Skip to content
2000
Volume 21, Issue 17
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Optimal glycemic control is crucial in type 2 diabetes treatment, with α-glucosidase inhibitors emerging as promising candidates. Avenanthramides, compounds found in oats, exhibit therapeutic potential, but their efficacy as α-glucosidase inhibitors requires thorough evaluation.

Objective

This study investigates the potential of avenanthramides and their derivatives as inhibitors of α-glucosidase for the treatment of type 2 diabetes through comprehensive computational analysis.

Methods

Structure-Based Virtual Screening of 3543 avenanthramides and their analog compounds was conducted using FlexX. The top 30 ranked compounds were subjected to visual inspection of their binding mode within the α-glucosidase binding site to eliminate false positives. The top-ranked molecule was subjected to dynamic simulation and ADMET prediction.

Results

The results revealed that 1634 compounds were found to exhibit a greater α-glucosidase inhibitory potency than miglitol, the reference molecule. Compound exhibited superior α-glucosidase inhibitory potency with a binding energy of -45.7786 kJ/mol compared to miglitol, which had a binding energy of -26.5186 kJ/mol. was predicted to occupy the entire binding site with an optimized number of hydrogen bonds and hydrophobic interactions. Molecular dynamics simulations demonstrated that had a lower average RMSD (0.15 ± 0.01 nm) compared to miglitol (0.16 ± 0.01 nm), indicating superior stability within the α-glucosidase binding site. exhibited favorable drug-like properties, suggesting its potential as a lead compound for further development in type 2 diabetes treatment.

Conclusion

These findings highlight 's potential for diabetes treatment and pave the way for future experimental investigations. The computational approach utilized offers valuable insights into the inhibitory potential of avenanthramides, providing a foundation for further drug development for type 2 diabetes.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808306787240709073814
2024-07-15
2025-06-17
Loading full text...

Full text loading...

References

  1. LiJ.M. LiX. ChanL.W.C. HuR. ZhengT. LiH. YangS. Lipotoxicity-polarised macrophage-derived exosomes regulate mitochondrial fitness through Miro1-mediated mitophagy inhibition and contribute to type 2 diabetes development in mice.Diabetologia202366122368238610.1007/s00125‑023‑05992‑7 37615690
    [Google Scholar]
  2. YaoH. ZhangA. LiD. WuY. WangC.Z. WanJ.Y. YuanC.S. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: systematic review and network meta-analysis.BMJ2024384e07641010.1136/bmj‑2023‑076410 38286487
    [Google Scholar]
