Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Objective

This study aims to investigate the active ingredients and potential mechanisms of Total Flavonoids of Hippophae (TFH) in the treatment of Allergic Dermatitis (AD) using network pharmacology and molecular docking.

Methods

The effective components and targets of TFH were identified using the TCMSP, PubChem, and Pharmmapper databases. AD-related targets were screened through GeneCards, OMIM, and TTD databases, leading to the identification of TFH anti-AD related targets. The STRING database was utilized to obtain protein interaction relationships, and Cytoscape 3.9.0 software was employed to construct the protein-protein interaction network. GO and KEGG enrichment analyses were conducted to elucidate the biological processes and pathways involved. Molecular docking between key components and key targets was verified using AutoDock Tools 1.5.6 software.

Results

The key components identified for anti-AD activity were Quercetin, Kaempferol, Cianidanol, and Epicatechin, while the key targets included MAPK8, MAPK10, MAPK14, AKT1, SRC, and EGFR. GO analysis indicated that TFH's anti-AD effects are primarily associated with hormone regulation, cellular processes, response to stimuli, organelles, and cytoplasm. KEGG enrichment analysis suggested that the key pathways involved are pathways in cancer, lipid and atherosclerosis, and the IL-17 signaling pathway, with a significant emphasis on the IL-17 signaling pathway. Molecular docking results demonstrated that the key active ingredients exhibited strong binding activity with all the key targets, with the highest binding affinities observed between kaempferol and MAPK14, epicatechin and MAPK14, and quercetin and AKT1.

Conclusion

TFH exerts therapeutic effects on atopic dermatitis through multi-component, multi-target, and multi-pathway mechanisms involving inflammatory response, immune regulation, and apoptosis. This study provides valuable insights for the further development of drugs specifically targeting AD.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808314238241023111023
2024-10-25
2025-06-20
Loading full text...

Full text loading...

References

  1. Novak-BilićG. VučićM. JapundžićI. Meštrović-ŠtefekovJ. Stanić-DuktajS. Lugović-MihićL. Irritant and allergic contact dermatitis - skin lesion characteristics.Acta Clin. Croat.201857471372010.20471/acc.2018.57.04.1331168208
    [Google Scholar]
  2. Sroka-TomaszewskaJ. TrzeciakM. Molecular mechanisms of atopic dermatitis pathogenesis.Int. J. Mol. Sci.2021228413010.3390/ijms2208413033923629
    [Google Scholar]
  3. OwenJ.L. VakhariaP.P. SilverbergJ.I. The role and diagnosis of allergic contact dermatitis in patients with atopic dermatitis.Am. J. Clin. Dermatol.201819329330210.1007/s40257‑017‑0340‑729305764
    [Google Scholar]
  4. GatmaitanJ.G. LeeJ.H. Challenges and future trends in atopic dermatitis.Int. J. Mol. Sci.202324141138010.3390/ijms24141138037511138
    [Google Scholar]
  5. MasperoJ. De Paula Motta RubiniN. ZhangJ. SanclementeG. AmadorJ.R. El SayedM.H. ChanWai Ming A.; Dodiuk-Gad, R.P.; Hamadah, I.; Thevarajah, S.; Rincón-Perez, C.; Fedenko, E.; Yew, Y.W.; Tang, M.B.Y.; Chu, C.Y.; Kulthanan, K.; Kucuk, O.S.; Al-Hammadi, A.; Brignoli, L.; Tsankova, A.; El-Samad, S.; Neves, J.E.; Eckert, L. Epidemiology of adult patients with atopic dermatitis in AWARE 1: A second international survey.World Allergy Organ. J.202316310072410.1016/j.waojou.2022.10072437033301
    [Google Scholar]
  6. FrazierW. BhardwajN. Atopic dermatitis: Diagnosis and treatment.Am. Fam. Physician20201011059059832412211
