bernard K. Conklin J.F. Szczepny A. Yuan J. Guo R. Ospina B. Falzon J. Bennett S. Brown T.J. Markovic A. Devereux W.L. Ocasio C.A. Chen J.K. Stearns T. Thomas R.K. Dorsch M. Buonamici S. Watkins D.N. Peacock C.D. Sage J. A crucial requirement for Hedgehog signaling in small cell lung cancer. Nat. Med. 2011 17 11 1504 1508 10.1038/nm.2473 21983857
    [Google Scholar]
  49. Pan S. Wu X. Jiang J. Gao W. Wan Y. Cheng D. Han D. Liu J. Englund N.P. Wang Y. Peukert S. Miller-Moslin K. Yuan J. Guo R. Matsumoto M. Vattay A. Jiang Y. Tsao J. Sun F. Pferdekamper A.C. Dodd S. Tuntland T. Maniara W. Kelleher J.F. III Yao Y. Warmuth M. Williams J. Dorsch M. Discovery of NVP-LDE225, a potent and selective smoothened antagonist. ACS Med. Chem. Lett. 2010 1 3 130 134 10.1021/ml1000307 24900187
    [Google Scholar]
  50. Della Corte C.M. Bellevicine C. Vicidomini G. Vitagliano D. Malapelle U. Accardo M. Fabozzi A. Fiorelli A. Fasano M. Papaccio F. Martinelli E. Troiani T. Troncone G. Santini M. Bianco R. Ciardiello F. Morgillo F. SMO gene amplification and activation of the hedgehog pathway as novel mechanisms of resistance to anti-epidermal growth factor receptor drugs in human lung cancer. Clin. Cancer Res. 2015 21 20 4686 4697 10.1158/1078‑0432.CCR‑14‑3319 26124204
    [Google Scholar]
  51. Robarge K.D. Brunton S.A. Castanedo G.M. Cui Y. Dina M.S. Goldsmith R. Gould S.E. Guichert O. Gunzner J.L. Halladay J. Jia W. Khojasteh C. Koehler M.F.T. Kotkow K. La H. LaLonde R.L. Lau K. Lee L. Marshall D. Marsters J.C. Jr Murray L.J. Qian C. Rubin L.L. Salphati L. Stanley M.S. Stibbard J.H.A. Sutherlin D.P. Ubhayaker S. Wang S. Wong S. Xie M. GDC-0449—A potent inhibitor of the hedgehog pathway. Bioorg. Med. Chem. Lett. 2009 19 19 5576 5581 10.1016/j.bmcl.2009.08.049 19716296
    [Google Scholar]
  52. Hyman J.M. Firestone A.J. Heine V.M. Zhao Y. Ocasio C.A. Han K. Sun M. Rack P.G. Sinha S. Wu J.J. Solow-Cordero D.E. Jiang J. Rowitch D.H. Chen J.K. Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc. Natl. Acad. Sci. USA 2009 106 33 14132 14137 10.1073/pnas.0907134106 19666565
    [Google Scholar]
  53. Lauth M. Bergström Å. Shimokawa T. Toftgård R. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc. Natl. Acad. Sci. USA 2007 104 20 8455 8460 10.1073/pnas.0609699104 17494766
    [Google Scholar]
  54. Infante P. Mori M. Alfonsi R. Ghirga F. Aiello F. Toscano S. Ingallina C. Siler M. Cucchi D. Po A. Miele E. D’Amico D. Canettieri G. De Smaele E. Ferretti E. Screpanti I. Uccello Barretta G. Botta M. Botta B. Gulino A. Di Marcotullio L. Gli1/ DNA interaction is a druggable target for Hedgehog‐dependent tumors. EMBO J. 2015 34 2 200 217 10.15252/embj.201489213 25476449
    [Google Scholar]
  55. Zhang L. Li L. Jiao M. Wu D. Wu K. Li X. Zhu G. Yang L. Wang X. Hsieh J.T. He D. Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog–Gli1 pathway. Cancer Lett. 2012 323 1 48 57 10.1016/j.canlet.2012.03.037 22484470
    [Google Scholar]
  56. Chu E. Sartorelli A.C. Cancer chemotherapy. StatPearl Treasure Island StatPearls Publishing 2018 948 976
    [Google Scholar]