  3. OngK.L. StaffordL.K. McLaughlinS.A. BoykoE.J. VollsetS.E. SmithA.E. DaltonB.E. DupreyJ. CruzJ.A. HaginsH. LindstedtP.A. AaliA. AbateY.H. AbateM.D. AbbasianM. Abbasi-KangevariZ. Abbasi-KangevariM. Abd ElHafeezS. Abd-RabuR. AbdulahD.M. AbdullahA.Y.M. AbediV. AbidiH. AboagyeR.G. AbolhassaniH. Abu-GharbiehE. Abu-ZaidA. AdaneT.D. AdaneD.E. AddoI.Y. AdegboyeO.A. AdekanmbiV. AdepojuA.V. AdnaniQ.E.S. AfolabiR.F. AgarwalG. AghdamZ.B. Agudelo-BoteroM. Aguilera ArriagadaC.E. Agyemang-DuahW. AhinkorahB.O. AhmadD. AhmadR. AhmadS. AhmadA. AhmadiA. AhmadiK. AhmedA. AhmedA. AhmedL.A. AhmedS.A. AjamiM. AkinyemiR.O. Al HamadH. Al HasanS.M. AL-Ahdal, T.M.A.; Alalwan, T.A.; Al-Aly, Z.; AlBataineh, M.T.; Alcalde-Rabanal, J.E.; Alemi, S.; Ali, H.; Alinia, T.; Aljunid, S.M.; Almustanyir, S.; Al-Raddadi, R.M.; Alvis-Guzman, N.; Amare, F.; Ameyaw, E.K.; Amiri, S.; Amusa, G.A.; Andrei, C.L.; Anjana, R.M.; Ansar, A.; Ansari, G.; Ansari-Moghaddam, A.; Anyasodor, A.E.; Arabloo, J.; Aravkin, A.Y.; Areda, D.; Arifin, H.; Arkew, M.; Armocida, B.; Ärnlöv, J.; Artamonov, A.A.; Arulappan, J.; Aruleba, R.T.; Arumugam, A.; Aryan, Z.; Asemu, M.T.; Asghari-Jafarabadi, M.; Askari, E.; Asmelash, D.; Astell-Burt, T.; Athar, M.; Athari, S.S.; Atout, M.M.W.; Avila-Burgos, L.; Awaisu, A.; Azadnajafabad, S.; B, D.B.; Babamohamadi, H.; Badar, M.; Badawi, A.; Badiye, A.D.; Baghcheghi, N.; Bagheri, N.; Bagherieh, S.; Bah, S.; Bahadory, S.; Bai, R.; Baig, A.A.; Baltatu, O.C.; Baradaran, H.R.; Barchitta, M.; Bardhan, M.; Barengo, N.C.; Bärnighausen, T.W.; Barone, M.T.U.; Barone-Adesi, F.; Barrow, A.; Bashiri, H.; Basiru, A.; Basu, S.; Basu, S.; Batiha, A-M.M.; Batra, K.; Bayih, M.T.; Bayileyegn, N.S.; Behnoush, A.H.; Bekele, A.B.; Belete, M.A.; Belgaumi, U.I.; Belo, L.; Bennett, D.A.; Bensenor, I.M.; Berhe, K.; Berhie, A.Y.; Bhaskar, S.; Bhat, A.N.; Bhatti, J.S.; Bikbov, B.; Bilal, F.; Bintoro, B.S.; Bitaraf, S.; Bitra, V.R.; Bjegovic-Mikanovic, V.; Bodolica, V.; Boloor, A.; Brauer, M.; Brazo-Sayavera, J.; Brenner, H.; Butt, Z.A.; Calina, D.; Campos, L.A.; Campos-Nonato, I.R.; Cao, Y.; Cao, C.; Car, J.; Carvalho, M.; Castañeda-Orjuela, C.A.; Catalá-López, F.; Cerin, E.; Chadwick, J.; Chandrasekar, E.K.; Chanie, G.S.; Charan, J.; Chattu, V.K.; Chauhan, K.; Cheema, H.A.; Chekol Abebe, E.; Chen, S.; Cherbuin, N.; Chichagi, F.; Chidambaram, S.B.; Cho, W.C.S.; Choudhari, S.G.; Chowdhury, R.; Chowdhury, E.K.; Chu, D-T.; Chukwu, I.S.; Chung, S-C.; Coberly, K.; Columbus, A.; Contreras, D.; Cousin, E.; Criqui, M.H.; Cruz-Martins, N.; Cuschieri, S.; Dabo, B.; Dadras, O.; Dai, X.; Damasceno, A.A.M.; Dandona, R.; Dandona, L.; Das, S.; Dascalu, A.M.; Dash, N.R.; Dashti, M.; Dávila-Cervantes, C.A.; De la Cruz-Góngora, V.; Debele, G.R.; Delpasand, K.; Demisse, F.W.; Demissie, G.D.; Deng, X.; Denova-Gutiérrez, E.; Deo, S.V.; Dervišević, E.; Desai, H.D.; Desale, A.T.; Dessie, A.M.; Desta, F.; Dewan, S.M.R.; Dey, S.; Dhama, K.; Dhimal, M.; Diao, N.; Diaz, D.; Dinu, M.; Diress, M.; Djalalinia, S.; Doan, L.P.; Dongarwar, D.; dos Santos Figueiredo, F.W.; Duncan, B.B.; Dutta, S.; Dziedzic, A.M.; Edinur, H.A.; Ekholuenetale, M.; Ekundayo, T.C.; Elgendy, I.Y.; Elhadi, M.; El-Huneidi, W.; Elmeligy, O.A.A.; Elmonem, M.A.; Endeshaw, D.; Esayas, H.L.; Eshetu, H.B.; Etaee, F.; Fadhil, I.; Fagbamigbe, A.F.; Fahim, A.; Falahi, S.; Faris, M.A.I.E.M.; Farrokhpour, H.; Farzadfar, F.; Fatehizadeh, A.; Fazli, G.; Feng, X.; Ferede, T.Y.; Fischer, F.; Flood, D.; Forouhari, A.; Foroumadi, R.; Foroutan Koudehi, M.; Gaidhane, A.M.; Gaihre, S.; Gaipov, A.; Galali, Y.; Ganesan, B.; Garcia-Gordillo, M.A.; Gautam, R.K.; Gebrehiwot, M.; Gebrekidan, K.G.; Gebremeskel, T.G.; Getacher, L.; Ghadirian, F.; Ghamari, S-H.; Ghasemi