Skip to content
2000
Volume 21, Issue 17
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Herbal and dietary supplements are products that add more nutritional value to the diet. The use of these products has increased worldwide and has become widespread. Recently, the food products market has witnessed significant advancements in improving the health and well-being of individuals with increased nutritional requirements or in preventing related diseases and conditions. Overall, dietary supplements possess pharmacological properties that are not crucial for disease control, such as high blood pressure but are essential for various physiological processes. To report the recent pre-clinically and clinically proven benefits of different hypertension treatments, an extensive literature search was conducted using widely available scientific databases of oral supplements. This review aims to raise awareness about commonly used dietary and herbal products, particularly among individuals with high blood pressure. Additionally, this paper highlights several nutritional supplements that hold promise for future research.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808297606240628065101
2024-07-08
2025-06-20
Loading full text...

Full text loading...

References

  1. PetrovskaB. Historical review of medicinal plants′ usage.Pharmacogn. Rev.20126111510.4103/0973‑7847.95849 22654398
    [Google Scholar]
  2. BharkatiyaM. NemaR. RathoreK. PanchawatS. Aromatherapy: Short overview.Int.J. Green.Pharma.2008211310.4103/0973‑8258.39156
    [Google Scholar]
  3. PentelJ. VanrullenI. BertaJ.L. Les compléments alimentaires à base de plantes: un nécessaire besoin de sécurité.Cah. Nutr. Diét.2005401232910.1016/S0007‑9960(05)80463‑8
    [Google Scholar]
  4. BureauL. The “order plants and food supplements”: Phytotherapy Questioned.Phytotherapie201412526528310.1007/s10298‑014‑0892‑4
    [Google Scholar]
  5. Estrada-SotoS. González-TrujanoM.E. Rendón-VallejoP. Arias-DuránL. Ávila-VillarrealG. Villalobos-MolinaR. Antihypertensive and vasorelaxant mode of action of the ethanol-soluble extract from Tagetes lucida Cav. aerial parts and its main bioactive metabolites.J. Ethnopharmacol.202126611339910.1016/j.jep.2020.113399 32961278
    [Google Scholar]
  6. MaoS. LiC. Hypotensive and angiotensin-converting enzyme inhibitory activities of eisenia fetida extract in spontaneously hypertensive rats.Evid.Based.Compl.Altern. Med.201520157
    [Google Scholar]
  7. SinghM. SinghA.K. PandeyP. ChandraS. SinghK.A. GambhirI.S. Molecular genetics of essential hypertension.Clin. Exp. Hypertens.201638326827710.3109/10641963.2015.1116543 27028574
    [Google Scholar]
  8. RimoldiS.F. ScherrerU. MesserliF.H. Secondary arterial hypertension: When, who, and how to screen?Eur. Heart J.201435191245125410.1093/eurheartj/eht534 24366917
    [Google Scholar]
  9. HaileamlakA. Hypertension: High and rising burden but getting less attention.Ethiop. J. Health Sci.2019294420 31447513
    [Google Scholar]
  10. Es-SafiI. MechchateH. AmaghnoujeA. El MoussaouiA. CerrutiP. AvellaM. GrafovA. BoustaD. Marketing and legal status of phytomedicines and food supplements in Morocco.J. Complement. Integr. Med.202118227928510.1515/jcim‑2020‑0168 32950964
    [Google Scholar]
  11. ShipkowskiK.A. BetzJ.M. BirnbaumL.S. BucherJ.R. CoatesP.M. HoppD.C. MacKayD. Oketch-RabahH. WalkerN.J. WelchC. RiderC.V. Naturally complex: Perspectives and challenges associated with Botanical Dietary Supplement Safety assessment.Food Chem. Toxicol.201811896397110.1016/j.fct.2018.04.007 29626579
    [Google Scholar]
  12. DwyerJ. Commentary: An impossible dream? Integrating dietary supplement label databases: Needs, challenges, next steps.J. Food Compos. Anal.202110210388210.1016/j.jfca.2021.103882
    [Google Scholar]
  13. Teixidor-ToneuI. JordanF.M. HawkinsJ.A. Comparative phylogenetic methods and the cultural evolution of medicinal plant use.Nat. Plants201841075476110.1038/s41477‑018‑0226‑6
    [Google Scholar]
  14. Persistence Market Research. Dietary Supplements Market. 2022Available from: https://www.persistencemarketresearch.com/market-research/dietary-supplements-market.asp
  15. Persistence Market Research. Botanical Supplements Market.2022Available from: https://www.persistencemarketresearch.com/market-research/botanical-supplements-market.asp
  16. JAMAL, F.Z. The consumption of food supplements in Morocco; Mohamed 5 University, Faculty of Medicine and Pharmacy of Rabat for obtaining the Doctorate in Pharmacy,2016
    [Google Scholar]
  17. YounessK. The profile of consumers of food supplements in Morocco. Doctorate of Medicine thesis; Sidi Mohamed Ben Abdellah University, Faculty of Medicine and Pharmacy, Fez, 2018
    [Google Scholar]
  18. Food & Drug Administration Dietary Supplements.2022Available from: https://www.fda.gov/food/dietary-supplements
  19. BinY.S. KiatH. Prevalence of dietary supplement use in patients with proven or suspected cardiovascular disease.Evid. Based Complement. Alternat. Med.2011201111210.1155/2011/632829 20981333
    [Google Scholar]
  20. National Center for Complementary and Integrative HealthComplementary, Alternative, or Integrative Health: What’s In a Name?2021Available from: https://www.nccih.nih.gov/health/complementary-alternative-or-integrative-health-whats-in-a-name
    [Google Scholar]
  21. European Commission Herbal medicinal products2022Available from: https://health.ec.europa.eu/medicinal-products/herbal-medicinal-products_en (accessed Oct. 23, 2022).
    [Google Scholar]
  22. Kingdom of Morocco. Joint Circular No. 005/97 of the Department of Agriculture and Public Health relating to foodstuffs and beverages intended for special diets and food supplements. 1997Available from: https://apps.fas.usda.gov/newgainapi/api/report/downloadreport byfilename?filename=Food%20and%20Agricultural%20Import%20 Regulations%20and%20Standards%20Country%20Report_Rabat_ Morocco_6-6-2019.pdf
  23. BorrioneP. LuigiL.D. MaffulliN. PigozziF. Herbal supplements: Cause for concern?J. Sports Sci. Med.200874562564 24137093
    [Google Scholar]
  24. GigantescoA. GiulianiM. Quality of life in mental health services with a focus on psychiatric rehabilitation practice.Ann. Ist. Super. Sanita201147436337210.4415/ANN 22194070
    [Google Scholar]
  25. RasmussenC.B. GlissonJ.K. MinorD.S. Dietary supplements and hypertension: Potential benefits and precautions.J. Clin. Hypertens. 201214746747110.1111/j.1751‑7176.2012.00642.x 22747620
    [Google Scholar]
  26. Punia BangarS. SharmaN. SanwalN. LorenzoJ.M. SahuJ.K. Bioactive potential of beetroot (Beta vulgaris).Food Res. Int.202215811155610.1016/j.foodres.2022.111556 35840248
    [Google Scholar]
  27. MirmiranP. HoushialsadatZ. GaeiniZ. BahadoranZ. AziziF. Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases.Nutr. Metab.2020171310.1186/s12986‑019‑0421‑0 31921325
    [Google Scholar]
  28. ChhikaraN. KushwahaK. SharmaP. GatY. PanghalA. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chem.201927219220010.1016/j.foodchem.2018.08.022
    [Google Scholar]
  29. MudgalD. PujaS. SamsherS. Nutritional composition and value added products of beetroo: A review.J. Curr. Res. Food Sci.20223119
    [Google Scholar]
  30. RahayuS. PutriningtyasN.D. RahayuT. AzamM. The beetroot (Beta vulgaris) powder improves blood pressure and glucose level Wistar rats after high intensity exercise.Food Res.20226215215810.26656/fr.2017.6(2).184
    [Google Scholar]
  31. OlssonH. Al-SaadiJ. OehlerD. PergolizziJ.Jr MagnussonP. Physiological effects of beetroot in athletes and patients.Cureus20191112e635510.7759/cureus.6355 31938641
    [Google Scholar]
  32. Bonilla OcampoD. PaipillaA. MarínE. Vargas-MolinaS. PetroJ. Pérez-IdárragaA. Dietary nitrate from beetroot juice for hypertension: A systematic review.Biomolecules20188413410.3390/biom8040134 30400267
    [Google Scholar]
  33. McDonaghS.T.J. WylieL.J. WebsterJ.M.A. VanhataloA. JonesA.M. Influence of dietary nitrate food forms on nitrate metabolism and blood pressure in healthy normotensive adults.Nitric Oxide201872667410.1016/j.niox.2017.12.001 29223585
    [Google Scholar]
  34. KukadiaS. DehbiH.M. TillinT. CoadyE. ChaturvediN. HughesA.D. A double-blind placebo-controlled crossover study of the effect of beetroot juice containing dietary nitrate on aortic and brachial blood pressure over 24 h.Front. Physiol.2019104710.3389/fphys.2019.00047 30778302
    [Google Scholar]
  35. StanawayL. Rutherfurd-MarkwickK. PageR. WongM. JirangratW. TehK.H. AliA. Acute supplementation with nitrate-rich beetroot juice causes a greater increase in plasma nitrite and reduction in blood pressure of older compared to younger adults.Nutrients2019117168310.3390/nu11071683 31336633
    [Google Scholar]
  36. SurmaS. RomańczykM. CzerniukM.R. FilipiakK.J. Garlic for arterial hypertension and hypercholesterolaemia. Review of literature studies and clinical studies.Folia Cardiol.202116529630210.5603/FC.2021.0045
    [Google Scholar]
  37. CapperT.E. HoughtonD. StewartC.J. BlainA.P. McMahonN. SiervoM. WestD.J. StevensonE.J. Whole beetroot consumption reduces systolic blood pressure and modulates diversity and composition of the gut microbiota in older participants.NFS J.202021283710.1016/j.nfs.2020.08.001
    [Google Scholar]
