Skip to content
2000
Volume 21, Issue 17
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Lead-like drugs, which present molecular weight (MW) < 300 Da, occupy an important space in the pharmaceutical area. Most of these small molecules have ring systems, which are important for their physicochemical properties and biological activity. Previous studies have evaluated ring systems in historic drugs or drug candidates in clinical trials.

Objective

The purpose of this work was to analyze ring systems, focusing on this group of drugs with MW < 300 Da, to obtain specific insights.

Methods

The lead-like drugs (n = 219) were obtained from previous publications and the new FDA drug approvals were obtained after that and analyzed using the DataWarrior software.

Results

Most of the lead-like drugs (> 92%) present one or two rings, with the benzene ring and heterocycle ring systems being predominant. Pyridine, imidazole, piperidine, 4,5-dihydro-1-imidazole, and indole are the most frequent heterocycles in this set. The higher frequency of the 4,5-dihydro-1-imidazole ring in the lead-like drugs is worth noting, as it is not observed in other drugs. The introduction of new rings has been similar in the lead-like drugs and the historic drugs, over the years; an example would be the 1,2,4-thiadiazinane 1,1-dioxide, which is present in the antimicrobial Taurolidine, a lead-like drug, and engages in the metabolic activation of the drug.

Conclusion

In general, the ring systems in the lead-like drugs appear to follow similar patterns to the historic drugs. Additionally, few new ring systems are being introduced, which suggests that this is an emergent field to be explored in drug discovery.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808306429240703100350
2024-07-08
2025-07-19
Loading full text...

Full text loading...