Nour, M.; Ghassemi, F.; Golechha, M.; Goleij, P.; Golinelli, D.; Gopalani, S.V.; Guadie, H.A.; Guan, S-Y.; Gudayu, T.W.; Guimarães, R.A.; Guled, R.A.; Gupta, R.; Gupta, K.; Gupta, V.B.; Gupta, V.K.; Gyawali, B.; Haddadi, R.; Hadi, N.R.; Haile, T.G.; Hajibeygi, R.; Haj-Mirzaian, A.; Halwani, R.; Hamidi, S.; Hankey, G.J.; Hannan, M.A.; Haque, S.; Harandi, H.; Harlianto, N.I.; Hasan, S.M.M.; Hasan, S.S.; Hasani, H.; Hassanipour, S.; Hassen, M.B.; Haubold, J.; Hayat, K.; Heidari, G.; Heidari, M.; Hessami, K.; Hiraike, Y.; Holla, R.; Hossain, S.; Hossain, M.S.; Hosseini, M-S.; Hosseinzadeh, M.; Hosseinzadeh, H.; Huang, J.; Huda, M.N.; Hussain, S.; Huynh, H-H.; Hwang, B-F.; Ibitoye, S.E.; Ikeda, N.; Ilic, I.M.; Ilic, M.D.; Inbaraj, L.R.; Iqbal, A.; Islam, S.M.S.; Islam, R.M.; Ismail, N.E.; Iso, H.; Isola, G.; Itumalla, R.; Iwagami, M.; Iwu, C.C.D.; Iyamu, I.O.; Iyasu, A.N.; Jacob, L.; Jafarzadeh, A.; Jahrami, H.; Jain, R.; Jaja, C.; Jamalpoor, Z.; Jamshidi, E.; Janakiraman, B.; Jayanna, K.; Jayapal, S.K.; Jayaram, S.; Jayawardena, R.; Jebai, R.; Jeong, W.; Jin, Y.; Jokar, M.; Jonas, J.B.; Joseph, N.; Joseph, A.; Joshua, C.E.; Joukar, F.; Jozwiak, J.J.; Kaambwa, B.; Kabir, A.; Kabthymer, R.H.; Kadashetti, V.; Kahe, F.; Kalhor, R.; Kandel, H.; Karanth, S.D.; Karaye, I.M.; Karkhah, S.; Katoto, P.D.M.C.; Kaur, N.; Kazemian, S.; Kebede, S.A.; Khader, Y.S.; Khajuria, H.; Khalaji, A.; Khan, M.A.B.; Khan, M.; Khan, A.; Khanal, S.; Khatatbeh, M.M.; Khater, A.M.; Khateri, S.; khorashadizadeh, F.; Khubchandani, J.; Kibret, B.G.; Kim, M.S.; Kimokoti, R.W.; Kisa, A.; Kivimäki, M.; Kolahi, A-A.; Komaki, S.; Kompani, F.; Koohestani, H.R.; Korzh, O.; Kostev, K.; Kothari, N.; Koyanagi, A.; Krishan, K.; Krishnamoorthy, Y.; Kuate Defo, B.; Kuddus, M.; Kuddus, M.A.; Kumar, R.; Kumar, H.; Kundu, S.; Kurniasari, M.D.; Kuttikkattu, A.; La Vecchia, C.; Lallukka, T.; Larijani, B.; Larsson, A.O.; Latief, K.; Lawal, B.K.; Le, T.T.T.; Le, T.T.B.; Lee, S.W.H.; Lee, M.; Lee, W-C.; Lee, P.H.; Lee, S.; Lee, S.W.; Legesse, S.M.; Lenzi, J.; Li, Y.; Li, M-C.; Lim, S.S.; Lim, L-L.; Liu, X.; Liu, C.; Lo, C-H.; Lopes, G.; Lorkowski, S.; Lozano, R.; Lucchetti, G.; Maghazachi, A.A.; Mahasha, P.W.; Mahjoub, S.; Mahmoud, M.A.; Mahmoudi, R.; Mahmoudimanesh, M.; Mai, A.T.; Majeed, A.; Majma Sanaye, P.; Makris, K.C.; Malhotra, K.; Malik, A.A.; Malik, I.; Mallhi, T.H.; Malta, D.C.; Mamun, A.A.; Mansouri, B.; Marateb, H.R.; Mardi, P.; Martini, S.; Martorell, M.; Marzo, R.R.; Masoudi, R.; Masoudi, S.; Mathews, E.; Maugeri, A.; Mazzaglia, G.; Mekonnen, T.; Meshkat, M.; Mestrovic, T.; Miao Jonasson, J.; Miazgowski, T.; Michalek, I.M.; Minh, L.H.N.; Mini, G.K.; Miranda, J.J.; Mirfakhraie, R.; Mirrakhimov, E.M.; Mirza-Aghazadeh-Attari, M.; Misganaw, A.; Misgina, K.H.; Mishra, M.; Moazen, B.; Mohamed, N.S.; Mohammadi, E.; Mohammadi, M.; Mohammadian-Hafshejani, A.; Mohammadshahi, M.; Mohseni, A.; Mojiri-forushani, H.; Mokdad, A.H.; Momtazmanesh, S.; Monasta, L.; Moniruzzaman, M.; Mons, U.; Montazeri, F.; Moodi Ghalibaf, A.A.; Moradi, Y.; Moradi, M.; Moradi