  38. JonesT. DunnE.L. MacdonaldJ.H. KubisH.P. McMahonN. SandooA. The effects of beetroot juice on blood pressure, microvascular function and large-vessel endothelial function: A randomized, double-blind, placebo-controlled pilot study in healthy older adults.Nutrients2019118179210.3390/nu11081792 31382524
    [Google Scholar]
  39. JakubcikE.M. Rutherfurd-MarkwickK. ChabertM. WongM. AliA. Pharmacokinetics of nitrate and nitrite following beetroot juice drink consumption.Nutrients202113228110.3390/nu13020281 33498220
    [Google Scholar]
  40. KandhariN. PrabhakarM. ShannonO. FostierW. KoehlC. RogathiJ. TemuG. StephanB.C.M. GrayW.K. HauleI. PaddickS.M. MmbagaB.T. WalkerR. SiervoM. Feasibility and acceptability of a nutritional intervention testing the effects of nitrate-rich beetroot juice and folic acid on blood pressure in Tanzanian adults with elevated blood pressure.Int. J. Food Sci. Nutr.202172219520710.1080/09637486.2020.1776226 32522060
    [Google Scholar]
  41. SiervoM. ShannonO. KandhariN. PrabhakarM. FostierW. KöchlC. RogathiJ. TemuG. StephanB.C.M. GrayW.K. HauleI. PaddickS.M. MmbagaB.T. WalkerR. Nitrate-rich beetroot juice reduces blood pressure in tanzanian adults with elevated blood pressure: A double-blind randomized controlled feasibility trial.J. Nutr.202015092460246810.1093/jn/nxaa170 32729923
    [Google Scholar]
  42. de Lima BezerraÁ.D. CostaE.C. PachecoD.A. SouzaD.C. Farias-JuniorL.F. Ritti-DiaR.M. GrigoloG.B. de Bittencourt JúniorP.I.H. KrauseM. FayhA.P.T. Effect of acute dietary nitrate supplementation on the post-exercise ambulatory blood pressure in obese males: A randomized, controlled, crossover trial.J. Sports Sci. Med.2019181118127 30787659
    [Google Scholar]
  43. RogersonD. Aguilar MoraF.A. YoungJ.S. KlonizakisM. No effect of nitrate-rich beetroot juice on microvascular function and blood pressure in younger and older individuals: A randomised, placebo-controlled double-blind pilot study.Eur. J. Clin. Nutr.202276101380138610.1038/s41430‑022‑01115‑4 35352014
    [Google Scholar]
  44. OrmesherL. MyersJ.E. ChmielC. WareingM. GreenwoodS.L. TropeaT. LundbergJ.O. WeitzbergE. NihlenC. SibleyC.P. JohnstoneE.D. CottrellE.C. Effects of dietary nitrate supplementation, from beetroot juice, on blood pressure in hypertensive pregnant women: A randomised, double-blind, placebo-controlled feasibility trial.Nitric Oxide201880374410.1016/j.niox.2018.08.004 30099096
    [Google Scholar]
  45. ItratN. AnumN. AymenS. RoheenS. Determination of anti-hypertensive potential of beetroot powder on hypertensive patients. Pak-Euro.J. Med. Lif. Sci.202251475610.31580/pjmls.v5i1.2406
    [Google Scholar]
  46. ArmaM.R. Ta’adiT. SumarniS. Effectiveness of beetroot (beta vulgaris l) extracts on blood pressure level among postpartum mothers with hypertension.STRADA J. Ilmia. Keseh.20209267868510.30994/sjik.v9i2.356
    [Google Scholar]
  47. KimD.J.K. RoeC.A. SomaniY.B. MooreD.J. BarrettM.A. FlanaganM. Kim-ShapiroD.B. BasuS. MullerM.D. ProctorD.N. Effects of acute dietary nitrate supplementation on aortic blood pressures and pulse wave characteristics in post-menopausal women.Nitric Oxide201985101610.1016/j.niox.2019.01.008 30668996
    [Google Scholar]
  48. Seremet CecluL. NistorO.V. AndronoiuD.G. MocanuG.D. BarbuV.V. MaidanA. RudiL. BotezE. Development of several hybrid drying methods used to obtain red beetroot powder.Food Chem.202031012563710.1016/j.foodchem.2019.125637 31791727
    [Google Scholar]
  49. KapilV. KhambataR.S. RobertsonA. CaulfieldM.J. AhluwaliaA. Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: A randomized, phase 2, double-blind, placebo-controlled study.Hypertension201565232032710.1161/HYPERTENSIONAHA.114.04675 25421976
    [Google Scholar]
  50. SauderH.M. RawlaP. Beeturia. StatPearls; StatPearls Publishing: Treasure Island, FL2022Available from: https://www.ncbi.nlm.nih.gov/books/NBK537012/
    [Google Scholar]
  51. HanH. SegalA.M. SeifterJ.L. DwyerJ.T. Nutritional management of kidney stones (Nephrolithiasis).Clin. Nutr. Res.20154313715210.7762/cnr.2015.4.3.137 26251832
    [Google Scholar]
  52. BarM. BindugaU.E. SzychowskiK.A. Methods of isolation of active substances from garlic (Allium sativum L.) and its impact on the composition and biological properties of garlic extracts.Antioxidants2022117134510.3390/antiox11071345 35883836
    [Google Scholar]
  53. ChanW.J.J. McLachlanA.J. LucaE.J. HarnettJ.E. Garlic (Allium sativum L.) in the management of hypertension and dyslipidemia: A systematic review.J. Herb. Med.20201910029210.1016/j.hermed.2019.100292
    [Google Scholar]
  54. ZadhoushR. Alavi-NaeiniA. FeiziA. NaghshinehE. GhazviniM.R. The effect of garlic (Allium sativum) supplementation on the lipid parameters and blood pressure levels in women with polycystic ovary syndrome: A randomized controlled trial.Phytother. Res.202135116335634210.1002/ptr.7282 34496450
    [Google Scholar]
  55. SubramanianM.S. NandagopalM.S. G.; Amin Nordin, S.; Thilakavathy, K.; Joseph, N. Prevailing knowledge on the bioavailability and biological activities of Sulphur compounds from Alliums: A potential drug candidate.Molecules20202518411110.3390/molecules25184111 32916777
    [Google Scholar]
  56. SongH. CuiJ. MossineV. GreenliefC. FritscheK. SunG. GuZ. Bioactive components from garlic on brain resiliency against neuroinflammation and neurodegeneration. [Review]Exp. Ther. Med.20191921554155910.3892/etm.2019.8389 32010338
    [Google Scholar]
  57. VermaT. SinhaM. BansalN. YadavS.R. ShahK. ChauhanN.S. Plants used as antihypertensive.Nat. Prod. Bioprospect.202111215518410.1007/s13659‑020‑00281‑x 33174095
    [Google Scholar]
  58. ZhangY. LiuX. RuanJ. ZhuangX. ZhangX. LiZ. Phytochemicals of garlic: Promising candidates for cancer therapy.Biomed. Pharmacother.202012310973010.1016/j.biopha.2019.109730 31877551
    [Google Scholar]
  59. OyawoyeO.M. OlotuT.M. NzekweS.C. IdowuJ.A. AbdullahiT.A. BabatundeS.O. RidwanI.A. BatihaG.E. IdowuN. AlorabiM. FaidahH. Antioxidant potential and antibacterial activities of Allium cepa (onion) and Allium sativum (garlic) against the multidrug resistance bacteria.Bull. Natl. Res. Cent.202246121410.1186/s42269‑022‑00908‑8
    [Google Scholar]
  60. UshijimaM. TakashimaM. KunimuraK. KoderaY. MoriharaN. TamuraK. Effects of S -1-propenylcysteine, a sulfur compound in aged garlic extract, on blood pressure and peripheral circulation in spontaneously hypertensive rats.J. Pharm. Pharmacol.201870455956510.1111/jphp.12865 29380376
    [Google Scholar]
  61. MatsutomoT. Potential benefits of garlic and other dietary supplements for the management of hypertension. (Review)Exp. Ther. Med.20191921479148410.3892/etm.2019.8375 32010326
    [Google Scholar]
  62. KwakJ.S. KimJ.Y. Effect of garlic (Allium sativum L.) as a functional food, on blood pressure: A meta-analysis of garlic powder, focused on trials for prehypertensive subjects.J. Nutr. Health202154545947310.4163/jnh.2021.54.5.459
    [Google Scholar]
  63. RiedK. Garlic lowers blood pressure in hypertensive subjects, improves arterial stiffness and gut microbiota: A review and meta-analysis.Exp. Ther. Med.20191921472147810.3892/etm.2019.8374 32010325
    [Google Scholar]
  64. Bhalchandra SawalS. Pravinkumar ThakreM. Ganeshrao ThakreP. Bapurao SonareC. Review on effect of garlic (allium sativum) on blood pressure.Wor. J. Pharmac. Res.2021104285292Available from: https://wjpr.s3.ap-south-1.amazonaws.com/article_issue/1617173180.pdf
    [Google Scholar]
  65. GadeA. NimbarteB. KokateP. A critical review on anti-hypertensive action of allium sativum.AYUSHDHARA2019662423242710.47070/ayushdhara
    [Google Scholar]
  66. ChrysantS.G. ChrysantG.S. Herbs used for the treatment of hypertension and their mechanism of action.Curr. Hypertens. Rep.20171997710.1007/s11906‑017‑0775‑5 28921053
    [Google Scholar]
  67. Quiara LovattiA. Samuel BarbosaC. DarÍzy Flávia, S. Role of nutraceuticals in the prevention and treatment of hypertension and cardiovascular diseases.J. Hypertens. Manag.20195110.23937/2474‑3690/1510037
    [Google Scholar]
  68. NazhandA. LucariniM. DurazzoA. ZaccardelliM. CristarellaS. SoutoS.B. SilvaA.M. SeverinoP. SoutoE.B. SantiniA. Hawthorn (Crataegus spp.): An updated overview on its beneficial properties.Forests202011556410.3390/f11050564
    [Google Scholar]
  69. OrhanI.E. Phytochemical and pharmacological activity profile of Crataegus oxyacantha L. (Hawthorn): A cardiotonic herb.Curr. Med. Chem.201925374854486510.2174/0929867323666160919095519 27655074
    [Google Scholar]
  70. AhmadipourB. KalantarM. KalantarM.H. Cardiac indicators, serum antioxidant activity, and growth performance as affected by hawthorn extract (Crataegus oxyacantha) in pulmonary hypertensive chickensBrazilian Journal of Poultry Science2019213001008
    [Google Scholar]
  71. LiT. FuS. HuangX. ZhangX. CuiY. ZhangZ. MaY. ZhangX. YuQ. YangS. LiS. Biological properties and potential application of hawthorn and its major functional components: A review.J. Funct. Foods20229010498810.1016/j.jff.2022.104988
    [Google Scholar]
  72. ChiuH-F. VenkatakrishnanK. WangC.K. Nutraceuticals and functional foods in the prevention of hypertension induced by excessive intake of dietary salt. In: Dietary Sugar, Salt and Fat in Human Health; INC: Taichung, 202042345010.1016/B978‑0‑12‑816918‑6.00020‑2
    [Google Scholar]
  73. DuW. FanH.M. ZhangY.X. JiangX.H. LiY. Effect of flavonoids in hawthorn and vitamin C prevents hypertension in rats induced by heat exposure.Molecules202227386610.3390/molecules27030866 35164138
    [Google Scholar]