References

  1. DoakB.C. OverB. GiordanettoF. KihlbergJ. Oral druggable space beyond the rule of 5: Insights from drugs and clinical candidates.Chem. Biol.20142191115114210.1016/j.chembiol.2014.08.01325237858
    [Google Scholar]
  2. StegemannS. MoretonC. SvanbäckS. BoxK. MotteG. PaudelA. Trends in oral small-molecule drug discovery and product development based on product launches before and after the rule of five.Drug Discov. Today202328210334410.1016/j.drudis.2022.10334436442594
    [Google Scholar]
  3. LipinskiC.A. Lead- and drug-like compounds: The rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.00724981612
    [Google Scholar]
  4. WuG. ZhaoT. KangD. ZhangJ. SongY. NamasivayamV. KongstedJ. PannecouqueC. De ClercqE. PoongavanamV. LiuX. ZhanP. Overview of recent strategic advances in medicinal chemistry.J. Med. Chem.201962219375941410.1021/acs.jmedchem.9b0035931050421
    [Google Scholar]
  5. St DenisJ.D. HallR.J. MurrayC.W. HeightmanT.D. ReesD.C. Fragment-based drug discovery: Opportunities for organic synthesis.RSC Med. Chem.202012332132910.1039/D0MD00375A34041484
    [Google Scholar]
  6. KirschP. HartmanA.M. HirschA.K.H. EmptingM. Concepts and core principles of fragment-based drug design.Molecules20192423430910.3390/molecules2423430931779114
    [Google Scholar]
  7. OpreaT.I. DavisA.M. TeagueS.J. LeesonP.D. Is there a difference between leads and drugs? A historical perspective.J. Chem. Inf. Comput. Sci.20014151308131510.1021/ci010366a11604031
    [Google Scholar]
  8. YoungR.J. LeesonP.D. Mapping the efficiency and physicochemical trajectories of successful optimizations.J. Med. Chem.201861156421646710.1021/acs.jmedchem.8b0018029620890
    [Google Scholar]
  9. RaymerB. BhattacharyaS.K. Lead-like drugs: A perspective.J. Med. Chem.20186123103751038410.1021/acs.jmedchem.8b0040730052440
    [Google Scholar]
  10. TaylorR.D. MacCossM. LawsonA.D.G. Rings in drugs.J. Med. Chem.201457145845585910.1021/jm401762524471928
    [Google Scholar]
  11. VitakuE. SmithD.T. NjardarsonJ.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals.J. Med. Chem.20145724102571027410.1021/jm501100b25255204
    [Google Scholar]
  12. ErtlP. Magic rings: Navigation in the ring chemical space guided by the bioactive rings.J. Chem. Inf. Model.20226292164217010.1021/acs.jcim.1c0076134445865
    [Google Scholar]
  13. ShearerJ. CastroJ.L. LawsonA.D.G. MacCossM. TaylorR.D. Rings in clinical trials and drugs: Present and future.J. Med. Chem.202265138699871210.1021/acs.jmedchem.2c0047335730680
    [Google Scholar]
  14. LeesonP.D. BentoA.P. GaultonA. HerseyA. MannersE.J. RadouxC.J. LeachA.R. Target-based evaluation of “drug-like” properties and ligand efficiencies.J. Med. Chem.202164117210723010.1021/acs.jmedchem.1c0041633983732
    [Google Scholar]
  15. MullardA. 2020 FDA drug approvals.Nat. Rev. Drug Discov.2021202859010.1038/d41573‑021‑00002‑033402709
    [Google Scholar]
  16. MullardA. 2021 FDA approvals.Nat. Rev. Drug Discov.2022212838810.1038/d41573‑022‑00001‑934983958
    [Google Scholar]
  17. MullardA. 2022 FDA approvals.Nat. Rev. Drug Discov.2023222838810.1038/d41573‑023‑00001‑336596858
    [Google Scholar]
  18. MullardA. 2023 FDA approvals.Nat. Rev. Drug Discov.2024232889510.1038/d41573‑024‑00001‑x38168801
    [Google Scholar]
  19. López-LópezE. NavejaJ.J. Medina-FrancoJ.L. DataWarrior: An evaluation of the open-source drug discovery tool.Expert Opin. Drug Discov.201914433534110.1080/17460441.2019.158117030806519
    [Google Scholar]
  20. ShultzM.D. Two decades under the influence of the rule of five and the changing properties of approved oral drugs.J. Med. Chem.20196241701171410.1021/acs.jmedchem.8b0068630212196
    [Google Scholar]
  21. LeesonP.D. YoungR.J. Molecular property design: Does everyone get it?ACS Med. Chem. Lett.20156772272510.1021/acsmedchemlett.5b0015726191353
    [Google Scholar]