Sarabi, M.; Morovatdar, N.; Morrison, S.D.; Morze, J.; Mossialos, E.; Mostafavi, E.; Mueller, U.O.; Mulita, F.; Mulita, A.; Murillo-Zamora, E.; Musa, K.I.; Mwita, J.C.; Nagaraju, S.P.; Naghavi, M.; Nainu, F.; Nair, T.S.; Najmuldeen, H.H.R.; Nangia, V.; Nargus, S.; Naser, A.Y.; Nassereldine, H.; Natto, Z.S.; Nauman, J.; Nayak, B.P.; Ndejjo, R.; Negash, H.; Negoi, R.I.; Nguyen, H.T.H.; Nguyen, D.H.; Nguyen, P.T.; Nguyen, V.T.; Nguyen, H.Q.; Niazi, R.K.; Nigatu, Y.T.; Ningrum, D.N.A.; Nizam, M.A.; Nnyanzi, L.A.; Noreen, M.; Noubiap, J.J.; Nzoputam, O.J.; Nzoputam, C.I.; Oancea, B.; Odogwu, N.M.; Odukoya, O.O.; Ojha, V.A.; Okati-Aliabad, H.; Okekunle, A.P.; Okonji, O.C.; Okwute, P.G.; Olufadewa, I.I.; Onwujekwe, O.E.; Ordak, M.; Ortiz, A.; Osuagwu, U.L.; Oulhaj, A.; Owolabi, M.O.; Padron-Monedero, A.; Padubidri, J.R.; Palladino, R.; Panagiotakos, D.; Panda-Jonas, S.; Pandey, A.; Pandey, A.; Pandi-Perumal, S.R.; Pantea Stoian, A.M.; Pardhan, S.; Parekh, T.; Parekh, U.; Pasovic, M.; Patel, J.; Patel, J.R.; Paudel, U.; Pepito, V.C.F.; Pereira, M.; Perico, N.; Perna, S.; Petcu, I-R.; Petermann-Rocha, F.E.; Podder, V.; Postma, M.J.; Pourali, G.; Pourtaheri, N.; Prates, E.J.S.; Qadir, M.M.F.; Qattea, I.; Raee, P.; Rafique, I.; Rahimi, M.; Rahimifard, M.; Rahimi-Movaghar, V.; Rahman, M.O.; Rahman, M.A.; Rahman, M.H.U.; Rahman, M.; Rahman, M.M.; Rahmani, M.; Rahmani, S.; Rahmanian, V.; Rahmawaty, S.; Rahnavard, N.; Rajbhandari, B.; Ram, P.; Ramazanu, S.; Rana, J.; Rancic, N.; Ranjha, M.M.A.N.; Rao, C.R.; Rapaka, D.; Rasali, D.P.; Rashedi, S.; Rashedi, V.; Rashid, A.M.; Rashidi, M-M.; Ratan, Z.A.; Rawaf, S.; Rawal, L.; Redwan, E.M.M.; Remuzzi, G.; Rengasamy, K.R.R.; Renzaho, A.M.N.; Reyes, L.F.; Rezaei, N.; Rezaei, N.; Rezaeian, M.; Rezazadeh, H.; Riahi, S.M.; Rias, Y.A.; Riaz, M.; Ribeiro, D.; Rodrigues, M.; Rodriguez, J.A.B.; Roever, L.; Rohloff, P.; Roshandel, G.; Roustazadeh, A.; Rwegerera, G.M.; Saad, A.M.A.; Saber-Ayad, M.M.; Sabour, S.; Sabzmakan, L.; Saddik, B.; Sadeghi, E.; Saeed, U.; Saeedi Moghaddam, S.; Safi, S.; Safi, S.Z.; Saghazadeh, A.; Saheb Sharif-Askari, N.; Saheb Sharif-Askari, F.; Sahebkar, A.; Sahoo, S.S.; Sahoo, H.; Saif-Ur-Rahman, K.M.; Sajid, M.R.; Salahi, S.; Salahi, S.; Saleh, M.A.; Salehi, M.A.; Salomon, J.A.; Sanabria, J.; Sanjeev, R.K.; Sanmarchi, F.; Santric-Milicevic, M.M.; Sarasmita, M.A.; Sargazi, S.; Sathian, B.; Sathish, T.; Sawhney, M.; Schlaich, M.P.; Schmidt, M.I.; Schuermans, A.; Seidu, A-A.; Senthil Kumar, N.; Sepanlou, S.G.; Sethi, Y.; Seylani, A.; Shabany, M.; Shafaghat, T.; Shafeghat, M.; Shafie, M.; Shah, N.S.; Shahid, S.; Shaikh, M.A.; Shanawaz, M.; Shannawaz, M.; Sharfaei, S.; Shashamo, B.B.; Shiri, R.; Shittu, A.; Shivakumar, K.M.; Shivalli, S.; Shobeiri, P.; Shokri, F.; Shuval, K.; Sibhat, M.M.; Silva, L.M.L.R.; Simpson, C.R.; Singh, J.A.; Singh, P.; Singh, S.; Siraj, M.S.; Skryabina, A.A.; Sohag, A.A.M.; Soleimani, H.; Solikhah, S.; Soltani-Zangbar, M.S.; Somayaji, R.; Sorensen, R.J.D.; Starodubova, A.V.; Sujata, S.; Suleman, M.; Sun, J.; Sundström, J.; Tabarés-Seisdedos, R.; Tabatabaei, S.M.; Tabatabaeizadeh, S-A.; Tabish, M.; Taheri, M.; Taheri, E.; Taki, E.; Tamuzi, J.J.L.L.; Tan, K-K.; Tat, N.Y.; Taye, B.T.; Temesgen, W.A.; Temsah, M-H.; Tesler, R.; Thangaraju, P.; Thankappan, K.R.; Thapa, R.; Tharwat, S.; Thomas, N.; Ticoalu, J.H.V.; Tiyuri, A.; Tonelli, M.; Tovani-Palone, M.R.; Trico, D.; Trihandini, I.; Tripathy, J.P.; Tromans, S.J.; Tsegay, G.M.; Tualeka, A.R.; Tufa, D.G.; Tyrovolas, S.; Ullah, S.; Upadhyay, E.; Vahabi, S.M.; Vaithinathan, A.G.; Valizadeh, R.; van