Skip to content
2000
Volume 21, Issue 17
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Pyrazolone has a wide range of biological activities, including anti-inflammatory, antibacterial, antifungal, antimicrobial, anti-tubercular, anti-oxidant, anti-helminthic, and anticancer effects. Due to their various clinical practice and research activities, they have a wide range of applications and prospects. They continue to be the subject of many research and analytical studies to learn more about their medicinal chemistry. In this review, pyrazolone is categorized according to its effects, which might include anti-inflammatory, antifungal, antibacterial, antimicrobial, anti-tubercular, anti-oxidant, anti-helminthic, anticancer, or antitumor, as well as other qualities. As a result, it is crucial to base the design of new pyrazolone derivatives and the development of innovative synthesis techniques on the most recent data gleaned from recent studies. The goal of this review is to provide information on developments in the chemistry and biological activity of pyrazolone derivatives.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808305582240604113524
2024-06-13
2025-06-24
Loading full text...

Full text loading...

References

  1. HimlyM. Jahn-SchmidB. PittertschatscherK. BohleB. GrubmayrK. FerreiraF. EbnerH. EbnerC. IgE-mediated immediate-type hypersensitivity to the pyrazolone drug propyphenazone.J. Allergy Clin. Immunol.2003111488288810.1067/mai.2003.163 12704373
    [Google Scholar]
  2. CastagnoloD. ManettiF. RadiM. BechiB. PaganoM. De LoguA. MeledduR. SaddiM. BottaM. Synthesis, biological evaluation, and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis: Part 2. Synthesis of rigid pyrazolones.Bioorg. Med. Chem.200917155716572110.1016/j.bmc.2009.05.058 19581099
    [Google Scholar]
  3. RadiM. BernardoV. BechiB. CastagnoloD. PaganoM. BottaM. Microwave-assisted organocatalytic multicomponent Knoevenagel/hetero Diels–Alder reaction for the synthesis of 2,3-dihydropyran[2,3-c]pyrazoles.Tetrahedron Lett.200950476572657510.1016/j.tetlet.2009.09.047
    [Google Scholar]
  4. MoreauF. DesroyN. GenevardJ.M. VongsouthiV. GeruszV. Le FralliecG. OliveiraC. FloquetS. DenisA. EscaichS. WolfK. BusemannM. AschenbrennerA. Discovery of new Gram-negative antivirulence drugs: Structure and properties of novel E. coli WaaC inhibitors.Bioorg. Med. Chem. Lett.200818144022402610.1016/j.bmcl.2008.05.117 18571407
    [Google Scholar]
  5. SauzemP.D. MachadoP. RubinM.A. da S Sant’anna, G.; Faber, H.B.; de Souza, A.H.; Mello, C.F.; Beck, P.; Burrow, R.A.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A. Design and microwave-assisted synthesis of 5-trifluoromethyl-4,5-dihydro-1H-pyrazoles: novel agents with analgesic and anti-inflammatory properties.Eur. J. Med. Chem.20084361237124710.1016/j.ejmech.2007.07.018 17889969
    [Google Scholar]
  6. PashaF.A. MuddassarM. NeazM.M. ChoS.J. Pharmacophore and docking-based combined in-silico study of KDR inhibitors.J. Mol. Graph. Model.2009281546110.1016/j.jmgm.2009.04.006 19447057
    [Google Scholar]
  7. RosiereC.E. GrossmanM.I. An analog of histamine that stimulates recovery of tumor cells from effects of the tumor-inducing principle in crown gall.Science1951113651
    [Google Scholar]