  74. ZhengX. LiX. ChenM. YangP. ZhaoX. ZengL. OuYangY. YangZ. TianZ. The protective role of hawthorn fruit extract against high salt-induced hypertension in Dahl salt-sensitive rats: Impact on oxidative stress and metabolic patterns.Food Funct.201910284985810.1039/C8FO01818A 30681096
    [Google Scholar]
  75. AhmadipourB. Hawthorn (Crataegus oxyacantha) flavonoid extract as an effective medicinal plant derivative to prevent pulmonary hypertension and heart failure in broiler chickens.Kafkas Univ. Vet. Fak. Derg.201925332132810.9775/kvfd.2018.20930
    [Google Scholar]
  76. AbbasiM. Efficacy of Hawthorn fruit extract on blood pressure and quality of sleep in patients with hypertension along with sleep disorders: A randomized double-blind controlled trial.J. Contemp. Med. Sci.20217419620110.22317/jcms.v7i4.1017
    [Google Scholar]
  77. SchandryR. LindauerD. MauzM. Blood pressure and cognitive performance after a single administration of a camphor-crataegus combination in adolescents with low blood pressure.Planta Med.201884171249125410.1055/a‑0634‑6597 29913528
    [Google Scholar]
  78. ChiB. ZhangM. SunL. LiuH. TianZ. Study on the hypotensive effect and mechanism of hawthorn (Crataegus pinnatifida) fruits and hyperoside in spontaneously hypertensive rats.Food Funct.202415105627564010.1039/D3FO02641H 38722076
    [Google Scholar]
  79. WalkerA.F. MarakisG. MorrisA.P. RobinsonP.A. Promising hypotensive effect of hawthorn extract: A randomized double‐blind pilot study of mild, essential hypertension.Phytother. Res.2002161485410.1002/ptr.947 11807965
    [Google Scholar]
  80. WalkerA.F. MarakisG. SimpsonE. HopeJ.L. RobinsonP.A. HassaneinM. SimpsonH.C. Hypotensive effects of hawthorn for patients with diabetes taking prescription drugs: A randomised controlled trial.Br. J. Gen. Pract.200656527437443 16762125
    [Google Scholar]
  81. DanieleC. MazzantiG. PittlerM.H. ErnstE. Adverse-event profile of Crataegus spp.: A systematic review.Drug Saf.200629652353510.2165/00002018‑200629060‑00005 16752934
    [Google Scholar]
  82. AsherG.N. VieraA.J. WeaverM.A. DominikR. CaugheyM. HinderliterA.L. Effect of hawthorn standardized extract on flow mediated dilation in prehypertensive and mildly hypertensive adults: A randomized, controlled cross-over trial.BMC Complement. Altern. Med.20121212610.1186/1472‑6882‑12‑26 22458601
    [Google Scholar]
  83. MaoQ.Q. XuX.Y. CaoS.Y. GanR.Y. CorkeH. BetaT. LiH.B. Bioactive compounds and bioactivities of ginger (zingiber officinale roscoe).Foods20198618510.3390/foods8060185 31151279
    [Google Scholar]
  84. ChenZ.Y. PengC. JiaoR. WongY.M. YangN. HuangY. Anti-hypertensive nutraceuticals and functional foods.J. Agric. Food Chem.200957114485449910.1021/jf900803r 19422223
    [Google Scholar]
  85. GhayurM.N. GilaniA.H. AfridiM.B. HoughtonP.J. Cardiovascular effects of ginger aqueous extract and its phenolic constituents are mediated through multiple pathways.Vascul. Pharmacol.200543423424110.1016/j.vph.2005.07.003 16157513
    [Google Scholar]
  86. LiC. LiJ. JiangF. TzvetkovN.T. HorbanczukJ.O. LiY. AtanasovA.G. WangD. Vasculoprotective effects of ginger (Zingiber officinale Roscoe) and underlying molecular mechanisms.Food Funct.20211251897191310.1039/D0FO02210A 33592084
    [Google Scholar]
  87. LeeY.J. JangY.N. HanY.M. KimH.M. SeoH.S. 6-gingerol normalizes the expression of biomarkers related to hypertension via PPAR δ in HUVECs, HEK293, and Differentiated 3T3-L1 Cells.PPAR Res.2018201811410.1155/2018/6485064 30643517
    [Google Scholar]
  88. Vázquez-FresnoR. RosanaA.R.R. SajedT. Onookome-OkomeT. WishartN.A. WishartD.S. Herbs and spices biomarkers of intake based on human intervention studies: A systematic review.Genes Nutr.20191411810.1186/s12263‑019‑0636‑8 31143299
    [Google Scholar]
  89. HasaniH. ArabA. HadiA. PourmasoumiM. GhavamiA. MiraghajaniM. Does ginger supplementation lower blood pressure? A systematic review and meta‐analysis of clinical trials.Phytother. Res.20193361639164710.1002/ptr.6362 30972845
    [Google Scholar]
  90. RahimlouM. YariZ. RayyaniE. KeshavarzS.A. HosseiniS. MorshedzadehN. HekmatdoostA. Effects of ginger supplementation on anthropometric, glycemic and metabolic parameters in subjects with metabolic syndrome: A randomized, double-blind, placebo-controlled study.J. Diabetes Metab. Disord.201918111912510.1007/s40200‑019‑00397‑z 31275882
    [Google Scholar]
  91. WuH.C. HorngC.T. TsaiS.C. LeeY.L. HsuS.C. TsaiY.J. TsaiF.J. ChiangJ.H. KuoD.H. YangJ.S. Relaxant and vasoprotective effects of ginger extracts on porcine coronary arteries.Int. J. Mol. Med.20184142420242810.3892/ijmm.2018.3380 29328426
    [Google Scholar]
  92. GhaffariS. RoshanravanN. The role of nutraceuticals in prevention and treatment of hypertension: An updated review of the literature.Food Res. Int.202012810874910.1016/j.foodres.2019.108749 31955788
    [Google Scholar]
  93. AzimiP. GhiasvandR. FeiziA. HosseinzadehJ. BahreynianM. HaririM. Khosravi-BoroujeniH. Effect of cinnamon, cardamom, saffron and ginger consumption on blood pressure and a marker of endothelial function in patients with type 2 diabetes mellitus: A randomized controlled clinical trial.Blood Press.201625313314010.3109/08037051.2015.1111020 26758574
    [Google Scholar]
  94. ModiM. ModiK. Ginger Root. . StatPearls; StatPearls Publishing: Treasure Island, FL; 2021Available from: https://www.ncbi.nlm.nih.gov/books/NBK565886/
    [Google Scholar]
  95. PourmasoumiM. HadiA. RafieN. NajafgholizadehA. MohammadiH. RouhaniM.H. The effect of ginger supplementation on lipid profile: A systematic review and meta-analysis of clinical trials.Phytomedicine201843283610.1016/j.phymed.2018.03.043 29747751
    [Google Scholar]
  96. PurpuraM. LoweryR.P. WilsonJ.M. MannanH. MünchG. Razmovski-NaumovskiV. Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects.Eur. J. Nutr.201857392993810.1007/s00394‑016‑1376‑9 28204880
    [Google Scholar]
  97. GuptaS.C. PatchvaS. AggarwalB.B. Therapeutic roles of curcumin: Lessons learned from clinical trials.AAPS J.201315119521810.1208/s12248‑012‑9432‑8 23143785
    [Google Scholar]
  98. HayE. LucarielloA. ContieriM. EspositoT. De LucaA. GuerraG. PernaA. Therapeutic effects of turmeric in several diseases: An overview.Chem. Biol. Interact.201931010872910.1016/j.cbi.2019.108729 31255636
    [Google Scholar]
  99. LeongX.F. The spice for hypertension: Protective role of Curcuma longa.Biomed. Pharmacol. J.20181141829184010.13005/bpj/1555
    [Google Scholar]
  100. SoleimaniV. SahebkarA. HosseinzadehH. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances. [Review]Phytother. Res.201832698599510.1002/ptr.6054 29480523
    [Google Scholar]
  101. AzhdariM. KarandishM. MansooriA. Metabolic benefits of curcumin supplementation in patients with metabolic syndrome: A systematic review and meta‐analysis of randomized controlled trials.Phytother. Res.20193351289130110.1002/ptr.6323 30941814
    [Google Scholar]
  102. KalhoriA. RafrafM. NavekarR. GhaffariA. JafarabadiM.A. Effect of turmeric supplementation on blood pressure and serum levels of sirtuin 1 and adiponectin in patients with nonalcoholic fatty liver disease: A double-blind, randomized, placebo-controlled trial.Prev. Nutr. Food Sci.2022271374410.3746/pnf.2022.27.1.37 35465117
    [Google Scholar]
  103. LanC. ChenX. ZhangY. WangW. WangW.E. LiuY. CaiY. RenH. ZhengS. ZhouL. ZengC. Curcumin prevents strokes in stroke-prone spontaneously hypertensive rats by improving vascular endothelial function.BMC Cardiovasc. Disord.20181814310.1186/s12872‑018‑0768‑6 29490624
    [Google Scholar]
  104. PatonahH. AgusS. ArifH. YaniM. Effect of Curcuma longa L. extract on noninvasive cardiovascular biomarkers in hypertension animal models.J. Appl. Pharm. Sci.2021118858910.7324/JAPS.2021.110812
    [Google Scholar]
  105. PreezR.D. PahlJ. AroraM. KumarM.N.V.R. BrownL. PanchalS.K. Low-dose curcumin nanoparticles normalise blood metabolic syndrome.Nutrients2019117154210.3390/nu11071542 31288419
    [Google Scholar]
  106. HadiA. PourmasoumiM. GhaediE. SahebkarA. The effect of curcumin/turmeric on blood pressure modulation: A systematic review and meta-analysis.Pharmacol. Res.201915010450510.1016/j.phrs.2019.104505 31647981
    [Google Scholar]
  107. TubsakulA. SangartitW. PakdeechoteP. KukongviriyapanV. ApaijitK. KukongviriyapanU. Curcumin mitigates hypertension, endothelial dysfunction and oxidative stress in rats with chronic exposure to lead and cadmium.Tohoku J. Exp. Med.20212531697610.1620/tjem.253.69 33473064
    [Google Scholar]
  108. VafaeipourZ. RazaviB.M. HosseinzadehH. Effects of turmeric (Curcuma longa) and its constituent (curcumin) on the metabolic syndrome: An updated review.J. Integr. Med.202220319320310.1016/j.joim.2022.02.008 35292209
    [Google Scholar]
  109. GuptaS.C. PatchvaS. KohW. AggarwalB.B. Discovery of curcumin, a component of golden spice, and its miraculous biological activities.Clin. Exp. Pharmacol. Physiol.201239328329910.1111/j.1440‑1681.2011.05648.x 22118895
    [Google Scholar]
  110. HeckA.M. DeWittB.A. LukesA.L. Potential interactions between alternative therapies and warfarin.Am. J. Health Syst. Pharm.200057131221122710.1093/ajhp/57.13.1221 10902065
    [Google Scholar]
  111. SinghN. RaoA.S. NandalA. KumarS. YadavS.S. GanaieS.A. NarasimhanB. Phytochemical and pharmacological review of Cinnamomum verum J. Presl-a versatile spice used in food and nutrition.Food Chem.202133812777310.1016/j.foodchem.2020.127773 32829297