Daalen, K.R.; Vart, P.; Varthya, S.B.; Vasankari, T.J.; Vaziri, S.; Verma, M.; Verras, G-I.; Vo, D.C.; Wagaye, B.; Waheed, Y.; Wang, Z.; Wang, Y.; Wang, C.; Wang, F.; Wassie, G.T.; Wei, M.Y.W.; Weldemariam, A.H.; Westerman, R.; Wickramasinghe, N.D.; Wu, Y.F.; Wulandari, R.D.W.I.; Xia, J.; Xiao, H.; Xu, S.; Xu, X.; Yada, D.Y.; Yang, L.; Yatsuya, H.; Yesiltepe, M.; Yi, S.; Yohannis, H.K.; Yonemoto, N.; You, Y.; Zaman, S.B.; Zamora, N.; Zare, I.; Zarea, K.; Zarrintan, A.; Zastrozhin, M.S.; Zeru, N.G.; Zhang, Z-J.; Zhong, C.; Zhou, J.; Zielińska, M.; Zikarg, Y.T.; Zodpey, S.; Zoladl, M.; Zou, Z.; Zumla, A.; Zuniga, Y.M.H.; Magliano, D.J.; Murray, C.J.L.; Hay, S.I.; Vos, T. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021.Lancet20234021039720323410.1016/S0140‑6736(23)01301‑6 37356446
    [Google Scholar]
  4. StrattonI. AdlerA. NeilA. MattheesD. ManleyS. CullC. HaddenD. TurnerR. HolmanR. Prospective observational study.Resuscitation2010321Ukpds 3518-23
    [Google Scholar]
  5. XuZ. ZhangP. ChenY. JiangJ. ZhouZ. ZhuH. Comparing SARC-CalF With SARC-F for screening sarcopenia in adults with type 2 diabetes mellitus.Front. Nutr.20229March80392410.3389/fnut.2022.803924 35433779
    [Google Scholar]
  6. ZhouY. ChaiX. YangG. SunX. XingZ. Changes in body mass index and waist circumference and heart failure in type 2 diabetes mellitus.Front. Endocrinol.202314December130583910.3389/fendo.2023.1305839 38179309
    [Google Scholar]
  7. LiangD. CaiX. GuanQ. OuY. ZhengX. LinX. Burden of type 1 and type 2 diabetes and high fasting plasma glucose in Europe, 1990-2019: A comprehensive analysis from the global burden of disease study 2019.Front. Endocrinol.202314December130743210.3389/fendo.2023.1307432 38152139
    [Google Scholar]
  8. HouY. XiangJ. WangB. DuanS. SongR. ZhouW. TanS. HeB. Pathogenesis and comprehensive treatment strategies of sarcopenia in elderly patients with type 2 diabetes mellitus.Front. Endocrinol.202414January126365010.3389/fendo.2023.1263650 38260146
    [Google Scholar]
  9. DirirA.M. DaouM. YousefA.F. YousefL.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes.Phytochem. Rev.20222141049107910.1007/s11101‑021‑09773‑1
    [Google Scholar]
  10. CampbellL.K. BakerD.E. CampbellR.K. Miglitol: Assessment of its role in the treatment of patients with diabetes mellitus.Ann. Pharmacother.200034111291130110.1345/aph.19269 11098345
    [Google Scholar]
  11. PeterS. Effects of the carbohydrase inhibitor miglitol in sulfonylurea-treated NIDDM patients.Diabetes Care19941712029
    [Google Scholar]
  12. ScottL.J. SpencerC.M. Miglitol.Drugs200059352154910.2165/00003495‑200059030‑00012 10776834
    [Google Scholar]
  13. DabhiA.S. BhattN.R. ShahM.J. Voglibose: An alpha glucosidase inhibitor.J. Clin. Diagn. Res.20137123023302710.7860/JCDR/2013/6373.3838 24551718
    [Google Scholar]