  57. Marini K.D. Croucher D.R. McCloy R.A. Vaghjiani V. Gonzalez-Rajal A. Hastings J.F. Chin V. Szczepny A. Kostyrko K. Marquez C. Jayasekara W.S.N. Alamgeer M. Boolell V. Han J.Z.R. Waugh T. Lee H.C. Oakes S.R. Kumar B. Harrison C.A. Hedger M.P. Lorensuhewa N. Kita B. Barrow R. Robinson B.W. de Kretser D.M. Wu J. Ganju V. Sweet-Cordero E.A. Burgess A. Martelotto L.G. Rossello F.J. Cain J.E. Watkins D.N. Inhibition of activin signaling in lung adenocarcinoma increases the therapeutic index of platinum chemotherapy. Sci. Transl. Med. 2018 10 451 eaat3504 10.1126/scitranslmed.aat3504 30045976
    [Google Scholar]
  58. Giroux-Leprieur E. Costantini A. Ding V.W. He B. Hedgehog Signaling in Lung Cancer: From Oncogenesis to Cancer Treatment Resistance. Int. J. Mol. Sci. 2018 19 9 2835 10.3390/ijms19092835 30235830
    [Google Scholar]
  59. Wang H. Gao Z. Liu X. Agarwal P. Zhao S. Conroy D.W. Ji G. Yu J. Jaroniec C.P. Liu Z. Lu X. Li X. He X. Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nat. Commun. 2018 9 1 562 10.1038/s41467‑018‑02915‑8 29422620
    [Google Scholar]
  60. Colli L.M. Machiela M.J. Zhang H. Myers T.A. Jessop L. Delattre O. Yu K. Chanock S.J. Landscape of combination immunotherapy and targeted therapy to improve cancer management. Cancer Res. 2017 77 13 3666 3671 10.1158/0008‑5472.CAN‑16‑3338 28446466
    [Google Scholar]
  61. Okkenhaug K. Signaling by the phosphoinositide 3-kinase family in immune cells. Annu. Rev. Immunol. 2013 31 1 675 704 10.1146/annurev‑immunol‑032712‑095946 23330955
    [Google Scholar]
  62. Liu P. Cheng H. Roberts T.M. Zhao J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 2009 8 8 627 644 10.1038/nrd2926 19644473
    [Google Scholar]
  63. Jan R. Chaudhry G.S. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull. 2019 9 2 205 218 10.15171/apb.2019.024 31380246
    [Google Scholar]
  64. Vanhaesebroeck B. Guillermet-Guibert J. Graupera M. Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 2010 11 5 329 341 10.1038/nrm2882 20379207
    [Google Scholar]
  65. Fruman D.A. Chiu H. Hopkins B.D. Bagrodia S. Cantley L.C. Abraham R.T. The PI3K pathway in human disease. Cell 2017 170 4 605 635 10.1016/j.cell.2017.07.029 28802037
    [Google Scholar]
  66. Fayard E. Xue G. Parcellier A. Bozulic L. Hemmings B.A. Protein kinase B (PKB/Akt), a key mediator of the PI3K signaling pathway. Curr. Top. Microbiol. Immunol. 2011 346 31 56
    [Google Scholar]
  67. Noorolyai S. Shajari N. Baghbani E. Sadreddini S. Baradaran B. The relation between PI3K/AKT signalling pathway and cancer. Gene 2019 698 120 128 10.1016/j.gene.2019.02.076 30849534
    [Google Scholar]
  68. Liu X. Xu Y. Zhou Q. Chen M. Zhang Y. Liang H. Zhao J. Zhong W. Wang M. PI3K in cancer: its structure, activation modes and role in shaping tumor microenvironment. Future Oncol. 2018 14 7 665 674 10.2217/fon‑2017‑0588 29219001
    [Google Scholar]
  69. Martini M. De Santis M.C. Braccini L. Gulluni F. Hirsch E. PI3K/AKT signaling pathway and cancer: an updated review. Ann. Med. 2014 46 6 372 383 10.3109/07853890.2014.912836 24897931
    [Google Scholar]
  70. Jaber N. Zong W.X. Class III PI3K Vps34: essential roles in autophagy, endocytosis, and heart and liver function. Ann. N. Y. Acad. Sci. 2013 1280 1 48 51 10.1111/nyas.12026 23551104
    [Google Scholar]
  71. Geering B. Cutillas P.R. Nock G. Gharbi S.I. Vanhaesebroeck B. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proc. Natl. Acad. Sci. USA 2007 104 19 7809 7814 10.1073/pnas.0700373104 17470792