    [Google Scholar]
  112. GoelB. MishraS. Medicinal and nutritional perspective of cinnamon: A mini-review.European J. Med. Plants2020313101610.9734/ejmp/2020/v31i330218
    [Google Scholar]
  113. HadiA. CampbellM.S. HassaniB. PourmasoumiM. Salehi-sahlabadiA. HosseiniS.A. The effect of cinnamon supplementation on blood pressure in adults: A systematic review and meta-analysis of randomized controlled trials.Clin. Nutr. ESPEN202036101610.1016/j.clnesp.2020.01.002 32220351
    [Google Scholar]
  114. MousaviS.M. KarimiE. HajishafieeM. MilajerdiA. AminiM.R. EsmaillzadehA. Anti-hypertensive effects of cinnamon supplementation in adults: A systematic review and dose-response Meta-analysis of randomized controlled trials.Crit. Rev. Food Sci. Nutr.202060183144315410.1080/10408398.2019.1678012 31617744
    [Google Scholar]
  115. YazdanpanahZ. AmiriM. NadjarzadehA. HooshmandiH. Azadi-YazdiM. Effects of cinnamon supplementation on systolic and diastolic blood pressure: A systematic review and meta-analysis of randomized controlled clinical trials.Crit. Comm. Biomed.20212110010610.18502/ccb.v2i1.5871
    [Google Scholar]
  116. JamaliN. JalaliM. Saffari-ChaleshtoriJ. Samare-NajafM. SamarehA. Effect of cinnamon supplementation on blood pressure and anthropometric parameters in patients with type 2 diabetes: A systematic review and meta-analysis of clinical trials.Diabetes Metab. Syndr.202014211912510.1016/j.dsx.2020.01.009 32032898
    [Google Scholar]
  117. ShirzadF. MorovatdarN. RezaeeR. TsarouhasK. Abdollahi MoghadamA. Cinnamon effects on blood pressure and metabolic profile: A double-blind, randomized, placebo-controlled trial in patients with stage 1 hypertension.Avicenna J. Phytomed.202111191100 33628723
    [Google Scholar]
  118. NémethÁ. MózesM.M. CalvierL. HansmannG. KökényG. The PPARγ agonist pioglitazone prevents TGF-β induced renal fibrosis by repressing EGR-1 and STAT3.BMC Nephrol.201920124510.1186/s12882‑019‑1431‑x 30606155
    [Google Scholar]
  119. FallahA.A. SarmastE. Habibian DehkordiS. EngardehJ. MahmoodniaL. KhaledifarA. JafariT. Effect of Chlorella supplementation on cardiovascular risk factors: A meta-analysis of randomized controlled trials.Clin. Nutr.20183761892190110.1016/j.clnu.2017.09.019 29037431
    [Google Scholar]
  120. SoekiT. SataM. Inflammatory biomarkers and atherosclerosis.Int. Heart J.201657213413910.1536/ihj.15‑346 26973275
    [Google Scholar]
  121. L GonçalvesL. FernandesT. BernardoM.A. A BritoJ. Assessment of human health risk of toxic elements due to cinnamon ingestion in the diet.Biol. Trace Elem. Res.2019189231332410.1007/s12011‑018‑1473‑0 30191399
    [Google Scholar]
  122. HajimonfarednejadM. OstovarM. RaeeM.J. HashempurM.H. MayerJ.G. HeydariM. Cinnamon: A systematic review of adverse events.Clin. Nutr.201938259460210.1016/j.clnu.2018.03.013 29661513
    [Google Scholar]
  123. WiwekoB. SusantoC.A. The effect of metformin and cinnamon on serum anti-mullerian hormone in women having PCOS: A double-blind, randomized, controlled trial.J. Hum. Reprod. Sci.2017101313610.4103/jhrs.JHRS_90_16 28479753
    [Google Scholar]
  124. Acar-TekN. AğagündüzD. Olive Leaf (Olea europaea L. folium): Potential effects on glycemia and lipidemia.Ann. Nutr. Metab.2020761101510.1159/000505508 31901903
    [Google Scholar]
  125. LinsP.G. Marina Piccoli PugineS. ScatoliniA.M. de MeloM.P. In vitro antioxidant activity of olive leaf extract (Olea europaea L.) and its protective effect on oxidative damage in human erythrocytes.Heliyon201849e0080510.1016/j.heliyon.2018.e00805
    [Google Scholar]
  126. LockyerS. RowlandI. SpencerJ.P.E. YaqoobP. StonehouseW. Impact of phenolic-rich olive leaf extract on blood pressure, plasma lipids and inflammatory markers: a randomised controlled trial.Eur. J. Nutr.20175641421143210.1007/s00394‑016‑1188‑y 26951205
    [Google Scholar]
  127. RomaniA. IeriF. UrciuoliS. NoceA. MarroneG. NedianiC. BerniniR. Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L.Nutrients2019118177610.3390/nu11081776 31374907
    [Google Scholar]
  128. MkaouarS. KrichenF. BahloulN. AllafK. KechaouN. Enhancement of bioactive compounds and antioxidant activities of olive (olea europaea l.) leaf extract by instant controlled pressure drop.Food Bioprocess Technol.20181161222122910.1007/s11947‑018‑2098‑1
    [Google Scholar]
  129. NedianiC. RuzzoliniJ. RomaniA. CaloriniL. Oleuropein, a bioactive compound from Olea europaea L., as a potential preventive and therapeutic agent in non-communicable diseases.Antioxidants201981227810.3390/antiox8120578
    [Google Scholar]
  130. BreakspearI. GuillaumeC. A quantitative phytochemical comparison of olive leaf extracts on the australian market.Molecules20202518409910.3390/molecules25184099 32911652
    [Google Scholar]
  131. MehmoodA. UsmanM. PatilP. ZhaoL. WangC. A review on management of cardiovascular diseases by olive polyphenols.Food Sci. Nutr.2020894639465510.1002/fsn3.1668 32994927
    [Google Scholar]
  132. De la OssaJ.G. FeliceF. AzimiB. SalsanoJ.E. DigiacomoM. MacchiaM. DantiS. Di StefanoR. Waste autochthonous tuscan olive leaves (Olea europaea var. olivastra seggianese) as antioxidant source for biomedicine.Int. J. Mol. Sci.20192023591810.3390/ijms20235918 31775339
    [Google Scholar]
  133. IvanovM. VajicU.J. Mihailovic-StanojevicN. MiloradovicZ. JovovicD. Grujic-MilanovicJ. KaranovicD. DekanskiD. Highly potent antioxidant Olea europaea L. leaf extract affects carotid and renal haemodynamics in experimental hypertension: The role of oleuropein.EXCLI J.201817294410.17179/excli2017‑1002 29383017
    [Google Scholar]
  134. HermansM.P. LempereurP. SalembierJ.P. MaesN. AlbertA. JansenO. PincemailJ. Supplementation effect of a combination of olive (Olea europea L.) leaf and fruit extracts in the clinical management of hypertension and metabolic syndrome.Antioxidants20209987210.3390/antiox9090872 32942738
    [Google Scholar]
  135. BasunyA.M. Evaluating the safety and efficacy of the traditional use of olive leaves decoction as antihypertensive agent in elderly people.Plant Arch.202020281118120
    [Google Scholar]
  136. FatahianA. YousefiS.S. AzadbakhtM. MoosazadehM. FakhriM. The effect of olive leaf use on blood pressure; A systematic review and meta-analysis.J. Renal Inj. Prev.2022113e3193310.34172/jrip.2022.31933
    [Google Scholar]
  137. IsmailM.A. NorhayatiM.N. MohamadN. Olive leaf extract effect on cardiometabolic profile among adults with prehypertension and hypertension: A systematic review and meta-analysis.PeerJ20219e1117310.7717/peerj.11173 33868820
    [Google Scholar]
  138. YaghoobzadehH. MehravarS. JavadiH. MemarzadehM.R. MirhashemiS.M. Determining cardiometabolic and antioxidant effects of olive leaf extract in patients with essential hypertension.J. Qazv. Univ. Med. Sci.201923537238110.32598/JQUMS.23.5.372
    [Google Scholar]
  139. JavadiH. YaghoobzadH. EsfahaniZ. Reza MemarM. Mehdi MirhS. Effects of olive leaf extract on metabolic response, liver and kidney functions and inflammatory biomarkers in hypertensive patients.Pak. J. Biol. Sci.201922734234810.3923/pjbs.2019.342.348 31930845
    [Google Scholar]
  140. RahimianfarF. The effect of olive leaf extract on systolic and diastolic blood pressure in adults: A systemic review and meta-analysis.Olive Cultivation.RijekaIntechOpen202215210.5772/intechopen.102769
    [Google Scholar]
  141. SindiH.A. Evidence that supports the antidiabetic, antihypertensive, and antihyperlipidemic effects of olive (Olea europaea L.) leaves extract and its active constituents (Oleuropein) in human.J. Biochem. Technol.20201124145Available from: http://search.ebscohost.com.stmarys.idm.oclc.org/login.aspx?direct=true&db=aph&AN=143488974&site=ehost-live
    [Google Scholar]
  142. GuexC.G. ReginatoF.Z. FigueredoK.C. da SilvaA.R.H. PiresF.B. JesusR.S. LhamasC.L. LopesG.H.H. BauermannL.F. Safety assessment of ethanolic extract of (Olea europaea L.) leaves after acute and subacute administration to Wistar rats.Regul. Toxicol. Pharmacol.20189539539910.1016/j.yrtph.2018.04.013 29678768
    [Google Scholar]
  143. ClewellA.E. BéresE. VértesiA. GlávitsR. HirkaG. EndresJ.R. MurbachT.S. SzakonyinéI.P. A Comprehensive toxicological safety assessment of an extract of Olea Europaea L. leaves (Bonolive™).Int. J. Toxicol.201635220822110.1177/1091581815619764 26658007
    [Google Scholar]
  144. SabryO. Review: Beneficial Health Effects of Olive Leaves Extracts. J. Nat. Sci. Res.2014419
    [Google Scholar]
  145. SamantaS. Potential bioactive components and health promotional benefits of tea (Camellia sinensis).J. Am. Nutr. Assoc.2022411659310.1080/07315724.2020.1827082 33216711
    [Google Scholar]
  146. SánchezM. González-BurgosE. IglesiasI. LozanoR. Gómez-SerranillosM.P. The pharmacological activity of camellia sinensis (L.) kuntze on metabolic and endocrine disorders: A systematic review.Biomolecules202010460310.3390/biom10040603
    [Google Scholar]
  147. GarciaM.L. PontesR.B. NishiE.E. IbukiF.K. OliveiraV. SawayaA.C.H. CarvalhoP.O. NogueiraF.N. FrancoM.C. CamposR.R. OyamaL.M. BergamaschiC.T. The antioxidant effects of green tea reduces blood pressure and sympathoexcitation in an experimental model of hypertension.J. Hypertens.201735234835410.1097/HJH.0000000000001149 28005704
    [Google Scholar]
  148. ChenS. WangC.Y. TsaiC.Y. YangI.C. LuoS.J. ChuangY.K. Fermentation quality evaluation of tea by estimating total catechins and theanine using near-infrared spectroscopy.Vib. Spectrosc.202111510327810.1016/j.vibspec.2021.103278