  14. PageR.C.L. Insulin, other hypoglycemic drugs, and glucagon.Side Effects of. Drugs Annual20143576378710.1016/B978‑0‑444‑62635‑6.00042‑5
    [Google Scholar]
  15. CuiG. LiY. ShiT. GaoZ. QiuN. SatohT. KakuchiT. DuanQ. Synthesis and characterization of Eu(III) complexes of modified cellulose and poly(N-isopropylacrylamide).Carbohydr. Polym.2013941778110.1016/j.carbpol.2013.01.045 23544512
    [Google Scholar]
  16. CuiG. ZhaoK. YouK. GaoZ. KakuchiT. FengB. DuanQ. Synthesis and characterization of phenylboronic acid-containing polymer for glucose-triggered drug delivery+.Sci. Technol. Adv. Mater.202021111010.1080/14686996.2019.1700394 32002087
    [Google Scholar]
  17. CollinsF.W. Oat phenolics: Avenanthramides, novel substituted N-cinnamoylanthranilate alkaloids from oat groats and hulls.J. Agric. Food Chem.1989371606610.1021/jf00085a015
    [Google Scholar]
  18. FuJ. ZhuY. YerkeA. WiseM.L. JohnsonJ. ChuY. SangS. Oat avenanthramides induce heme oxygenase-1 expression via Nrf2-mediated signaling in HK-2 cells.Mol. Nutr. Food Res.201559122471247910.1002/mnfr.201500250 26331632
    [Google Scholar]
  19. PetersonD.M. HahnM.J. EmmonsC.L. Oat avenanthramides exhibit antioxidant activities in vitro.Food Chem.200279447347810.1016/S0308‑8146(02)00219‑4
    [Google Scholar]
  20. CaiS. HuangC. JiB. ZhouF. WiseM.L. ZhangD. YangP. In vitro antioxidant activity and inhibitory effect, on oleic acid-induced hepatic steatosis, of fractions and subfractions from oat (Avena sativa L.) ethanol extract.Food Chem.2011124390090510.1016/j.foodchem.2010.07.017
    [Google Scholar]
  21. FagerlundA. SunnerheimK. DimbergL.H. Radical-scavenging and antioxidant activity of avenanthramides.Food Chem.2009113255055610.1016/j.foodchem.2008.07.101
    [Google Scholar]
  22. YangJ. OuB. WiseM.L. ChuY. In vitro total antioxidant capacity and anti-inflammatory activity of three common oat-derived avenanthramides.Food Chem.201416033834510.1016/j.foodchem.2014.03.059 24799247
    [Google Scholar]
  23. GuoW. WiseM.L. CollinsF.W. MeydaniM. Avenanthramides, polyphenols from oats, inhibit IL-1β-induced NF-κB activation in endothelial cells.Free Radic. Biol. Med.200844341542910.1016/j.freeradbiomed.2007.10.036 18062932
    [Google Scholar]
  24. SurR. NigamA. GroteD. LiebelF. SouthallM.D. Avenanthramides, polyphenols from oats, exhibit anti-inflammatory and anti-itch activity.Arch. Dermatol. Res.20083001056957410.1007/s00403‑008‑0858‑x 18461339
    [Google Scholar]
  25. ZhangT. ZhaoT. ZhangY. LiuT. GagnonG. EbrahimJ. JohnsonJ. ChuY.F. JiL.L. Avenanthramide supplementation reduces eccentric exercise-induced inflammation in young men and women.J. Int. Soc. Sports Nutr.20201714110.1186/s12970‑020‑00368‑3 32711519
    [Google Scholar]
  26. ScarpaE.S. AntoniniE. PalmaF. MariM. NinfaliP. Antiproliferative activity of vitexin-2-O-xyloside and avenanthramides on CaCo-2 and HepG2 cancer cells occurs through apoptosis induction and reduction of pro-survival mechanisms.Eur. J. Nutr.20185741381139510.1007/s00394‑017‑1418‑y 28283822
    [Google Scholar]
  27. SpencerJ. SoycanG. CoronaG. JohnsonJ. ChuY. ShewryP. LovegroveA. Chronic vascular effects of oat phenolic acids and avenanthramides in pre- or stage 1 hypertensive adults Curr. Dev. Nutr.,20204Junenzaa045_11110.1093/cdn/nzaa045_111