    [Google Scholar]
  72. Zhao L. Vogt P.K. Class I PI3K in oncogenic cellular transformation. Oncogene 2008 27 41 5486 5496 10.1038/onc.2008.244 18794883
    [Google Scholar]
  73. Falasca M. Maffucci T. Regulation and cellular functions of class II phosphoinositide 3-kinases. Biochem. J. 2012 443 3 587 601 10.1042/BJ20120008 22507127
    [Google Scholar]
  74. Falasca M. Hughes W.E. Dominguez V. Sala G. Fostira F. Fang M.Q. Cazzolli R. Shepherd P.R. James D.E. Maffucci T. The role of phosphoinositide 3-kinase C2α in insulin signaling. J. Biol. Chem. 2007 282 38 28226 28236 10.1074/jbc.M704357200 17644513
    [Google Scholar]
  75. Posor Y. Eichhorn-Gruenig M. Puchkov D. Schöneberg J. Ullrich A. Lampe A. Müller R. Zarbakhsh S. Gulluni F. Hirsch E. Krauss M. Schultz C. Schmoranzer J. Noé F. Haucke V. Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 2013 499 7457 233 237 10.1038/nature12360 23823722
    [Google Scholar]
  76. Abe M. Setoguchi Y. Tanaka T. Awano W. Takahashi K. Ueda R. Nakamura A. Goto S. Membrane protein location-dependent regulation by PI3K (III) and rabenosyn-5 in Drosophila wing cells. PLoS One 2009 4 10 e7306 10.1371/journal.pone.0007306 19798413
    [Google Scholar]
  77. Velasco A. Bussaglia E. Pallares J. Dolcet X. Llobet D. Encinas M. Llecha N. Palacios J. Prat J. Matiasguiu X. PIK3CA gene mutations in endometrial carcinoma. Correlation with PTEN and K-RAS alterations. Hum. Pathol. 2006 37 11 1465 1472 10.1016/j.humpath.2006.05.007 16949921
    [Google Scholar]
  78. Lee J.W. Soung Y.H. Kim S.Y. Lee H.W. Park W.S. Nam S.W. Kim S.H. Lee J.Y. Yoo N.J. Lee S.H. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 2005 24 8 1477 1480 10.1038/sj.onc.1208304 15608678
    [Google Scholar]
  79. Pérez-Tenorio G. Alkhori L. Olsson B. Waltersson M.A. Nordenskjöld B. Rutqvist L.E. Skoog L. Stål O. PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Clin. Cancer Res. 2007 13 12 3577 3584 10.1158/1078‑0432.CCR‑06‑1609 17575221
    [Google Scholar]
  80. Balakrishnan A. Chaillet J.R. Role of the inositol polyphosphate-4-phosphatase type II Inpp4b in the generation of ovarian teratomas. Dev. Biol. 2013 373 1 118 129 10.1016/j.ydbio.2012.10.011 23078915
    [Google Scholar]
  81. Ihle N.T. Williams R. Chow S. Chew W. Berggren M.I. Paine-Murrieta G. Minion D.J. Halter R.J. Wipf P. Abraham R. Kirkpatrick L. Powis G. Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol. Cancer Ther. 2004 3 7 763 772 10.1158/1535‑7163.763.3.7 15252137
    [Google Scholar]
  82. Ihle N.T. Paine-Murrieta G. Berggren M.I. Baker A. Tate W.R. Wipf P. Abraham R.T. Kirkpatrick D.L. Powis G. The phosphatidylinositol-3-kinase inhibitor PX-866 overcomes resistance to the epidermal growth factor receptor inhibitor gefitinib in A-549 human non–small cell lung cancer xenografts. Mol. Cancer Ther. 2005 4 9 1349 1357 10.1158/1535‑7163.MCT‑05‑0149 16170026
    [Google Scholar]
  83. Ihle N.T. Lemos R. Jr Wipf P. Yacoub A. Mitchell C. Siwak D. Mills G.B. Dent P. Kirkpatrick D.L. Powis G. Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance. Cancer Res. 2009 69 1 143 150 10.1158/0008‑5472.CAN‑07‑6656 19117997
    [Google Scholar]