    [Google Scholar]
  149. Mahdavi-RoshanM. SalariA. GhorbaniZ. AshouriA. The effects of regular consumption of green or black tea beverage on blood pressure in those with elevated blood pressure or hypertension: A systematic review and meta-analysis.Complement. Ther. Med.20205110243010.1016/j.ctim.2020.102430 32507441
    [Google Scholar]
  150. VenkatakrishnanK. ChiuH.F. WangC.K. Impact of functional foods and nutraceuticals on high blood pressure with a special focus on meta-analysis: review from a public health perspective.Food Funct.20201142792280410.1039/D0FO00357C 32248209
    [Google Scholar]
  151. ChiangS.S. ChenL.S. ChuC.Y. Active food ingredients production from cold pressed processing residues of Camellia oleifera and Camellia sinensis seeds for regulation of blood pressure and vascular function.Chemosphere202126712926710.1016/j.chemosphere.2020.129267 33338714
    [Google Scholar]
  152. FauziN.M. KumolosasiE. JasamaiM. AzmiN. Interaction between green tea and perindopril reduces inhibition of angiotensin-converting enzyme activity.Trop. J. Pharm. Res.20211861185119010.4314/tjpr.v18i6.6
    [Google Scholar]
  153. LiuZ. XiaoM. DuZ. LiM. GuoH. YaoM. WanX. XieZ. Dietary supplementation of Huangshan Maofeng green tea preventing hypertension of older C57BL/6 mice induced by desoxycorticosterone acetate and salt.J. Nutr. Biochem.20218810853010.1016/j.jnutbio.2020.108530 33080347
    [Google Scholar]
  154. XingfeiL. ShunshunP. WenjiZ. LingliS. QiuhuaL. RuohongC. ShiliS. Properties of ACE inhibitory peptide prepared from protein in green tea residue and evaluation of its anti-hypertensive activity.Process Biochem.20209227728710.1016/j.procbio.2020.01.021
    [Google Scholar]
  155. MaC. ZhengX. YangY. BuP. The effect of black tea supplementation on blood pressure: A systematic review and dose–response meta-analysis of randomized controlled trials.Food Funct.2021121415610.1039/D0FO02122A 33237083
    [Google Scholar]
  156. XuR. YangK. DingJ. ChenG. Effect of green tea supplementation on blood pressure.Medicine 2020996e1904710.1097/MD.0000000000019047 32028419
    [Google Scholar]
  157. Maeda-YamamotoM. NishimuraM. KitaichiN. NesumiA. MonobeM. NomuraS. HorieY. TachibanaH. NishihiraJ. A randomized, placebo-controlled study on the safety and efficacy of daily ingestion of green tea (Camellia sinensis l.) cv. ‘Yabukita’ and ‘Sunrouge’ on eyestrain and blood pressure in healthy adults.Nutrients201810556910.3390/nu10050569 29734777
    [Google Scholar]
  158. MalinowskiB. Fajardo LeightonR.I. HillC.G. SzandorowskiP. WicińskiM. Bioactive compounds and their effect on blood pressure: A review.Nutrients2020126165910.3390/nu12061659 32503160
    [Google Scholar]
  159. ZhangL. HoC.T. ZhouJ. SantosJ.S. ArmstrongL. GranatoD. Chemistry and biological activities of processed Camellia sinensis Teas: A comprehensive review.Compr. Rev. Food Sci. Food Saf.20191851474149510.1111/1541‑4337.12479 33336903
    [Google Scholar]
  160. BorghiC. TsioufisK. Agabiti-RoseiE. BurnierM. CiceroA.F.G. ClementD. CocaA. DesideriG. GrassiG. LovicD. LurbeE. KahanT. KreutzR. JelakovicB. PoloniaJ. RedonJ. Van De BorneP. ManciaG. Nutraceuticals and blood pressure control: A European Society of Hypertension position document.J. Hypertens.202038579981210.1097/HJH.0000000000002353 31977574
    [Google Scholar]
  161. LiD. WangR. HuangJ. CaiQ. YangC.S. WanX. XieZ. Effects and mechanisms of tea regulating blood pressure: Evidences and promises.Nutrients2019115111510.3390/nu11051115 31109113
    [Google Scholar]
  162. NaveedM. BiBi, J.; Kamboh, A.A.; Suheryani, I.; Kakar, I.; Fazlani, S.A.; FangFang, X.; kalhoro, S.A.; Yunjuan, L.; Kakar, M.U.; Abd El-Hack, M.E.; Noreldin, A.E.; Zhixiang, S.; LiXia, C.; XiaoHui, Z. Pharmacological values and therapeutic properties of black tea (Camellia sinensis): A comprehensive overview.Biomed. Pharmacother.201810052153110.1016/j.biopha.2018.02.048 29482046
    [Google Scholar]
  163. IsomuraT. SuzukiS. OrigasaH. HosonoA. SuzukiM. SawadaT. TeraoS. MutoY. KogaT. Liver-related safety assessment of green tea extracts in humans: A systematic review of randomized controlled trials.Eur. J. Clin. Nutr.201670111221122910.1038/ejcn.2016.78 27188915
    [Google Scholar]
  164. SchmidtM. SchmitzH.J. BaumgartA. GuédonD. NetschM.I. KreuterM.H. SchmidlinC.B. SchrenkD. Toxicity of green tea extracts and their constituents in rat hepatocytes in primary culture.Food Chem. Toxicol.200543230731410.1016/j.fct.2004.11.001 15621343
    [Google Scholar]
  165. ChenD. ChenG. SunY. ZengX. YeH. Physiological genetics, chemical composition, health benefits and toxicology of tea (Camellia sinensis L.) flower: A review.Food Res. Int.202013710958410.1016/j.foodres.2020.109584 33233193
    [Google Scholar]
  166. WinstonA.P. HardwickE. JaberiN. Neuropsychiatric effects of caffeine.Adv. Psychiatr. Treat.200511643243910.1192/apt.11.6.432
    [Google Scholar]
  167. SowbhagyaH.B. Chemistry, technology, and nutraceutical functions of celery (Apium graveolens L.): an overview.Crit. Rev. Food Sci. Nutr.201454338939810.1080/10408398.2011.586740 24188309
    [Google Scholar]
  168. MoghadamM.H. ImenshahidiM. MohajeriS.A. Antihypertensive effect of celery seed on rat blood pressure in chronic administration.J. Med. Food201316655856310.1089/jmf.2012.2664 23735001
    [Google Scholar]
  169. SiskaS. Mun’imA. BahtiarA. SuyatnaF. Effect of apium graveolens extract administration on the pharmacokinetics of captopril in the plasma of rats.Sci. Pharm.2018861610.3390/scipharm86010006 29462958
    [Google Scholar]
  170. HedayatiN. Bemani NaeiniM. MohammadinejadA. MohajeriS.A. Beneficial effects of celery (Apium graveolens) on metabolic syndrome: A review of the existing evidences.Phytother. Res.201933123040305310.1002/ptr.6492 31464016
    [Google Scholar]
  171. IllesJ.D. Blood pressure change after celery juice ingestion in a hypertensive elderly male.J. Chiropr. Med.2021202909410.1016/j.jcm.2021.04.001 34987326
    [Google Scholar]
  172. IndartiE.T. WildaL.O. NuvitasariY. Water boiling celery affects blood pressure in elderly with hypertension.J. Qual. Publ. Heal.202041333710.30994/jqph.v4i1.147
    [Google Scholar]
  173. UlyaN. JannahM. Blood pressure reduction on elderly with hypertension with celery products in pekalongan city.Siklus: J. Res. Midwif. Polit. Teg.20209161010.30591/siklus.v9i1.1599
    [Google Scholar]
  174. AhmadA. RahmanS. Inhibitory effect of celery extract (apium gravolens linn) on blood pressure reduction in hypertension elderly in iman clinic.Bul. Farmatera202272465310.30596/bf.v7i2.9435
    [Google Scholar]
  175. LasriaS. SrilinaB.P. ZulkarnainB.B. The comparison study of celery leaves in juice and celery boiled water to reduce of blood pressure on elderly patients with hypertension.Proceedings of the First International Conference on Health, Social Sciences and Technology (ICoHSST 2020)202118919510.2991/assehr.k.210415.041
    [Google Scholar]
  176. Shayani RadM. MoohebatiM. MohajeriS.A. Effect of celery (Apium graveolens) seed extract on hypertension: A randomized, triple‐blind, placebo‐controlled, cross‐over, clinical trial.Phytother. Res.20223672889290710.1002/ptr.7469 35624525
    [Google Scholar]
  177. SohrabiF. NiazmandS. MahmoudabadyM. NiazmandM.J. The vasodilatory effect of Apium graveolens L (celery) seed in isolated rat aorta: The roles of endothelium, calcium and potassium channels.Avicenna J. Phytomed.20211114453 33628719
    [Google Scholar]
  178. RawatP. SinghP.K. KumarV. Anti-hypertensive medicinal plants and their mode of action.J. Herb. Med.20166310711810.1016/j.hermed.2016.06.001
    [Google Scholar]
  179. FausiA. The effect of giving boiled celery water on reducing blood pressure in hypertension sufferers (study in kemuning hamlet, kemuning village, tarik sidoarjo district).J. Chem. Inf. Model.201853916891699
    [Google Scholar]
  180. KootiW. Ali AkbariS. Asadi-SamaniM. GhaderyH. Ashtary-LarkyD. A review on medicinal plant of Apium graveolens.Adv. Herb. Med.201514859
    [Google Scholar]
  181. Izquierdo-VegaJ. Arteaga-BadilloD. Sánchez-GutiérrezM. Morales-GonzálezJ. Vargas-MendozaN. Gómez-AldapaC. Castro-RosasJ. Delgado-OlivaresL. Madrigal-BujaidarE. Madrigal-SantillánE. organic acids from roselle (Hibiscus sabdariffa L.): A brief review of its pharmacological effects.Biomedicines20208510010.3390/biomedicines8050100 32354172
    [Google Scholar]
  182. RiazG. ChopraR. A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L.Biomed. Pharmacother.201810257558610.1016/j.biopha.2018.03.023 29597091
    [Google Scholar]
  183. EllisL.R. ZulfiqarS. HolmesM. MarshallL. DyeL. BoeschC. A systematic review and meta-analysis of the effects of Hibiscus sabdariffa on blood pressure and cardiometabolic markers.Nutr. Rev.20228061723173710.1093/nutrit/nuab104 34927694
    [Google Scholar]
  184. GhiasiS.S. JalalyazdiM. RamezaniJ. Izadi-MoudA. Madani-SaniF. ShahlaeiS. Effect of hibiscus sabdariffa on blood pressure in patients with stage 1 hypertension.J. Adv. Pharm. Technol. Res.201910310711110.4103/japtr.JAPTR_402_18 31334091
    [Google Scholar]
  185. HendrixC. Clinically proven options for hypertension.Evidence-Based Use20192Suppl.15
    [Google Scholar]