  8. BaileyD.M. HansenP.E. HlavacA.G. BaizmanE.R. PearlJ. DeFeliceA.F. FeigensonM.E. 3,4-Diphenyl-1H-pyrazole-1-propanamine antidepressants.J. Med. Chem.198528225626010.1021/jm00380a020 3968690
    [Google Scholar]
  9. ShestopalovA.M. EmeliyanovaY.M. ShestopalovA.A. RodinovskayaL.A. NiazimbetovaZ.I. EvansD.H. Cross-condensation of derivatives of cyanoacetic acid and carbonyl compounds. Part 1: Single-stage synthesis of 1′-substituted 6-amino-spiro-4-(piperidine-4′)-2 H, 4 H -pyrano[2,3- c]pyrazole-5-carbonitriles.Tetrahedron200359387491749610.1016/S0040‑4020(03)01178‑5
    [Google Scholar]
  10. LiuG. LiuL. JiaD. YuK. Synthesis, structure and photochromic properties of 1-phenyl-3-methyl-4-(4-bromobenzal)-pyrazolone-5 thiosemicarbazone.Struct. Chem.200516213514010.1007/s11224‑005‑2837‑6
    [Google Scholar]
  11. Baciu-AtudosieL. GhinetA. BeleiD. GautretP. RigoB. BîcuE. An efficient one-pot reaction for the synthesis of pyrazolones bearing a phenothiazine unit.Tetrahedron Lett.201253456127613110.1016/j.tetlet.2012.08.152
    [Google Scholar]
  12. GhorabM. El-GazzarM. AlsaidM. Synthesis, characterization and anti-breast cancer activity of new 4-aminoantipyrine-based heterocycles.Int. J. Mol. Sci.20141557539755310.3390/ijms15057539 24798749
    [Google Scholar]
  13. KshatriyaR. ShelkeP. MaliS. YashwantraoG. PratapA. SahaS. Synthesis and evaluation of anticancer activity of pyrazolone appended triarylmethanes (TRAMs).ChemistrySelect20216246230623910.1002/slct.202101083
    [Google Scholar]
  14. ChandrakanthaB. ShettyP. NambiyarV. IsloorN. IsloorA.M. Synthesis, characterization and biological activity of some new 1,3,4-oxadiazole bearing 2-flouro-4-methoxy phenyl moiety.Eur. J. Med. Chem.20104531206121010.1016/j.ejmech.2009.11.046 20004043
    [Google Scholar]
  15. Sankappa RaiU. IsloorA.M. shetty, P.; Vijesh, A.M.; Prabhu, N.; Isloor, S.; Thiageeswaran, M.; Fun, H.K. Novel chromeno [2,3-b]-pyrimidine derivatives as potential anti-microbial agents.Eur. J. Med. Chem.20104562695269910.1016/j.ejmech.2010.02.040 20231044
    [Google Scholar]
  16. IsloorA.M. KallurayaB. Sridhar PaiK. Synthesis, characterization and biological activities of some new benzo[b]thiophene derivatives.Eur. J. Med. Chem.201045282583010.1016/j.ejmech.2009.11.015 19945198
    [Google Scholar]
  17. de AraújoJ.S. França da SilvaC. BatistaD.G.J. NefertitiA. FiuzaL.F.A. Fonseca-BerzalC.R. Bernardino da SilvaP. BatistaM.M. SijmM. KalejaiyeT.D. de KoningH.P. MaesL. SterkG.J. LeursR. SoeiroM.N.C. Efficacy of novel pyrazolone phosphodiesterase inhibitors in experimental mouse models of Trypanosoma cruzi.Antimicrob. Agents Chemother.2020649e00414e0042010.1128/AAC.00414‑20 32601163
    [Google Scholar]
  18. SalehzadehJ. NasiriF. A facile one-pot synthesis of new functionalized pyrazolone-1,4-dithiafulvene hybrids.Mol. Divers.2024281192810.1007/s11030‑022‑10473‑x 35761142
    [Google Scholar]
  19. TahirliS. AliyevaF. ŞenolH. DemukhamedovaS. AkverdievaG. AliyevaI. VeysovaS. SadeghianN. GünayS. ErdenY. TaslimiP. SujayevA. ChiragovF. Novel complex compounds of nickel with 3-(1-phenyl-2,3-dimethyl-pyrazolone-5)azopentadione-2,4: synthesis, NBO analysis, reactivity descriptors and in silico and in vitro anti-cancer and bioactivity studies.J. Biomol. Struct. Dyn.2024202412510.1080/07391102.2024.2309646 38294759