    [Google Scholar]
  7. AliF. VyasJ. FinlayA. Counting the burden: Atopic dermatitis and health-related quality of life.Acta Derm. Venereol.202010012adv0016110.2340/00015555‑351132412644
    [Google Scholar]
  8. PegoraroN.S. CamponogaraC. CruzL. OliveiraS.M. Oleic acid exhibits an expressive anti-inflammatory effect in croton oil-induced irritant contact dermatitis without the occurrence of toxicological effects in mice.J. Ethnopharmacol.202126711348610.1016/j.jep.2020.11348633091495
    [Google Scholar]
  9. ZhangL. WeiW. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony.Pharmacol. Ther.202020710745210.1016/j.pharmthera.2019.10745231836457
    [Google Scholar]
  10. ShiZ. SongT. XieJ. YanY. DuY. The traditional chinese medicine and relevant treatment for the efficacy and safety of atopic dermatitis: A systematic review and meta‐analysis of randomized controlled trials.Evid. Based Complement. Alternat. Med.201720171602643410.1155/2017/602643428713436
    [Google Scholar]
  11. GuoZ. LiY. HouY. WangY. LiangY. SiX. PanG. WangY. HuQ. Chinese herbal bath therapy for the treatment of Atopic dermatitis in children: A meta-analysis and systematic review.Medicine202210147e3192310.1097/MD.000000000003192336451483
    [Google Scholar]
  12. YiT. ZhaoZ.Z. YuZ.L. ChenH.B. Comparison of the anti-inflammatory and anti-nociceptive effects of three medicinal plants known as “Snow Lotus” herb in traditional Uighur and Tibetan medicines.J. Ethnopharmacol.2010128240541110.1016/j.jep.2010.01.03720083181
    [Google Scholar]
  13. ChikW.I. ZhuL. FanL.L. YiT. ZhuG.Y. GouX.J. TangY.N. XuJ. YeungW.P. ZhaoZ.Z. YuZ.L. ChenH.B. Saussurea involucrata: A review of the botany, phytochemistry and ethnopharmacology of a rare traditional herbal medicine.J. Ethnopharmacol.2015172446010.1016/j.jep.2015.06.03326113182
    [Google Scholar]
  14. FanJ.Y. ChenH.B. ZhuL. ChenH-L. ZhaoZ-Z. YiT. Saussurea medusa, source of the medicinal herb snow lotus: a review of its botany, phytochemistry, pharmacology and toxicology.Phytochem. Rev.201514335336610.1007/s11101‑015‑9408‑2
    [Google Scholar]
  15. YiT. LoH. ZhaoZ. YuZ. YangZ. ChenH. Comparison of the chemical composition and pharmacological effects of the aqueous and ethanolic extracts from a Tibetan “Snow Lotus” (Saussurea laniceps) herb.Molecules20121767183719410.3390/molecules1706718322692242
    [Google Scholar]
  16. XiaY. ChenH. QinJ. ZhangW. GaoH. LongX. HeH. ZhangL. ZhangC. CaoC. YuL. ChenX. ChenQ. The phthalide compound tokinolide B from Angelica sinensis exerts anti-inflammatory effects through Nur77 binding.Phytomedicine202413315592510.1016/j.phymed.2024.15592539173278
    [Google Scholar]
  17. HuM. JinF. ZhangC. ShaoJ. WangC. WangT. WuD. Sodium houttuyfonate induces bacterial lipopolysaccharide shedding to promote macrophage M1 polarization against acute bacterial lung infection.Biomed. Pharmacother.202417911735810.1016/j.biopha.2024.11735839278188
    [Google Scholar]
  18. GuoR. ChangX. GuoX. BrennanC.S. LiT. FuX. LiuR.H. Phenolic compounds, antioxidant activity, antiproliferative activity and bioaccessibility of Sea buckthorn (Hippophaë rhamnoides L.) berries as affected by in vitro digestion.Food Funct.20178114229424010.1039/C7FO00917H29046908
    [Google Scholar]
  19. SuryakumarG. GuptaA. Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.).J. Ethnopharmacol.2011138226827810.1016/j.jep.2011.09.02421963559
    [Google Scholar]