  186. MojiminiyiF. AliyuB. OyeniranO. IsuA. The hypotensive effect of the aqueous calyx extract of Hibiscus sabdariffa may occur through the attenuation of Autonomic nervous system activity.Niger. J. Physiol. Sci.202136220320910.54548/nigerjphysiolsci.v36i2.9 35947728
    [Google Scholar]
  187. NurfaradillaS.A. SaputriF.C. HarahapY. Effects of hibiscus sabdariffa calyces aqueous extract on the antihypertensive potency of captopril in the two-kidney-one-clip rat hypertension model.Evid. Based Complement. Alternat. Med.20192019969421210.1155/2019/9694212
    [Google Scholar]
  188. BalogunM.E. BesongE.E. ObimmaJ.N. IyareE.E. NwachukwuD.C. Ameliorative effect of aqueous extract of Hibiscus Sabdariffa (Roselle) on salt-induced hypertension in wistar rats.Pharmacologyonline20192247258
    [Google Scholar]
  189. AbubakarS.M. UkeyimaM.T. SpencerJ.P.E. LovegroveJ.A. Acute effects of hibiscus sabdariffa calyces on postprandial blood pressure, vascular function, blood lipids, biomarkers of insulin resistance and inflammation in humans.Nutrients201911234110.3390/nu11020341 30764582
    [Google Scholar]
  190. AbdelmonemM. EbadaM.A. DiabS. AhmedM.M. ZaazoueeM.S. EssaT.M. ElBazZ.S. GhaithH.S. AbdellaW.S. EbadaM. NegidaA. Efficacy of hibiscus sabdariffa on reducing blood pressure in patients with mild-to-moderate hypertension: A systematic review and meta-analysis of published randomized controlled trials.J. Cardiovasc. Pharmacol.2022791e64e7410.1097/FJC.0000000000001161 34694241
    [Google Scholar]
  191. Al-AnbakiM. NogueiraR.C. CavinA.L. Al-HadidM. Al-AjlouniI. ShuhaiberL. GrazB. Treating uncontrolled hypertension with hibiscus sabdariffa when standard treatment is insufficient: Pilot intervention.J. Altern. Complement. Med.201925121200120510.1089/acm.2019.0220 31599646
    [Google Scholar]
  192. HarmiliH. FadlilahS. SuciptoA. Effectiveness of Hibiscus sabdariffa on blood pressure of hypertension patients.J. Keperaw. Resp. Yogyak.2021829910210.35842/jkry.v8i2.609
    [Google Scholar]
  193. ElkafrawyN. YounesK. NaguibA. BadrH. Kamal ZewainS. KamelM. RaoofG.F.A. M El-DesokyA. MohamedS. Antihypertensive efficacy and safety of a standardized herbal medicinal product of Hibiscus sabdariffa and Olea europaea extracts (NW Roselle): A phase-II, randomized, double-blind, captopril-controlled clinical trial.Phytother. Res.202034123379338710.1002/ptr.6792 32725873
    [Google Scholar]
  194. PellicciaF. PasceriV. MarazziG. ArriviA. CacciottiL. PannaraleG. SpecialeG. GrecoC. GaudioC. Randomised, double-blind, placebo-controlled, assessment of the efficacy and safety of dietary supplements in prehypertension.J. Hum. Hypertens.2017311064765310.1038/jhh.2017.35 28447625
    [Google Scholar]
  195. LiuH. LiangZ.M. LiR.T. YuY.G. Advances in the mechanisms of Hibiscus sabdariffa L. on hypertensionE3S Web of Conf.20201450103910.1051/e3sconf/202014501039
    [Google Scholar]
  196. AminA.R. KassabR.B. Abdel MoneimA.E. AminH.K. Comparison among garlic, berberine, resveratrol, hibiscus sabdariffa, genus zizyphus, hesperidin, red beetroot, catha edulis, portulaca oleracea, and mulberry leaves in the treatment of hypertension and Type 2 DM: A comprehensive review.Nat. Prod. Commun.202015410.1177/1934578X20921623
    [Google Scholar]
  197. Klimek-SzczykutowiczM. SzopaA. EkiertH. Citrus limon (Lemon) phenomenon: A review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies.Plants20209111910.3390/plants9010119 31963590
    [Google Scholar]
  198. PhamT. Evaluate the chemical composition of peels and juice of seedless lemon (Citrus latifolia) grown in Hau Giang province, VietnamIOP Conf. Ser.: Mater. Sci. Eng.,202099101212710.1088/1757‑899X/991/1/012127
    [Google Scholar]
  199. SarfarazS. Evaluation of diuretic potential of lemon juice and reconstituted lemon drink.World J. Pharm. Res.201547254259
    [Google Scholar]
  200. ElwanH.A.M. Evaluation of diuretic potential of lemon juice and reconstituted lemon drink.Animals201997 31284654
    [Google Scholar]
  201. KawakamiK. YamadaK. TakeshitaH. YamadaT. NomuraM. Antihypertensive effect of lemon juice squeezed residue on spontaneously hypertensive rats.Food Sci. Technol. Res.202127352152710.3136/fstr.27.521
    [Google Scholar]
  202. shahabeddin Bahrani, S. The comparison of the effect of garlic and lemon juice on blood pressure and comfort in hypertensive patients.Rev. Latinoam. Hipertens.202015315416310.5281/zenodo.4078985
    [Google Scholar]
  203. ÖzünalZ.G. TahirbegolliI.A. ÜresinA.Y. Evaluation of the Effect of Citrus Lemon L. “Enter” on Blood Pressure in Hypertensive Patients.J. Pharm. Pharmacol.201751074274510.17265/2328‑2150/2017.10.006
    [Google Scholar]
  204. YamamotoM. JokuraH. SuzukiA. HaseT. ShimotoyodomeA. Effects of continuous ingestion of hesperidin and glucosyl hesperidin on vascular gene expression in spontaneously hypertensive rats.J. Nutr. Sci. Vitaminol. 201359547047310.3177/jnsv.59.470 24418882
    [Google Scholar]
  205. KaltenbachT. CrockettS. GersonL.B. Are lifestyle measures effective in patients with gastroesophageal reflux disease? An evidence-based approach.Arch. Intern. Med.2006166996597110.1001/archinte.166.9.965 16682569
    [Google Scholar]
  206. BerzouS. KroufD. Taleb-DidaN. GuenzetA. Flaxseeds (L. Usitatissimum) attenuates blood pressure, acetylcholinesterase activity and oxidative stress in ouabain-induced hypertension in normal Wistar rats.Nutr. Food Sci.201950472573710.1108/NFS‑05‑2019‑0157
    [Google Scholar]
  207. ParikhM. NetticadanT. PierceG.N. Flaxseed: Its bioactive components and their cardiovascular benefits.Am. J. Physiol. Heart Circ. Physiol.20183142H146H15910.1152/ajpheart.00400.2017 29101172
    [Google Scholar]
  208. HadiA. AskarpourM. SalamatS. GhaediE. SymondsM.E. MiraghajaniM. Effect of flaxseed supplementation on lipid profile: An updated systematic review and dose-response meta-analysis of sixty-two randomized controlled trials.Pharmacol. Res.202015210462210.1016/j.phrs.2019.104622 31899314
    [Google Scholar]
  209. SawantS.H. BodhankarS.L. Flax lignan concentrate reverses alterations in blood pressure, left ventricular functions, lipid profile and antioxidant status in DOCA-salt induced renal hypertension in rats.Ren. Fail.201638341142310.3109/0886022X.2015.1136895 26795298
    [Google Scholar]
  210. ParikhM. MaddafordT.G. AustriaJ.A. AlianiM. NetticadanT. PierceG.N. Dietary flaxseed as a strategy for improving human health.Nutrients2019115117110.3390/nu11051171 31130604
    [Google Scholar]
  211. WatanabeY. OhataK. FukanokiA. FujimotoN. MatsumotoM. NessaN. TobaH. KobaraM. NakataT. Antihypertensive and renoprotective effects of dietary flaxseed and its mechanism of action in deoxycorticosterone acetate-salt hypertensive rats.Pharmacology20201051-2546210.1159/000502789 31514180
    [Google Scholar]
  212. AkramiA. NikaeinF. BabajafariS. FaghihS. YarmohammadiH. Comparison of the effects of flaxseed oil and sunflower seed oil consumption on serum glucose, lipid profile, blood pressure, and lipid peroxidation in patients with metabolic syndrome.J. Clin. Lipidol.2018121707710.1016/j.jacl.2017.11.004 29229363
    [Google Scholar]
  213. NagawaC.S. PalakshappaJ.A. SadasivamR.S. HoustonT.K. Herbal or dietary supplement use and hypertensive medications: Does the combination relate to medication adherence and blood pressure control?J. Altern. Complement. Med.202127216817510.1089/acm.2020.0254 33296255
    [Google Scholar]
  214. ToulabiT. YarahmadiM. GoudarziF. EbrahimzadehF. MomenizadehA. YarahmadiS. Effects of flaxseed on blood pressure, body mass index, and total cholesterol in hypertensive patients: A randomized clinical trial.Explore 202218443844510.1016/j.explore.2021.05.003 34119421
    [Google Scholar]
  215. Davoudi-KiakalayehA. MohammadiR. PourfathollahA. SieryZ. Davoudi-KiakalayehS. Alloimmunization in thalassemia patients: New insight for healthcare.Int. J. Prev. Med.20178110110.4103/ijpvm.IJPVM_246_16 29291043
    [Google Scholar]
  216. PrasadK. Importance of flaxseed and its components in the management of hypertension.Int. J. Angiol.201928315316010.1055/s‑0039‑1678691 31452582
    [Google Scholar]
  217. CaligiuriS.P.B. PierceG.N. A review of the relative efficacy of dietary, nutritional supplements, lifestyle, and drug therapies in the management of hypertension.Crit. Rev. Food Sci. Nutr.201757163508352710.1080/10408398.2016.1142420 27494115
    [Google Scholar]
  218. BekhitA.E.D.A. ShavandiA. JodjajaT. BirchJ. TehS. Mohamed AhmedI.A. Al-JuhaimiF.Y. SaeediP. BekhitA.A. Flaxseed: Composition, detoxification, utilization, and opportunities.Biocatal. Agric. Biotechnol.20181312915210.1016/j.bcab.2017.11.017
    [Google Scholar]
  219. EsquivelP. JiménezV.M. Functional properties of coffee and coffee by-products.Food Res. Int.201246248849510.1016/j.foodres.2011.05.028
    [Google Scholar]
  220. BuffoR.A. Cardelli-FreireC. Coffee flavour: An overview.Flavour Fragrance J.20041929910410.1002/ffj.1325
    [Google Scholar]
  221. de Melo PereiraG.V. de Carvalho NetoD.P. Magalhães JúniorA.I. VásquezZ.S. MedeirosA.B.P. VandenbergheL.P.S. SoccolC.R. Exploring the impacts of postharvest processing on the aroma formation of coffee beans: A review.Food Chem.201927244145210.1016/j.foodchem.2018.08.061 30309567
    [Google Scholar]
  222. de Melo PereiraG.V. Chemical composition and health properties of coffee and coffee by-products.Advances in Food and Nutrition Research.1st edElsevier Inc.2020659610.1016/bs.afnr.2019.10.002
    [Google Scholar]