    [Google Scholar]
  20. ElboshiH.A. AzzamR.A. ElgemeieG.H. JonesP.G. Crystal structure of 4-(benzo[ d]thiazol-2-yl)-1,2-dimethyl-1 H -pyrazol-3(2 H)-one.Acta Crystallogr. E Crystallogr. Commun.202480328929110.1107/S2056989024001257 38456045
    [Google Scholar]
  21. AbdouM.M. GizawyM.A. Shamsel-DinH.A. Green synthesis, radioiodination and in vivo biodistribution of 5-(2-hydroxyphenyl)-2,4-dihydro-3H-pyrazol-3-one derivatives as potential candidates for lung imaging.Appl. Radiat. Isot.202420311109610.1016/j.apradiso.2023.111096 37949012
    [Google Scholar]
  22. FengY. RenY. TangD. WangK.H. WangJ. HuangD. LvX. HuY. Synthesis of difluoromethylated spiropyrazolones via [3 + 2] cycloaddition of difluoroacetohydrazonoyl bromides with alkylidene pyrazolones.Org. Biomol. Chem.202422142797281210.1039/D4OB00044G 38506310
    [Google Scholar]
  23. ChiuW.J. ChuT.Y. BarveI.J. SunC.M. Parallel synthesis of pyrazolone-fused cinnolines by the palladium-catalyzed [4 + 2] annulation of pyrazol-3-ones with substituted allenoates.J. Org. Chem.202489139540110.1021/acs.joc.3c02165 38133555
    [Google Scholar]
  24. RegnaultR. KlupschF. El-BouazzatiH. MagnezR. Le BiannicR. Leleu-ChavainN. AhouariH. VezinH. MilletR. GoossensJ.F. ThuruX. BaillyC. Novel PD-L1-targeted phenyl-pyrazolone derivatives with antioxidant properties.Molecules2023288349110.3390/molecules28083491 37110727
    [Google Scholar]
  25. AbdellattifM.H. HamedE.O. ElhoseniN.K.R. AssyM.G. EmwasA.H.M. JaremkoM. CelikI. TitiA. Kumar YadavK. ElgendyM.S. ShehabW.S. Synthesis of novel pyrazolone candidates with studying some biological activities and in-silico studies.Sci. Rep.20231311917010.1038/s41598‑023‑43575‑z 37932273
    [Google Scholar]
  26. AsifM. ImranM. HusainA. Approaches for chemical synthesis and diverse pharmacological significance of pyrazolone derivatives.J. Chil. Chem. Soc.20212021210.4067/S0717‑97072021000205149
    [Google Scholar]
  27. MalviyaA.R. ZalaV.K. GadhawalaZ.M. Synthesis, spectral analysis and antimicrobial activities of pyrazole and pyrazolone derivatives.Drug Chem. Sin.201675356
    [Google Scholar]
  28. AceroN. BranM.F. GradillasA. OvallesA.G. LoB. LlinaresF. MunD. Synthesis and biological activity of N,N-dialkylaminoalkyl-substituted bisindolyl and diphenyl pyrazolone derivatives.Bioorg. Med. Chem.2006141916
    [Google Scholar]
  29. BurjaB. Čimbora-ZovkoT. TomićS. JelušićT. KočevarM. PolancS. OsmakM. Pyrazolone-fused combretastatins and their precursors: synthesis, cytotoxicity, antitubulin activity and molecular modeling studies.Bioorg. Med. Chem.20101872375238710.1016/j.bmc.2010.03.006 20338766
    [Google Scholar]
  30. AlamF. AminR. Synthesis and pharmacological activity of some pyrazolone derivatives.202032, 4655
    [Google Scholar]
  31. GolebiowskiA. TownesJ.A. LaufersweilerM.J. BrugelT.A. ClarkM.P. ClarkC.M. DjungJ.F. LaughlinS.K. SabatM.P. BooklandR.G. VanrensJ.C. DeB. HsiehL.C. JanuszM.J. WalterR.L. WebsterM.E. MekelM.J. Development of monocyclic pyrazolone based cytokine synthesis inhibitors.20051522852289
    [Google Scholar]
  32. AlthagafiI. El-metwalyN.M. ElghalbanM.G. FarghalyT.A. KhedrA.M. Synthesis of pyrazolone derivatives and their nanometer ag(i) complexes and physicochemical, dna binding, antitumor, and theoretical implementations.Bioinorg. Chem. Appl.2018201811610.1155/2018/2727619