  20. GuY. WangX. LiuF. ZhangJ. ZhangX. LiuJ. LiS. WangD. GuanH. HouD. Total flavonoids of sea buckthorn (Hippophae rhamnoides L.) improve MC903-induced atopic dermatitis-like lesions.J. Ethnopharmacol.202229211519510.1016/j.jep.2022.11519535306042
    [Google Scholar]
  21. ChenA. GongM. ChiJ. WangZ. DaiL. Exploring the potential mechanisms of the ethyl acetate fraction of Hippophae rhamnoides L. seeds as a natural healing agent for wound repair.J. Ethnopharmacol.202433511868810.1016/j.jep.2024.11868839142622
    [Google Scholar]
  22. XuY. LiJ. LinZ. LiangW. QinL. DingJ. ChenS. ZhouL. Isorhamnetin alleviates airway inflammation by regulating the NRF2/KEAP1 pathway in a mouse model of COPD.Front. Pharmacol.20221386036210.3389/fphar.2022.86036235401244
    [Google Scholar]
  23. HouD.D. DiZ.H. QiR.Q. WangH.X. ZhengS. HongY.X. GuoH. ChenH.D. GaoX.H. Sea buckthorn (hippophaë rhamnoides l.) oil improves atopic dermatitis-like skin lesions via inhibition of NF-κB and STAT1 activation.Skin Pharmacol. Physiol.201730526827610.1159/00047952828873377
    [Google Scholar]
  24. WangX. LiS. LiuJ. KongD. HanX. LeiP. XuM. GuanH. HouD. Ameliorative effects of sea buckthorn oil on DNCB induced atopic dermatitis model mice via regulation the balance of Th1/Th2.BMC Complement. Med. Therap.202020126310.1186/s12906‑020‑02997‑232843010
    [Google Scholar]
  25. MoosS. MohebianyA.N. WaismanA. KurschusF.C. Imiquimod-induced psoriasis in mice depends on the IL-17 signaling of keratinocytes.J. Invest. Dermatol.201913951110111710.1016/j.jid.2019.01.00630684554
    [Google Scholar]
  26. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑1324735618
    [Google Scholar]
  27. WangS. WangH. LuY. Tianfoshen oral liquid: A CFDA approved clinical traditional Chinese medicine, normalizes major cellular pathways disordered during colorectal carcinogenesis.Oncotarget201789145491456910.18632/oncotarget.1467528099904
    [Google Scholar]
  28. WangY. YuW. ShiC. JiaoW. LiJ. GeJ. HongY. ShiG. Network pharmacology of Yougui pill combined with Buzhong Yiqi decoction for the treatment of sexual dysfunction.Evid. Based Complement. Alternat. Med.2019201911010.1155/2019/124374331814838
    [Google Scholar]
  29. KimS. Getting the most out of PubChem for virtual screening.Expert Opin. Drug Discov.201611984385510.1080/17460441.2016.121696727454129
    [Google Scholar]
  30. TangC.T. YangJ. LiuZ.D. ChenY. ZengC. Taraxasterol acetate targets RNF31 to inhibit RNF31/p53 axis-driven cell proliferation in colorectal cancer.Cell Death Discov.2021716610.1038/s41420‑021‑00449‑533824292
    [Google Scholar]
  31. UniProt: the universal protein knowledgebase.Nucleic Acids Res.201745D1D158D16910.1093/nar/gkw109927899622
    [Google Scholar]
  32. SafranM. DalahI. AlexanderJ. RosenN. Iny SteinT. ShmoishM. NativN. BahirI. DonigerT. KrugH. Sirota-MadiA. OlenderT. GolanY. StelzerG. HarelA. LancetD. GeneCards version 3: The human gene integrator.Database201020100baq02010.1093/database/baq02020689021
    [Google Scholar]
  33. AmbergerJ.S. Hamosh, A Searching online mendelian inheritance in man (OMIM): A knowledgebase of human genes and genetic phenotypes.Curr. Protoc. Bioinformatics20175811210.1002/cpbi.2728654725
    [Google Scholar]
  34. WangY. ZhangS. LiF. ZhouY. ZhangY. WangZ. ZhangR. ZhuJ. RenY. TanY. QinC. LiY. LiX. ChenY. ZhuF. Therapeutic target database 2020: Enriched resource for facilitating research and early development of targeted therapeutics.Nucleic Acids Res.201948D1gkz98110.1093/nar/gkz98131691823
    [Google Scholar]
  35. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky113130476243
    [Google Scholar]
  36. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑630944313