  84. Ren H. Zhao L. Li Y. Yue P. Deng X. Owonikoko T.K. Chen M. Khuri F.R. Sun S.Y. The PI3 kinase inhibitor NVP-BKM120 induces GSK3/FBXW7-dependent Mcl-1 degradation, contributing to induction of apoptosis and enhancement of TRAIL-induced apoptosis. Cancer Lett. 2013 338 2 229 238 10.1016/j.canlet.2013.03.032 23562472
    [Google Scholar]
  85. Ren H. Chen M. Yue P. Tao H. Owonikoko T.K. Ramalingam S.S. Khuri F.R. Sun S.Y. The combination of RAD001 and NVP-BKM120 synergistically inhibits the growth of lung cancer in vitro and in vivo. Cancer Lett. 2012 325 2 139 146 10.1016/j.canlet.2012.06.018 22781393
    [Google Scholar]
  86. Zou Z.Q. Zhang L.N. Wang F. Bellenger J. Shen Y.Z. Zhang X.H. The novel dual PI3K/mTOR inhibitor GDC-0941 synergizes with the MEK inhibitor U0126 in non-small cell lung cancer cells. Mol. Med. Rep. 2012 5 2 503 508 22101421
    [Google Scholar]
  87. Shapiro G.I. Rodon J. Bedell C. Kwak E.L. Baselga J. Braña I. Pandya S.S. Scheffold C. Laird A.D. Nguyen L.T. Xu Y. Egile C. Edelman G. Phase I safety, pharmacokinetic, and pharmacodynamic study of SAR245408 (XL147), an oral pan-class I PI3K inhibitor, in patients with advanced solid tumors. Clin. Cancer Res. 2014 20 1 233 245 10.1158/1078‑0432.CCR‑13‑1777 24166903
    [Google Scholar]
  88. Liu N. Rowley B.R. Bull C.O. Schneider C. Haegebarth A. Schatz C.A. Fracasso P.R. Wilkie D.P. Hentemann M. Wilhelm S.M. Scott W.J. Mumberg D. Ziegelbauer K. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models. Mol. Cancer Ther. 2013 12 11 2319 2330 10.1158/1535‑7163.MCT‑12‑0993‑T 24170767
    [Google Scholar]
  89. Akinleye A. Avvaru P. Furqan M. Song Y. Liu D. Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J. Hematol. Oncol. 2013 6 1 88 10.1186/1756‑8722‑6‑88 24261963
    [Google Scholar]
  90. De Santis G. Miotti S. Mazzi M. Canevari S. Tomassetti A. E-cadherin directly contributes to PI3K/AKT activation by engaging the PI3K-p85 regulatory subunit to adherens junctions of ovarian carcinoma cells. Oncogene 2009 28 9 1206 1217 10.1038/onc.2008.470 19151754
    [Google Scholar]
  91. Guo C. Sah J.F. Beard L. Willson J.K.V. Markowitz S.D. Guda K. The noncoding RNA, miR‐126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3‐kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer 2008 47 11 939 946 10.1002/gcc.20596 18663744
    [Google Scholar]
  92. Wu H. Goel V. Haluska F.G. PTEN signaling pathways in melanoma. Oncogene 2003 22 20 3113 3122 10.1038/sj.onc.1206451 12789288
    [Google Scholar]
  93. Smith J.S. Tachibana I. Passe S.M. Huntley B.K. Borell T.J. Iturria N. O’Fallon J.R. Schaefer P.L. Scheithauer B.W. James C.D. Buckner J.C. Jenkins R.B. PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J. Natl. Cancer Inst. 2001 93 16 1246 1256 10.1093/jnci/93.16.1246 11504770
    [Google Scholar]
  94. Askham J.M. Platt F. Chambers P.A. Snowden H. Taylor C.F. Knowles M.A. AKT1 mutations in bladder cancer: identification of a novel oncogenic mutation that can co-operate with E17K. Oncogene 2010 29 1 150 155 10.1038/onc.2009.315 19802009
    [Google Scholar]
  95. Meng Q. Xia C. Fang J. Rojanasakul Y. Jiang B.H. Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway. Cell. Signal. 2006 18 12 2262 2271 10.1016/j.cellsig.2006.05.019 16839745
    [Google Scholar]