    [Google Scholar]
  28. ZhouyaoH. MalungaL.N. ChuY.F. EckP. AmesN. ThandapillyS.J. The inhibition of intestinal glucose absorption by oat‐derived avenanthramides.J. Food Biochem.20224610e1432410.1111/jfbc.14324 35892210
    [Google Scholar]
  29. MalungaL.N. Joseph ThandapillyS. AmesN. Cereal‐derived phenolic acids and intestinal alpha glucosidase activity inhibition: Structural activity relationship.J. Food Biochem.2018426e1263510.1111/jfbc.12635
    [Google Scholar]
  30. HioualK.S. ChikhiA. BensegueniA. MerzougA. BoucheritH. Mokrani ElH. Successful challenge: A key step in infectious diseases treatment using computer-aided drug design.Int. J. Bio. Sci. Appl20141March1114
    [Google Scholar]
  31. GohlkeH. HendlichM. KlebeG. Knowledge-based scoring function to predict protein-ligand interactions.J. Mol. Biol.2000295233735610.1006/jmbi.1999.3371 10623530
    [Google Scholar]
  32. SimL. JayakanthanK. MohanS. NasiR. JohnstonB.D. PintoB.M. RoseD.R. New glucosidase inhibitors from an ayurvedic herbal treatment for type 2 diabetes: structures and inhibition of human intestinal maltase-glucoamylase with compounds from Salacia reticulata.Biochemistry201049344345110.1021/bi9016457 20039683
    [Google Scholar]
  33. DemmakR.G. BordageS. BensegueniA. BoutaghaneN. HennebelleT. MokraniE.H. SahpazS. Chemical constituents from Solenostemma argel and their cholinesterase inhibitory activity.Nat. Prod. Sci.201925211512110.20307/nps.2019.25.2.115
    [Google Scholar]
  34. DjehicheC. BenzidaneN. DjeghimH. TebboubM. MokraniE.H. MebrekS. MessaoudiM. BensouiciC. AlsalmeA. CornuD. BechelanyM. ArrarL. BarhoumA. Exploring the therapeutic potential of Ammodaucus leucotrichus seed extracts: A multi-faceted analysis of phytochemical composition, anti-inflammatory efficacy, predictive anti-arthritic properties, and molecular docking insights.Pharmaceuticals202417338510.3390/ph17030385 38543170
    [Google Scholar]
  35. WiseM.L. Avenanthramides: Chemistry and Biosynthesis.Oats Nutrition and Technology.John Wiley & Sons, Ltd201319522610.1002/9781118354100.ch8
    [Google Scholar]
  36. RareyM. KramerB. LengauerT. KlebeG. A fast flexible docking method using an incremental construction algorithm.J. Mol. Biol.1996261347048910.1006/jmbi.1996.0477 8780787
    [Google Scholar]
  37. BenlatrecheT. MokraniE.H. ZerizerM.A. BensouiciC. GolhenS. ZouchouneB. DénèsG. MerazigH. Synthesis, crystal structure, in vitro anticholinesterase activity, molecular docking and DFT investigation of three 1,10-phenanthroline-tin(IV) complexes.J. Mol. Struct.2024131313859510.1016/j.molstruc.2024.138595
    [Google Scholar]
  38. MokraniE.H. BensegueniA. ChaputL. BeauvineauC. DjeghimH. MouawadL. Identification of new potent acetylcholinesterase inhibitors using virtual screening and in vitro approaches.Mol. Inform.2019385180011810.1002/minf.201800118 30725535
    [Google Scholar]
  39. PhillipsJ.C. HardyD.J. MaiaJ.D.C. StoneJ.E. RibeiroJ.V. BernardiR.C. BuchR. FiorinG. HéninJ. JiangW. McGreevyR. MeloM.C.R. RadakB.K. SkeelR.D. SingharoyA. WangY. RouxB. AksimentievA. Luthey-SchultenZ. KaléL.V. SchultenK. ChipotC. TajkhorshidE. Scalable molecular dynamics on CPU and GPU architectures with NAMD.J. Chem. Phys.2020153404413010.1063/5.0014475 32752662