    [Google Scholar]
  33. GuptaP. GuptaJ.K. Synthesis and In-vitro antifungal evaluation of 5- pyrazolones.Open Chem. J.2015371410.2174/1874842201603010017
    [Google Scholar]
  34. AzimF. NadeemH. ImranM. NazS. MuhammadN. HayatA. IslamS. Characterization and biological evaluation of novel 3- methyl-5-pyrazolone derivatives.J. Med. Chem. Sci. Synth.202144252
    [Google Scholar]
  35. OthmanI.M.M. Gad-ElkareemM.A.M. Hassane AnouarE. AouadiK. SnoussiM. KadriA. New substituted pyrazolones and dipyrazolotriazines as promising tyrosyl-tRNA synthetase and peroxiredoxin-5 inhibitors: Design, synthesis, molecular docking and structure-activity relationship (SAR) analysis.Bioorg. Chem.202110910470410.1016/j.bioorg.2021.104704 33609915
    [Google Scholar]
  36. SaidacharyG. Veera PrasadK. DivyaD. SinghA. RameshU. SridharB. China RajuB. Convenient one-pot synthesis, anti-mycobacterial and anticancer activities of novel benzoxepinoisoxazolones and pyrazolones.Eur. J. Med. Chem.20147646046910.1016/j.ejmech.2014.02.042 24607876
    [Google Scholar]
  37. KandhasamyS. RamanathanG. MuthukumarT. ThyagarajanS. UmamaheshwariN. SanthanakrishnanV.P. SivagnanamU.T. PerumalP.T. Nanofibrous matrixes with biologically active hydroxybenzophenazine pyrazolone compound for cancer theranostics.Mater. Sci. Eng. C201774708510.1016/j.msec.2017.01.001 28254336
    [Google Scholar]
  38. PrajuliR. BanerjeeJ. KhanalH. Synthesis of Some Pyrazolone Derivatives and Evaluation of its Antibacterial and Cytotoxic Activity.Orient. J. Chem.20153142099210610.13005/ojc/310430
    [Google Scholar]
  39. KhalilN.A. AhmedE.M. MohamedK.O. NissanY.M. ZaitoneS.A.B. Synthesis and biological evaluation of new pyrazolone–pyridazine conjugates as anti-inflammatory and analgesic agents.Bioorg. Med. Chem.20142272080208910.1016/j.bmc.2014.02.042 24631365
    [Google Scholar]
  40. El SayedM.T. El-ShariefM.A.M.S. ZarieE.S. MorsyN.M. ElsheakhA.R. VoronkovA. BerishviliV. HassanG.S. Design, synthesis, anti-inflammatory activity and molecular docking of potential novel antipyrine and pyrazolone analogs as cyclooxygenase enzyme (COX) inhibitors.Bioorg. Med. Chem. Lett.201828595295710.1016/j.bmcl.2018.01.043 29426771
    [Google Scholar]
  41. KimataA. NakagawaH. OhyamaR. New series of antiprion compounds : Pyrazolone derivatives have the potent activity of inhibiting protease-resistant prion protein accumulation.J. Med. Chem.200720075053505610.1021/jm070688r 17850126
    [Google Scholar]
  42. QianX.K. ZhangJ. SongP.F. ZhaoY.S. MaH.Y. JinQ. WangD.D. GuanX.Q. LiS.Y. BaoX. ZouL.W. Discovery of pyrazolones as novel carboxylesterase 2 inhibitors that potently inhibit the adipogenesis in cells.Bioorg. Med. Chem.20214011618710.1016/j.bmc.2021.116187 33965840
    [Google Scholar]
  43. RamajayamR. TanK.P. LiuH.G. LiangP.H. Synthesis and evaluation of pyrazolone compounds as SARS-coronavirus 3C-like protease inhibitors.Bioorg. Med. Chem.201018227849785410.1016/j.bmc.2010.09.050 20947359
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808305582240604113524
Loading
/content/journals/lddd/10.2174/0115701808305582240604113524
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test