    [Google Scholar]
  37. ClyneA. YangL. YangM. MayB. YangA.W.H. Molecular docking and network connections of active compounds from the classical herbal formula Ding Chuan Tang.PeerJ20208e868510.7717/peerj.868532185106
    [Google Scholar]
  38. GoodsellD.S. ZardeckiC. Di CostanzoL. DuarteJ.M. HudsonB.P. PersikovaI. SeguraJ. ShaoC. VoigtM. WestbrookJ.D. YoungJ.Y. BurleyS.K. RCSB protein data bank: Enabling biomedical research and drug discovery.Protein Sci.2020291526510.1002/pro.373031531901
    [Google Scholar]
  39. HopkinsA.L. Network pharmacology.Nat. Biotechnol.200725101110111110.1038/nbt1007‑111017921993
    [Google Scholar]
  40. XuH.Y. LiuZ.M. FuY. ZhangY.Q. YuJ.J. GuoF.F. TangS.H. LvC.Y. SuJ. CuiR.Y. YangH.J. Exploiture and application of an internet-based computation platform for integrative pharmacology of traditional chinese medicine.Zhongguo Zhong yao Zazhi201742183633363810.19540/j.cnki.cjcmm.2017.014129218953
    [Google Scholar]
  41. LiS. FanT.P. JiaW. LuA. ZhangW. Network pharmacology in traditional chinese medicine.Evid. Based Complement. Alternat. Med.20142014113846010.1155/2014/13846024707305
    [Google Scholar]
  42. PundirS. GargP. DviwediA. AliA. KapoorV.K. KapoorD. KulshresthaS. LalU.R. NegiP. Ethnomedicinal uses, phytochemistry and dermatological effects of Hippophae rhamnoides L.: A review.J. Ethnopharmacol.202126611343410.1016/j.jep.2020.11343433017636
    [Google Scholar]
  43. DiasM.C. PintoD.C.G.A. SilvaA.M.S. Plant flavonoids: Chemical characteristics and biological activity.Molecules20212617537710.3390/molecules2617537734500810
    [Google Scholar]
  44. HouD. WangD. MaX. ChenW. GuoS. GuanH. Effects of total flavonoids of sea buckthorn (Hippophae rhamnoides L.) on cytotoxicity of NK92-MI cells.Int. J. Immunopathol. Pharmacol.201730435336110.1177/039463201773667328994628
    [Google Scholar]
  45. XiaoP. LiuS. KuangY. JiangZ. LinY. XieZ. LiuE.H. Network pharmacology analysis and experimental validation to explore the mechanism of sea buckthorn flavonoids on hyperlipidemia.J. Ethnopharmacol.202126411338010.1016/j.jep.2020.11338032918994
    [Google Scholar]
  46. JiangF. GuanH. LiuD. WuX. FanM. HanJ. Flavonoids from sea buckthorn inhibit the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages through the MAPK and NF-κB pathways.Food Funct.2017831313132210.1039/C6FO01873D28256654
    [Google Scholar]
  47. OkumoT. FurutaA. KimuraT. YusaK. AsanoK. SunagawaM. Inhibition of angiogenic factor productions by quercetin in vitro and in vivo.Medicines2021852210.3390/medicines805002234065895
    [Google Scholar]
  48. JinJ. ChenB. ZhanX. ZhouZ. LiuH. DongY. Network pharmacology and molecular docking study on the mechanism of colorectal cancer treatment using Xiao-Chai-Hu-Tang.PLoS One2021166e025250810.1371/journal.pone.025250834125845
    [Google Scholar]
  49. ManningB.D. CantleyL.C. AKT/PKB signaling: Navigating downstream.Cell200712971261127410.1016/j.cell.2007.06.00917604717
    [Google Scholar]
  50. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: a software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  51. ShiJ. YuJ. ZhangY. WuL. DongS. WuL. WuL. DuS. ZhangY. MaD. PI3K/Akt pathway-mediated HO-1 induction regulates mitochondrial quality control and attenuates endotoxin-induced acute lung injury.Lab. Invest.201999121795180910.1038/s41374‑019‑0286‑x31570770
    [Google Scholar]