  96. Carpten J.D. Faber A.L. Horn C. Donoho G.P. Briggs S.L. Robbins C.M. Hostetter G. Boguslawski S. Moses T.Y. Savage S. Uhlik M. Lin A. Du J. Qian Y.W. Zeckner D.J. Tucker-Kellogg G. Touchman J. Patel K. Mousses S. Bittner M. Schevitz R. Lai M.H.T. Blanchard K.L. Thomas J.E. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 2007 448 7152 439 444 10.1038/nature05933 17611497
    [Google Scholar]
  97. Parsons D.W. Wang T.L. Samuels Y. Bardelli A. Cummins J.M. DeLong L. Silliman N. Ptak J. Szabo S. Willson J.K.V. Markowitz S. Kinzler K.W. Vogelstein B. Lengauer C. Velculescu V.E. Mutations in a signalling pathway. Nature 2005 436 7052 792 10.1038/436792a 16094359
    [Google Scholar]
  98. Arboleda M.J. Lyons J.F. Kabbinavar F.F. Bray M.R. Snow B.E. Ayala R. Danino M. Karlan B.Y. Slamon D.J. Overexpression of AKT2/protein kinase Bbeta leads to up-regulation of β1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res. 2003 63 1 196 206 12517798
    [Google Scholar]
  99. Kong Y. Kumar S.M. Xu X. Molecular pathogenesis of sporadic melanoma and melanoma-initiating cells. Arch. Pathol. Lab. Med. 2010 134 12 1740 1749 10.5858/2009‑0418‑RAR.1 21128770
    [Google Scholar]
  100. Campbell I.G. Russell S.E. Choong D.Y.H. Montgomery K.G. Ciavarella M.L. Hooi C.S.F. Cristiano B.E. Pearson R.B. Phillips W.A. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 2004 64 21 7678 7681 10.1158/0008‑5472.CAN‑04‑2933 15520168
    [Google Scholar]
  101. Bertelsen B.I. Steine S.J. Sandvei R. Molven A. Laerum O.D. Molecular analysis of the PI3K‐AKT pathway in uterine cervical neoplasia: Frequent PIK3CA amplification and AKT phosphorylation. Int. J. Cancer 2006 118 8 1877 1883 10.1002/ijc.21461 16287065
    [Google Scholar]
  102. Ollikainen M. Gylling A. Puputti M. Nupponen N.N. Abdel-Rahman W.M. Butzow R. Peltomäki P. Patterns of PIK3CA alterations in familial colorectal and endometrial carcinoma. Int. J. Cancer 2007 121 4 915 920 10.1002/ijc.22768 17471559
    [Google Scholar]
  103. Willner J. Wurz K. Allison K.H. Galic V. Garcia R.L. Goff B.A. Swisher E.M. Alternate molecular genetic pathways in ovarian carcinomas of common histological types. Hum. Pathol. 2007 38 4 607 613 10.1016/j.humpath.2006.10.007 17258789
    [Google Scholar]
  104. Pedrero J.M.G. Carracedo D.G. Pinto C.M. Zapatero A.H. Rodrigo J.P. Nieto C.S. Gonzalez M.V. Retracted: Frequent genetic and biochemical alterations of the PI 3‐K/AKT/PTEN pathway in head and neck squamous cell carcinoma. Int. J. Cancer 2005 114 2 242 248 10.1002/ijc.20711 15543611
    [Google Scholar]
  105. Mizoguchi M. Nutt C.L. Mohapatra G. Louis D.N. Genetic alterations of phosphoinositide 3-kinase subunit genes in human glioblastomas. Brain Pathol. 2004 14 4 372 377 10.1111/j.1750‑3639.2004.tb00080.x 15605984
    [Google Scholar]
  106. Philp A.J. Campbell I.G. Leet C. Vincan E. Rockman S.P. Whitehead R.H. Thomas R.J. Phillips W.A. The phosphatidylinositol 3′-kinase p85α gene is an oncogene in human ovarian and colon tumors. Cancer Res. 2001 61 20 7426 7429 11606375
    [Google Scholar]
  107. Miele L. Notch signaling. Clin. Cancer Res. 2006 12 4 1074 1079 10.1158/1078‑0432.CCR‑05‑2570 16489059
    [Google Scholar]
  108. Miele L. Miao H. Nickoloff B. NOTCH signaling as a novel cancer therapeutic target. Curr. Cancer Drug Targets 2006 6 4 313 323 10.2174/156800906777441771 16848722
    [Google Scholar]