  22. CeramellaJ. IacopettaD. FranchiniA. De LucaM. SaturninoC. AndreuI. SinicropiM.S. CatalanoA. A look at the importance of chirality in drug activity: Some significative examples.Appl. Sci.202212211090910.3390/app122110909
    [Google Scholar]
  23. CalcaterraA. D’AcquaricaI. The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds.J. Pharm. Biomed. Anal.201814732334010.1016/j.jpba.2017.07.00828942107
    [Google Scholar]
  24. SahaD. KharbandaA. YanW. LakkanigaN.R. FrettB. LiH.Y. The exploration of chirality for improved druggability within the human kinome.J. Med. Chem.202063244146910.1021/acs.jmedchem.9b0064031550151
    [Google Scholar]
  25. AgranatI. CanerH. CaldwellJ. Putting chirality to work: The strategy of chiral switches.Nat. Rev. Drug Discov.200211075376810.1038/nrd91512360254
    [Google Scholar]
  26. ChuongP-H. NguyenL.A. HeH. Chiral drugs: An overview.Int. J. Biomed. Sci.2006228510010.59566/IJBS.2006.208523674971
    [Google Scholar]
  27. GomtsyanA. Heterocycles in drugs and drug discovery.Chem. Heterocycl. Compd.201248171010.1007/s10593‑012‑0960‑z
    [Google Scholar]
  28. SączewskiF. KornickaA. BalewskiŁ. Imidazoline scaffold in medicinal chemistry: A patent review (2012–2015).Expert Opin. Ther. Pat.20162691031104810.1080/13543776.2016.121012827382975
    [Google Scholar]
  29. RenaudJ.P. ChariA. CiferriC. LiuW. RémigyH.W. StarkH. WiesmannC. Cryo-EM in drug discovery: Achievements, limitations and prospects.Nat. Rev. Drug Discov.201817747149210.1038/nrd.2018.7729880918
    [Google Scholar]
  30. ZhuK.F. YuanC. DuY.M. SunK.L. ZhangX.K. VogelH. JiaX.D. GaoY.Z. ZhangQ.F. WangD.P. ZhangH.W. Applications and prospects of cryo-EM in drug discovery.Mil. Med. Res.20231011010.1186/s40779‑023‑00446‑y36872349
    [Google Scholar]
  31. XuJ. CaoS. HübnerH. WeikertD. ChenG. LuQ. YuanD. GmeinerP. LiuZ. DuY. Structural insights into ligand recognition, activation, and signaling of the α 2A adrenergic receptor.Sci. Adv.202289eabj534710.1126/sciadv.abj534735245122
    [Google Scholar]
  32. HuangT. ChenN. WangD. LaiY. CaoZ. A validated stability-indicating HPLC method for the simultaneous determination of pheniramine maleate and naphazoline hydrochloride in pharmaceutical formulations.Chem. Cent. J.201481710.1186/1752‑153X‑8‑724485011
    [Google Scholar]
  33. RuckmickS.C. MarshD.F. DuongS.T. Synthesis and identification of the primary degradation product in a commercial ophthalmic formulation using NMR, MS, and a stability-indicating HPLC method for antazoline and naphazoline.J. Pharm. Sci.199584450250710.1002/jps.26008404227629745
    [Google Scholar]
  34. MahajanM.K. UttamsinghV. DanielsJ.S. GanL.S. LeDucB.W. WilliamsD.A. In vitro metabolism of oxymetazoline: Evidence for bioactivation to a reactive metabolite.Drug Metab. Dispos.201139469370210.1124/dmd.110.03600421177487
    [Google Scholar]
  35. ZhouS.F. WangB. YangL.P. LiuJ.P. Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2.Drug Metab. Rev.201042226835410.3109/0360253090328647619961320
    [Google Scholar]
  36. de Sá AlvesF. BarreiroE. Manssour FragaC. From nature to drug discovery: The indole scaffold as a ‘privileged structure’.Mini Rev. Med. Chem.20099778279310.2174/13895570978845264919519503
    [Google Scholar]
  37. RulhaniaS. KumarS. NehraB. GuptaG.D. MongaV. An insight into the medicinal perspective of synthetic analogs of imidazole.J. Mol. Struct.2021123212998210.1016/j.molstruc.2021.129982
    [Google Scholar]
  38. XuX. BartlettM.G. StewartJ.T. Determination of degradation products of sumatriptan succinate using LC-MS and LC-MS-MS.J. Pharm. Biomed. Anal.200126336737710.1016/S0731‑7085(01)00409‑511489382
    [Google Scholar]
  39. YuA.M. Indolealkylamines: Biotransformations and potential drug-drug interactions.AAPS J.200810224225310.1208/s12248‑008‑9028‑518454322
    [Google Scholar]