  223. BhandarkarN.S. BrownL. PanchalS.K. Chlorogenic acid attenuates high-carbohydrate, high-fat diet–induced cardiovascular, liver, and metabolic changes in rats.Nutr. Res.201962788810.1016/j.nutres.2018.11.002 30803509
    [Google Scholar]
  224. HusniatiH. GarmanaA.N. Ketut AdnyanaI. Potential extract of robusta coffee as antihypertensive agent: In Vivo study on dexamethasone-induced hypertensive ratsAIP Conf. Proc.2023290206001110.1063/5.0173172
    [Google Scholar]
  225. PavãoT.P. ChemelloD. FerigolloA. SaffiM.A.L. MorescoR.N. SteinC.S. EmanuelliT. SomacalS. MoriguchiE.H. BadimonL. ChagasP. Acute effect of coffee on arterial stiffness and endothelial function in overweight and obese individuals: A randomized clinical trial.Clin. Nutr. ESPEN202250334010.1016/j.clnesp.2022.05.003 35871944
    [Google Scholar]
  226. VoskoboinikA. KohY. KistlerP.M. Cardiovascular effects of caffeinated beverages.Trends Cardiovasc. Med.201929634535010.1016/j.tcm.2018.09.019 30301595
    [Google Scholar]
  227. HanB. Nazary-VannaniA. TalaeiS. ClarkC.C.T. RahmaniJ. RasekhmaghamR. Kord-VarkanehH. The effect of green coffee extract supplementation on blood pressure: A systematic review and meta‐analysis of randomized controlled trials.Phytother. Res.201933112918292610.1002/ptr.6481 31429515
    [Google Scholar]
  228. RoshanH. NikpayamO. SedaghatM. SohrabG. Effects of green coffee extract supplementation on anthropometric indices, glycaemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome: A randomised clinical trial.Br. J. Nutr.2018119325025810.1017/S0007114517003439 29307310
    [Google Scholar]
  229. LukitasariM. RohmanM.S. NugrohoD.A. WidodoN. IdaN. NugrahiniP. Cardiovascular protection effect of chlorogenic acid: Focus on the molecular mechanism. [version 1; peer review : 1 approved, 2 approved with reservations].F1000 Res.202191462116
    [Google Scholar]
  230. BaeJ.H. ParkJ.H. Im, S.S.; Song, D.K. Coffee and health.Integr. Med. Res.20143418919110.1016/j.imr.2014.08.002 28664096
    [Google Scholar]
  231. NawrotP. JordanS. EastwoodJ. RotsteinJ. HugenholtzA. FeeleyM. Effects of caffeine on human health.Food Addit. Contam.200320113010.1080/0265203021000007840 12519715
    [Google Scholar]
  232. TeshikaJ.D. ZakariyyahA.M. ZaynabT. ZenginG. RengasamyK.R.R. PandianS.K. FawziM.M. Traditional and modern uses of onion bulb (Allium cepa L.): A systematic reviewCrit. Rev. Food Sci. Nutr.201959sup1S39S7010.1080/10408398.2018.149907430040448
    [Google Scholar]
  233. KumarM. BarbhaiM.D. HasanM. PuniaS. DhumalS. Radha; Rais, N.; Chandran, D.; Pandiselvam, R.; Kothakota, A.; Tomar, M.; Satankar, V.; Senapathy, M.; Anitha, T.; Dey, A.; Sayed, A.A.S.; Gadallah, F.M.; Amarowicz, R.; Mekhemar, M. Onion (Allium cepa L.) peels: A review on bioactive compounds and biomedical activities.Biomed. Pharmacother.202214611249810.1016/j.biopha.2021.112498 34953395
    [Google Scholar]
  234. RenF. ZhouS. Phenolic components and health beneficial properties of onions.Agriculture202111987210.3390/agriculture11090872
    [Google Scholar]
  235. KaravelioğluB. HocaM. Potential effects of onion (Allium cepa L.) and its phytomolecules on non-communicable chronic diseases: A review.J. Hortic. Sci. Biotechnol.2022971243310.1080/14620316.2021.1952904
    [Google Scholar]
  236. MarrelliM. AmodeoV. StattiG. ConfortiF. Biological properties and bioactive components of Allium cepa L.: Focus on potential benefits in the treatment of obesity and related comorbidities.Molecules201824111910.3390/molecules24010119 30598012
    [Google Scholar]
  237. DorrigivM. ZareiyanA. HosseinzadehH. Onion (Allium cepa) and its main constituents as antidotes or protective agents against natural or chemical toxicities: A comprehensive review.Iran. J. Pharm. Res.202120132610.22037/ijpr.2020.112773.13940 34400937
    [Google Scholar]
  238. ChakrabortyA.J. UddinT.M. Matin ZidanB.M.R. MitraS. DasR. NainuF. DhamaK. RoyA. HossainM.J. KhusroA. EmranT.B. Allium cepa: A treasure of bioactive phytochemicals with prospective health benefits.Evid. Based Complement. Alternat. Med.2022202212710.1155/2022/4586318 35087593
    [Google Scholar]
  239. MetraniR. SinghJ. AcharyaP.K. JayaprakashaG.S. PatilB. Comparative metabolomics profiling of polyphenols, nutrients and antioxidant activities of two red onion (Allium cepa L.) cultivars.Plants20209911810.3390/plants9091077 32825622
    [Google Scholar]
  240. SakaiY. MurakamiT. YamamotoY. Antihypertensive effects of onion on NO synthase inhibitor-induced hypertensive rats and spontaneously hypertensive rats.Biosci. Biotechnol. Biochem.20036761305131110.1271/bbb.67.1305 12843658
    [Google Scholar]
  241. AhsanM. TasleemM.W. RajpootS.R. AyubH.M. AhmadM. IrshadQ. KanwalT. Effect of onion peel tea supplementation and exercise against hypercholesterolemia and cardiovascular risk factors in obese women: education and randomized control trial.Indon. J. Multidicipl. Res.20212115916810.17509/ijomr.v2i1.38955
    [Google Scholar]
  242. ObohG. AdemiluyiA.O. AgunloyeO.M. AdemosunA.O. OgunsakinB.G. Inhibitory effect of garlic, purple onion, and white onion on key enzymes linked with type 2 diabetes and hypertension.J. Diet. Suppl.201916110511810.1080/19390211.2018.1438553 29522359
    [Google Scholar]
  243. TsaiH.H. LinH.W. LuY.H. ChenY.L. MahadyG.B. A review of potential harmful interactions between anticoagulant/antiplatelet agents and Chinese herbal medicines.PLoS One201385e6425510.1371/journal.pone.0064255 23671711
    [Google Scholar]
  244. XingB. LiS. YangJ. LinD. FengY. LuJ. ShaoQ. Phytochemistry, pharmacology, and potential clinical applications of saffron: A review.J. Ethnopharmacol.202128111455510.1016/j.jep.2021.114555 34438035
    [Google Scholar]
  245. DrioicheA. BenhlimaN. KchibaleA. BoutahiriS. AilliA. El HilaliF. MoukaidB. ZairT. Ethnobotanical investigation of herbal food additives of Morocco used as natural dyes.Ethnobot. Res. Appl.20212114310.32859/era.21.11.1‑43
    [Google Scholar]
  246. LuC. Saffron (Crocus sativus L.) and health outcomes: A meta-research review of meta-analyses and an evidence mapping study.Phytomedicine202191153699
    [Google Scholar]
  247. CardoneL. CastronuovoD. PerniolaM. CiccoN. CandidoV. Saffron (Crocus sativus L.), the king of spices: An overview.Sci. Hortic. 202027210956010.1016/j.scienta.2020.109560
    [Google Scholar]
  248. BononiM. TateoF. ScagliaB. QuagliaG. δ13C data of the total water-soluble fraction and triacylglycerols as related indexes for differentiating the geographical origin of saffron (Crocus sativus L.).Food Chem.202031512629210.1016/j.foodchem.2020.126292 32035314
    [Google Scholar]
  249. BolhassaniA. Bioactive components of saffron and their pharmacological properties.Studies in Natural Products Chemistry. RahmanA. Elsevier2018289311
    [Google Scholar]
  250. GhaffariS. RoshanravanN. Saffron; An updated review on biological properties with special focus on cardiovascular effects.Biomed. Pharmacother.2019109212710.1016/j.biopha.2018.10.031 30391705
    [Google Scholar]
  251. HasaniM. MalekahmadiM. RezamandG. EstêvãoM.D. PizarroA.B. HeydariH. HoongW.C. ArafahO.A. BarakehA.R.R. RahmanA. AlrashidiM.S.K. Abu-ZaidA. Effect of saffron supplementation on liver enzymes: A systematic review and meta-analysis of randomized controlled trials.Diabetes Metab. Syndr.202115610231110.1016/j.dsx.2021.102311 34678576
    [Google Scholar]
  252. HashemzaeiM. RezaeeR. NabatzehiM. TsarouhasK. NikolouzakisT. LazopoulosG. SpandidosD. TsatsakisA. ShahrakiJ. Anti hypertensive effect of crocin and hesperidin combination in high fat diet treated rats.Exp. Ther. Med.20201963840384410.3892/etm.2020.8650 32346448
    [Google Scholar]
  253. PlangarA.F. AnaeigoudariA. KhajaviRad, A.; Shafei, M.N. Beneficial cardiovascular effects of hydroalcoholic extract from crocus sativus in hypertension induced by angiotensin II.J. Pharmacopuncture20192229510110.3831/KPI.2019.22.012 31338249
    [Google Scholar]
  254. AnaeigoudariA. FaramarziA. AbbasnezhadA. ShafeiM.N. Effect of intrapertonal injection of crocin on cardiovascular parameters in angiotensin ii- induced hypertensive rats.Horiz. Med. Sci.2018244309315
    [Google Scholar]
  255. HomayouniF. HaidariF. HedayatiM. ZakerkishM. AhmadiK. Blood pressure lowering and anti‐inflammatory effects of hesperidin in type 2 diabetes; a randomized double‐blind controlled clinical trial.Phytother. Res.20183261073107910.1002/ptr.6046 29468764
    [Google Scholar]
  256. MojtahediS. Hooshmand-MoghadamB. RosenkranzS. ShouridehZ. AmirshaghaghiF. ShabkhizF. Improvement of inflammatory status following saffron (Crocus sativus L.) and resistance training in elderly hypertensive men: A randomized controlled trial.Exp. Gerontol.202216211175610.1016/j.exger.2022.111756 35235859
    [Google Scholar]
  257. PourmasoumiM. HadiA. NajafgholizadehA. KafeshaniM. SahebkarA. Clinical evidence on the effects of saffron (Crocus sativus L.) on cardiovascular risk factors: A systematic review meta-analysis.Pharmacol. Res.201913934835910.1016/j.phrs.2018.11.038
    [Google Scholar]
  258. EbrahimiF. AryaeianN. PahlavaniN. AbbasiD. HosseiniA.F. FallahS. MoradiN. HeydariI. The effect of saffron (Crocus sativus L.) supplementation on blood pressure, and renal and liver function in patients with type 2 diabetes mellitus: A double-blinded, randomized clinical trial.Avicenna J. Phytomed.201994322333 31309071
    [Google Scholar]