  109. Okuyama R. Tagami H. Aiba S. Notch signaling: Its role in epidermal homeostasis and in the pathogenesis of skin diseases. J. Dermatol. Sci. 2008 49 3 187 194 10.1016/j.jdermsci.2007.05.017 17624739
    [Google Scholar]
  110. Qi R. An H. Yu Y. Zhang M. Liu S. Xu H. Guo Z. Cheng T. Cao X. Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res. 2003 63 23 8323 8329 14678992
    [Google Scholar]
  111. Wang Z. Li Y. Sarkar F.H. Notch signaling proteins: legitimate targets for cancer therapy. Curr. Protein Pept. Sci. 2010 11 6 398 408 10.2174/138920310791824039 20491628
    [Google Scholar]
  112. Sparaneo A. Fabrizio F.P. Muscarella L.A. Nrf2 and notch signaling in lung cancer: near the crossroad. Oxid. Med. Cell. Longev. 2016 2016 1 7316492 10.1155/2016/7316492 27847554
    [Google Scholar]
  113. Bolós V. Grego-Bessa J. de la Pompa J.L. Notch signaling in development and cancer. Endocr. Rev. 2007 28 3 339 363 10.1210/er.2006‑0046 17409286
    [Google Scholar]
  114. Aster J.C. Pear W.S. Blacklow S.C. Notch signaling in leukemia. Annu. Rev. Pathol. 2008 3 1 587 613 10.1146/annurev.pathmechdis.3.121806.154300 18039126
    [Google Scholar]
  115. Rizzo P. Osipo C. Foreman K. Golde T. Osborne B. Miele L. Rational targeting of Notch signaling in cancer. Oncogene 2008 27 38 5124 5131 10.1038/onc.2008.226 18758481
    [Google Scholar]
  116. Donnem T. Andersen S. Al-Shibli K. Al-Saad S. Busund L.T. Bremnes R.M. Prognostic impact of Notch ligands and receptors in nonsmall cell lung cancer. Cancer 2010 116 24 5676 5685 10.1002/cncr.25551 20737536
    [Google Scholar]
  117. Taichman D.B. Loomes K.M. Schachtner S.K. Guttentag S. Vu C. Williams P. Oakey R.J. Baldwin H.S. Notch1 and Jagged1 expression by the developing pulmonary vasculature. Dev. Dyn. 2002 225 2 166 175 10.1002/dvdy.10146 12242716
    [Google Scholar]
  118. Pear W.S. Aster J.C. Scott M.L. Hasserjian R.P. Soffer B. Sklar J. Baltimore D. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med. 1996 183 5 2283 2291 10.1084/jem.183.5.2283 8642337
    [Google Scholar]
  119. Zheng Q. Qin H. Zhang H. Li J. Hou L. Wang H. Zhang X. Zhang S. Feng L. Liang Y. Han H. Yi D. Notch signaling inhibits growth of the human lung adenocarcinoma cell line A549. Oncol. Rep. 2007 17 4 847 852 10.3892/or.17.4.847 17342326
    [Google Scholar]
  120. Sriuranpong V. Borges M.W. Ravi R.K. Arnold D.R. Nelkin B.D. Baylin S.B. Ball D.W. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res. 2001 61 7 3200 3205 11306509
    [Google Scholar]
  121. Liu Y.P. Yang C.J. Huang M.S. Yeh C.T. Wu A.T.H. Lee Y.C. Lai T.C. Lee C.H. Hsiao Y.W. Lu J. Shen C.N. Lu P.J. Hsiao M. Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling. Cancer Res. 2013 73 1 406 416 10.1158/0008‑5472.CAN‑12‑1733 23135908
    [Google Scholar]
  122. Kumar V. Vashishta M. Kong L. Wu X. Lu J.J. Guha C. Dwarakanath B.S. The role of Notch, Hedgehog, and Wnt signaling pathways in the resistance of tumors to anticancer therapies. Front. Cell Dev. Biol. 2021 9 650772 10.3389/fcell.2021.650772 33968932
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808353919241126110520
Loading
/content/journals/lddd/10.2174/0115701808353919241126110520
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: phosphoinositide 3-kinase ; hedgehog pathway ; mutation ; notch pathway ; Cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test