  52. NaeemA.S. TommasiC. ColeC. BrownS.J. ZhuY. WayB. Willis OwenS.A.G. MoffattM. CooksonW.O. HarperJ.I. DiW.L. BrownS.J. ReinheckelT. O’ShaughnessyR.F.L. A mechanistic target of rapamycin complex 1/2 (mTORC1)/V-Akt murine thymoma viral oncogene homolog 1 (AKT1)/cathepsin H axis controls filaggrin expression and processing in skin, a novel mechanism for skin barrier disruption in patients with atopic dermatitis.J. Allergy Clin. Immunol.201713941228124110.1016/j.jaci.2016.09.05227913303
    [Google Scholar]
  53. Rude VoldborgB. DamstrupL. Spang-ThomsenM. Skovgaard PoulsenH. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials.Ann. Oncol.19978121197120610.1023/A:10082097205269496384
    [Google Scholar]
  54. OhmoriT. YamaokaT. AndoK. KusumotoS. KishinoY. ManabeR. SagaraH. Molecular and clinical features of EGFR-TKI-associated lung injury.Int. J. Mol. Sci.202122279210.3390/ijms2202079233466795
    [Google Scholar]
  55. ZaissD.M.W. GauseW.C. OsborneL.C. ArtisD. Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair.Immunity201542221622610.1016/j.immuni.2015.01.02025692699
    [Google Scholar]
  56. GuoC. GaoY. JuQ. WangM. ZhangC. GongM. LiZ. MAPK14 over-expression is a transcriptomic feature of polycythemia vera and correlates with adverse clinical outcomes.J. Transl. Med.202119123310.1186/s12967‑021‑02913‑334059095
    [Google Scholar]
  57. SeshacharyuluP. PonnusamyM.P. HaridasD. JainM. GantiA.K. BatraS.K. Targeting the EGFR signaling pathway in cancer therapy.Expert Opin. Ther. Targets2012161153110.1517/14728222.2011.64861722239438
    [Google Scholar]
  58. WestonC.R. DavisR.J. The JNK signal transduction pathway.Curr. Opin. Cell Biol.200719214214910.1016/j.ceb.2007.02.00117303404
    [Google Scholar]
  59. SchattenbergJ.M. SinghR. WangY. LefkowitchJ.H. RigoliR.M. SchererP.E. CzajaM.J. Jnk1 but not jnk2 promotes the development of steatohepatitis in mice.Hepatology200643116317210.1002/hep.2099916374858
    [Google Scholar]
  60. DavisR.J. Signal transduction by the JNK group of MAP kinases.Cell2000103223925210.1016/S0092‑8674(00)00116‑111057897
    [Google Scholar]
  61. YanJ. ThomsonJ.K. ZhaoW. GaoX. HuangF. ChenB. LiangQ. SongL.S. FillM. AiX. Role of stress kinase JNK in binge alcohol-evoked atrial arrhythmia.J. Am. Coll. Cardiol.201871131459147010.1016/j.jacc.2018.01.06029598867
    [Google Scholar]
  62. LiuF. DengY. ZhaoY. LiZ. GaoJ. ZhangY. YangX. LiuY. XiaY. Time series RNA-seq analysis identifies MAPK10 as a critical gene in diabetes mellitus-induced atrial fibrillation in mice.J. Mol. Cell. Cardiol.2022168708210.1016/j.yjmcc.2022.04.01335489387
    [Google Scholar]
  63. KramerH.F. GoodyearL.J. Exercise, MAPK, and NF-kappaB signaling in skeletal muscle.J. Appl. Physiol.1985103738839510.1152/japplphysiol.00085.200717303713
    [Google Scholar]
  64. ChengY. SunF. WangL. GaoM. XieY. SunY. LiuH. YuanY. YiW. HuangZ. YanH. PengK. WuY. CaoZ. Virus-induced p38 MAPK activation facilitates viral infection.Theranostics20201026122231224010.7150/thno.5099233204339
    [Google Scholar]
  65. HanJ. WuJ. SilkeJ. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling.F1000Res. Rev-653.2020965310.12688/f1000research.22092.132612808
    [Google Scholar]
  66. HaarE. PrabakharP. LiuX. LepreC. Crystal structure of the p38 alpha-MAPKAP kinase 2 heterodimer.J. Biol. Chem.2007282139733973910.1074/jbc.M61116520017255097
    [Google Scholar]
  67. ZarubinT. HanJ. Activation and signaling of the p38 MAP kinase pathway.Cell Res.2005151111810.1038/sj.cr.729025715686620
    [Google Scholar]
  68. WangC. HockermanS. JacobsenE.J. AlippeY. SelnessS.R. HopeH.R. HirschJ.L. MnichS.J. SaabyeM.J. HoodW.F. BonarS.L. Abu-AmerY. HaimovichA. HoffmanH.M. MonahanJ.B. MbalavieleG. Selective inhibition of the p38α MAPK–MK2 axis inhibits inflammatory cues including inflammasome priming signals.J. Exp. Med.201821551315132510.1084/jem.2017206329549113