  40. HuF. ZhangL. NandakumarK.S. ChengK. Imidazole scaffold based compounds in the development of therapeutic drugs.Curr. Top. Med. Chem.202121282514252810.2174/156802662166621052710322534047259
    [Google Scholar]
  41. TalluriM.V.N.K. KeshariK.K. KalariyaP.D. SrinivasR. Selective separation and characterization of the stress degradation products of ondansetron hydrochloride by liquid chromatography with quadrupole time‐of‐flight mass spectrometry.J. Sep. Sci.201538101625163210.1002/jssc.20140130525727389
    [Google Scholar]
  42. DugganS. Osilodrostat: First approval.Drugs202080549550010.1007/s40265‑020‑01277‑032141023
    [Google Scholar]
  43. ThakareR. DasguptaA. ChopraS. Update on nifurtimox for treatment of Chagas disease.Drugs Today202157425126310.1358/dot.2021.57.4.325171233851689
    [Google Scholar]
  44. BradshawJ.H. PuntisJ.W.L. Taurolidine and catheter-related bloodstream infection: A systematic review of the literature.J. Pediatr. Gastroenterol. Nutr.200847217918610.1097/MPG.0b013e318162c42818664870
    [Google Scholar]
  45. LangD. SchulzS.I. PielI. TshitengeD.T. StassH. Structural and mechanistic investigation of the unusual metabolism of nifurtimox.Chem. Res. Toxicol.202235112037204810.1021/acs.chemrestox.2c0021036209416
    [Google Scholar]
  46. WangY.T. YangP.C. ZhangY.F. SunJ.F. Synthesis and clinical application of new drugs approved by FDA in 2023.Eur. J. Med. Chem.202426511612410.1016/j.ejmech.2024.11612438183778
    [Google Scholar]
  47. WoutersY. MennenG.R.H. Te MorscheR.H.M. RoelofsH.M.J. WantenG.J.A. The antiseptic and antineoplastic agent taurolidine modulates key leukocyte functions.In Vivo20223652074208210.21873/invivo.1293336099103
    [Google Scholar]
  48. GongL. GreenbergH.E. PerhachJ.L. WaldmanS.A. KraftW.K. The pharmacokinetics of taurolidine metabolites in healthy volunteers.J. Clin. Pharmacol.200747669770310.1177/009127000729992917395893
    [Google Scholar]
  49. RamirezD.A. CollinsK.P. AradiA.E. CongerK.A. GustafsonD.L. Kinetics of cyclophosphamide metabolism in humans, dogs, cats, and mice and relationship to cytotoxic activity and pharmacokinetics.Drug Metab. Dispos.201947325726810.1124/dmd.118.08376630567881
    [Google Scholar]
  50. ProcterN.E.K. HurstN.L. NooneyV.B. ImamH. De CaterinaR. ChirkovY.Y. HorowitzJ.D. New developments in platelet cyclic nucleotide signalling: Therapeutic implications.Cardiovasc. Drugs Ther.201630550551310.1007/s10557‑016‑6671‑427358171
    [Google Scholar]
  51. AltinozM.A. OzpinarA. OzpinarA. PerezJ.L. Elmaciİ. Methenamine’s journey of 160 years: Repurposal of an old urinary antiseptic for treatment and hypoxic radiosensitization of cancers and glioblastoma.Clin. Exp. Pharmacol. Physiol.201946540741210.1111/1440‑1681.1307030721527
    [Google Scholar]
  52. BalunasM. SuB. BrueggemeierR. KinghornA. Natural products as aromatase inhibitors.Anticancer. Agents Med. Chem.20088664668210.2174/18715200878513309218690828
    [Google Scholar]
  53. AvendañoC. MenéndezJ.C. Anticancer drugs that modulate hormone action.Medicinal Chemistry of Anticancer Drugs.Elsevier202310116410.1016/B978‑0‑12‑818549‑0.00006‑6
    [Google Scholar]
  54. HongY. YuB. ShermanM. YuanY.C. ZhouD. ChenS. Molecular basis for the aromatization reaction and exemestane-mediated irreversible inhibition of human aromatase.Mol. Endocrinol.200721240141410.1210/me.2006‑028117095574
    [Google Scholar]
  55. LiuH. TalalayP. Relevance of anti-inflammatory and antioxidant activities of exemestane and synergism with sulforaphane for disease prevention.Proc. Natl. Acad. Sci. USA201311047190651907010.1073/pnas.131824711024191056
    [Google Scholar]
  56. TehraniK.H.M.E. MartinN.I. β-lactam/β-lactamase inhibitor combinations: An update.MedChemComm2018991439145610.1039/C8MD00342D30288219
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808306429240703100350
Loading
/content/journals/lddd/10.2174/0115701808306429240703100350
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test