    [Google Scholar]
  40. VanommeslaegheK. HatcherE. AcharyaC. KunduS. ZhongS. ShimJ. DarianE. GuvenchO. LopesP. VorobyovI. MackerellA.D. Jr CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields.J. Comput. Chem.201031467169010.1002/jcc.21367 19575467
    [Google Scholar]
  41. KumariR. KumarR. LynnA. g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations.J. Chem. Inf. Model.20145471951196210.1021/ci500020m 24850022
    [Google Scholar]
  42. KumariR. RathiR. PathakS.R. DalalV. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus.J. Mol. Struct.2022125513247610.1016/j.molstruc.2022.132476
    [Google Scholar]
  43. KumariR. DalalV. Identification of potential inhibitors for LLM of Staphylococcus aureus: structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies.J. Biomol. Struct. Dyn.202240209833984710.1080/07391102.2021.1936179 34096457
    [Google Scholar]
  44. DalalV. DhankharP. SinghV. SinghV. RakhaminovG. Golemi-KotraD. KumarP. Structure-based identification of potential drugs against FmtA of Staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM.Protein J.202140214816510.1007/s10930‑020‑09953‑6 33421024
    [Google Scholar]
  45. BoulhissaI. ChikhiA. BensegueniA. GhattasM.A. MokraniE.H. AlrawashdehS. ObaidD.E.E. Investigation of new inhibitors of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) by virtual screening with antibacterial assessment.Curr. Computeraided Drug Des.202117221422410.2174/1573409916666200213124929 32053077
    [Google Scholar]
  46. RossiE.J. SimL. KuntzD.A. HahnD. JohnstonB.D. GhavamiA. SzczepinaM.G. KumarN.S. SterchiE.E. NicholsB.L. PintoB.M. RoseD.R. Inhibition of recombinant human maltase glucoamylase by salacinol and derivatives.FEBS J.2006273122673268310.1111/j.1742‑4658.2006.05283.x 16817895
    [Google Scholar]
  47. LinaniA. BenarousK. Bou-SalahL. YousfiM. Goumri-SaidS. Exploring structural mechanism of COVID-19 treatment with glutathione as a potential peptide inhibitor to the main protease: Molecular dynamics simulation and MM/PBSA free energy calculations study.Int. J. Pept. Res. Ther.20222825510.1007/s10989‑022‑10365‑6 35079241
    [Google Scholar]
  48. SargsyanK. GrauffelC. LimC. How molecular size impacts RMSD applications in molecular dynamics simulations.J. Chem. Theory Comput.20171341518152410.1021/acs.jctc.7b00028 28267328
    [Google Scholar]
  49. Al-KhafajiK. Taskin TokT. Molecular dynamics simulation, free energy landscape and binding free energy computations in exploration the anti-invasive activity of amygdalin against metastasis.Comput. Methods Programs Biomed.202019510566010.1016/j.cmpb.2020.105660 32726718
    [Google Scholar]
  50. DerosaG. MaffioliP. Mini-special issue paper management of diabetic patients with hypoglycemic agents α-glucosidase inhibitors and their use in clinical practice.Arch. Med. Sci.20125589990610.5114/aoms.2012.31621 23185202
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808306787240709073814
Loading
/content/journals/lddd/10.2174/0115701808306787240709073814
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test