    [Google Scholar]
  69. Guijarro-HernándezA. VizmanosJ.L. A broad overview of signaling in Ph-negative classic myeloproliferative neoplasms.Cancers202113598410.3390/cancers1305098433652860
    [Google Scholar]
  70. Jiménez-AndradeY. HilletteK.R. YoshidaT. KashiwagiM. ChooM.K. LiangY. GeorgopoulosK. ParkJ.M. The developmental transcription factor p63 is redeployed to drive allergic skin inflammation through phosphorylation by p38α.J. Immunol.2022208122613262110.4049/jimmunol.210116035623662
    [Google Scholar]
  71. QiJ. WangJ. RomanyukO. SiuC.H. Involvement of Src family kinases in N-cadherin phosphorylation and beta-catenin dissociation during transendothelial migration of melanoma cells.Mol. Biol. Cell20061731261127210.1091/mbc.e05‑10‑092716371504
    [Google Scholar]
  72. MauroA.K. ClementeL. KhurshidN. ShahD.M. ZhengJ. BoeldtD.S. Src kinase partially mediates cytokine-induced endothelial dysfunction.Pregnancy Hypertens.202334838910.1016/j.preghy.2023.10.00437864990
    [Google Scholar]
  73. FrameM.C. Src in cancer: Deregulation and consequences for cell behaviour.Biochim. Biophys. Acta Rev. Cancer20021602211413010.1016/S0304‑419X(02)00040‑912020799
    [Google Scholar]
  74. SzilveszterK.P. NémethT. MócsaiA. Tyrosine kinases in autoimmune and inflammatory skin diseases.Front. Immunol.201910186210.3389/fimmu.2019.0186231447854
    [Google Scholar]
  75. SandbornW.J. GasinkC. GaoL.L. BlankM.A. JohannsJ. GuzzoC. SandsB.E. HanauerS.B. TarganS. RutgeertsP. GhoshS. de VilliersW.J.S. PanaccioneR. GreenbergG. SchreiberS. LichtigerS. FeaganB.G. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease.N. Engl. J. Med.2012367161519152810.1056/NEJMoa120357223075178
    [Google Scholar]
  76. AmatyaN. GargA.V. GaffenS.L. IL-17 signaling: The yin and the yang.Trends Immunol.201738531032210.1016/j.it.2017.01.00628254169
    [Google Scholar]
  77. LiuT. LiS. YingS. TangS. DingY. LiY. QiaoJ. FangH. The IL-23/IL-17 pathway in inflammatory skin diseases: From bench to bedside.Front. Immunol.2020111159473510.3389/fimmu.2020.59473533281823
    [Google Scholar]
  78. BrunnerP.M. Guttman-YasskyE. LeungD.Y.M. The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies.J. Allergy Clin. Immunol.20171394S65S7610.1016/j.jaci.2017.01.01128390479
    [Google Scholar]
  79. NogralesK.E. ZabaL.C. ShemerA. Fuentes-DuculanJ. CardinaleI. KikuchiT. RamonM. BergmanR. KruegerJ.G. Guttman-YasskyE. IL-22–producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17–producing TH17 T cells.J. Allergy Clin. Immunol.2009123612441252.e210.1016/j.jaci.2009.03.04119439349
    [Google Scholar]
  80. NodaS. Suárez-FariñasM. UngarB. KimS.J. de Guzman StrongC. XuH. PengX. EstradaY.D. NakajimaS. HondaT. ShinJ.U. LeeH. KruegerJ.G. LeeK.H. KabashimaK. Guttman-YasskyE. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization.J. Allergy Clin. Immunol.201513651254126410.1016/j.jaci.2015.08.01526428954
    [Google Scholar]
  81. CzarnowickiT. HeH. CanterT. HanJ. LefferdinkR. EricksonT. RangelS. KameyamaN. KimH.J. PavelA.B. EstradaY. KruegerJ.G. PallerA.S. Guttman-YasskyE. Evolution of pathologic T-cell subsets in patients with atopic dermatitis from infancy to adulthood.J. Allergy Clin. Immunol.2020145121522810.1016/j.jaci.2019.09.03131626841
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808314238241023111023
Loading
/content/journals/lddd/10.2174/0115701808314238241023111023
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test