  259. RajabiA. AkbarnejadA. SiahkouhianM. YariM. Effect of Saffron supplementation and exercise training on blood pressure, pulmonary function and spirometery indicators in obese and overweight women affected by type 2 diabetes.Majallah-i Danishgah-i Ulum-i Pizishki-i Gurgan20192125969
    [Google Scholar]
  260. Hooshmand-MoghadamB. EskandariM. ShabkhizF. MojtahediS. MahmoudiN. Saffron (Crocus sativus L.) in combination with resistance training reduced blood pressure in the elderly hypertensive men: A randomized controlled trial.Br. J. Clin. Pharmacol.20218783255326710.1111/bcp.14746 33496985
    [Google Scholar]
  261. ShahiT. AssadpourE. JafariS.M. Main chemical compounds and pharmacological activities of stigmas and tepals of ‘red gold’; saffron.Trends Food Sci. Technol.201658697810.1016/j.tifs.2016.10.010
    [Google Scholar]
  262. AsbaghiO. SadeghianM. SadeghiO. RigiS. TanS.C. ShokriA. MousaviS.M. Effects of saffron (Crocus sativus L.) supplementation on inflammatory biomarkers: A systematic review and meta‐analysis.Phytother. Res.2021351203210.1002/ptr.6748 32525606
    [Google Scholar]
  263. FangJ. WangZ. WangP. WangM. Extraction, structure and bioactivities of the polysaccharides from Ginkgo biloba: A review.Int. J. Biol. Macromol.20201621897190510.1016/j.ijbiomac.2020.08.141 32827622
    [Google Scholar]
  264. AloufiB.H. AtwanM.A. AlshammariA.M. Treatment of hypertension by using natural herbs and their mechanism of action.J. Biochem. Technol.2022132192810.51847/wx7mN3flrC
    [Google Scholar]
  265. ShareenaG. KumarD. Traversing through half a century research timeline on Ginkgo biloba, in transforming a botanical rarity into an active functional food ingredient.Biomed. Pharmacother.202215311329910.1016/j.biopha.2022.113299 35750010
    [Google Scholar]
  266. LiangH. YuanX. SunC. SunY. YangM. FengS. YaoJ. LiuZ. ZhangG. LiF. Preparation of a new component group of Ginkgo biloba leaves and investigation of the antihypertensive effects in spontaneously hypertensive rats.Biomed. Pharmacother.202214911280510.1016/j.biopha.2022.112805 35276465
    [Google Scholar]
  267. ArunimaC. JuliaJ.J. PrasobhG.R. A review on role of ginkgo biloba in treating alzheimer’s disease.World J. Pharm. Res.2021101048348910.20959/wjpr202110‑21236
    [Google Scholar]
  268. Abdel-ZaherA.O. FarghalyH.S.M. El-RefaiyA.E.M. Abd-EldayemA.M. Protective effect of the standardized leaf extract of Ginkgo biloba (EGb761) against hypertension-induced renal injury in rats.Clin. Exp. Hypertens.201840870371410.1080/10641963.2018.1425421 29351002
    [Google Scholar]
  269. CarrizzoA. MoltedoO. DamatoA. MartinelloK. Di PietroP. OlivetiM. AcerneseF. GiuglianoG. IzzoR. SommellaE. MigliarinoS. PiazzaO. IzzoC. VirtuosoN. StrianeseA. TrimarcoV. CampigliaP. FucileS. PucaA. TrimarcoB. VecchioneC. New nutraceutical combination reduces blood pressure and improves exercise capacity in hypertensive patients via a nitric oxide–dependent mechanism.J. Am. Heart Assoc.202095e01492310.1161/JAHA.119.014923 32078787
    [Google Scholar]
  270. Cui-cuiL. Exploring the potential mechanism of Ginkgo biloba leaves in the treatment of hypertension based on network pharmacology and molecular docking.Nat. Prod. Res. Dev.2021333468478
    [Google Scholar]
  271. ZhaoM. Ginkgo leaf dropping pills combined with antihypertensive drugs in the treatment of essential hypertension: A systemic review and meta-analysis.Chinese J. Evidence-Based Med.201911910913
    [Google Scholar]
  272. MaF.F. WangH. WeiC.K. ThakurK. WeiZ.J. JiangL. Three novel ACE inhibitory peptides isolated from ginkgo biloba seeds: Purification, inhibitory kinetic and mechanism.Front. Pharmacol.20199157910.3389/fphar.2018.01579 30697161
    [Google Scholar]
  273. DiamondB.J. BaileyM.R. Ginkgo biloba.Psychiatr. Clin. North Am.2013361738310.1016/j.psc.2012.12.006 23538078
    [Google Scholar]
  274. RolandP-D.H. NergårdC.S. Ginkgo biloba effect, adverse events and drug interaction.Tidsskr. Nor. Laegeforen.2012132895695910.4045/tidsskr.11.0780
    [Google Scholar]
  275. KizhakekuttuT.J. WidlanskyM.E. Natural antioxidants and hypertension: Promise and challenges.Cardiovasc. Ther.2010284e20e3210.1111/j.1755‑5922.2010.00137.x 20370791
    [Google Scholar]
  276. YuliyanaT. KusnandarK. HanimD. Associations between nutrition knowledge, vitamin C intake, nutritional status, and blood pressure among elderly with hypertension in klaten, central java, Indonesia.Int. J. Integ. Heal. Sci.201861222910.15850/ijihs.v6n1.1114
    [Google Scholar]
  277. LiY. ZafarS. Salih IbrahimR.M. ChiH.L. XiaoT. XiaW. LiH.B. KangY.M. Exercise and food supplement of vitamin C ameliorate hypertension through improvement of gut microflora in the spontaneously hypertensive rats.Life Sci.202126911909710.1016/j.lfs.2021.119097 33482189
    [Google Scholar]
  278. RouhaniM.H. ZiaeiR. AskariG. FoshatiS. ZolfaghariH. ClarkC.C.T. Association between urinary potassium excretion and blood pressure: A systematic review and meta-analysis of observational studies.J. Res. Med. Sci.202025111610.4103/jrms.JRMS_167_20 33912226
    [Google Scholar]
  279. GuanY. DaiP. WangH. WaneD. Effects of vitamin C supplementation on essential hypertension.Medicine 2020998e1927410.1097/MD.0000000000019274 32080138
    [Google Scholar]
  280. AshorA.W. ShannonO.M. WernerA.D. ScialoF. GilliardC.N. CasselK.S. SealC.J. ZhengD. MathersJ.C. SiervoM. Effects of inorganic nitrate and vitamin C co-supplementation on blood pressure and vascular function in younger and older healthy adults: A randomised double-blind crossover trial.Clin. Nutr.202039370871710.1016/j.clnu.2019.03.006 30930132
    [Google Scholar]
  281. BoonthongkaewC. Tong-UnT. KanpettaY. ChaungchotN. LeelayuwatC. LeelayuwatN. Vitamin C supplementation improves blood pressure and oxidative stress after acute exercise in patients with poorly controlled type 2 diabetes mellitus: A randomized, placebo-controlled, cross-over study.Chin. J. Physiol.2021641162310.4103/cjp.cjp_95_20 33642340
    [Google Scholar]
  282. DasU.N. Vitamin C for type 2 diabetes mellitus and hypertension.Arch. Med. Res.2019502111410.1016/j.arcmed.2019.05.004 31349946
    [Google Scholar]
  283. GayenS.K. AbdelrahmanA.A. PrestonI.R. PetitR.D. HillN.S. Vitamin C deficiency-induced pulmonary arterial hypertension.Chest20201572e21e2310.1016/j.chest.2019.06.043 32033656
    [Google Scholar]
  284. RaniL. SharmaN. SinghS. GrewalA.S. Therapeutic potential of vitamin c: An overview of various biological activities.Int. J. Pharmac Qual. Assur.201910460561210.25258/ijpqa.10.4.8
    [Google Scholar]
  285. Office of Dietary Supplements “Vitamin C,” National Institues of Health.2021Available from: https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/
    [Google Scholar]
  286. UrivetzkyM. KessarisD. SmithA.D. Ascorbic acid overdosing: A risk factor for calcium oxalate nephrolithiasis.J. Urol.199214751215121810.1016/S0022‑5347(17)37521‑3 1569652
    [Google Scholar]
  287. Mohd ZaffarinA.S. NgS.F. NgM.H. HassanH. AliasE. Pharmacology and pharmacokinetics of Vitamin E: Nanoformulations to enhance bioavailability.Int. J. Nanomedicine2020159961997410.2147/IJN.S276355 33324057
    [Google Scholar]
  288. RizviS. RazaS.T. AhmedF. AhmadA. AbbasS. MahdiF. The role of vitamin e in human health and some diseases.Sultan Qaboos Univ. Med. J.2014142e157e165 24790736
    [Google Scholar]
  289. ChiuH.F. VenkatakrishnanK. GolovinskaiaO. WangC.K. Impact of micronutrients on hypertension: Evidence from clinical trials with a special focus on meta-analysis.Nutrients202113258810.3390/nu13020588 33578935
    [Google Scholar]
  290. TraberM.G. RichardS.B. “Vitamin E,” in the vitamins: Fundamental aspects in nutrition and health.Elsevier Inc.202011513010.1016/B978‑0‑323‑66162‑1.00007‑X
    [Google Scholar]
  291. RychterA.M. HryhorowiczS. SłomskiR. DobrowolskaA. Krela-KaźmierczakI. Antioxidant effects of vitamin E and risk of cardiovascular disease in women with obesity: A narrative review.Clin. Nutr.20224171557156510.1016/j.clnu.2022.04.032 35667272
    [Google Scholar]
  292. AhmadK.A. YuanYuan. D.; Nawaz, W.; Ze, H.; Zhuo, C.X.; Talal, B.; Taleb, A.; Mais, E.; Qilong, D. Antioxidant therapy for management of oxidative stress induced hypertension.Free Radic. Res.201751442843810.1080/10715762.2017.1322205 28427291
    [Google Scholar]
  293. EmamiM.R. SafabakhshM. AlizadehS. AsbaghiO. KhosroshahiM.Z. Effect of vitamin E supplementation on blood pressure: A systematic review and meta-analysis.J. Hum. Hypertens.201933749950710.1038/s41371‑019‑0192‑0 30846828
    [Google Scholar]
  294. SongY. LiJ. LiuL. XuR. ZhouZ. XuB. LinT. ChenP. LiH. LiY. LiuC. HuangX. WangB. ZhangY. LiJ. HuoY. RenF. XuX. ZhangH. QinX. Plasma Vitamin E and the risk of first stroke in hypertensive patients: A nested case-control study.Front. Nutr.2021873458010.3389/fnut.2021.734580 34805240
    [Google Scholar]
  295. VieiraL.D. FariasJ.S. de QueirozD.B. CabralE.V. Lima-FilhoM.M. Sant’HelenaB.R.M. AiresR.S. RibeiroV.S. Santos-RochaJ. XavierF.E. PaixãoA.D. Oxidative stress induced by prenatal LPS leads to endothelial dysfunction and renal haemodynamic changes through angiotensin II/NADPH oxidase pathway: Prevention by early treatment with α-tocopherol.Biochim. Biophys. Acta Mol. Basis Dis.20181864123577358710.1016/j.bbadis.2018.09.019 30254014
    [Google Scholar]
  296. WangZ. WangC. QiuJ. NiY. ChaiS. ZhouL. LiJ. YanB. YangJ. LiuQ. The association between dietary vitamin c/e and gestational hypertensive disorder: A case-control study.J. Nutr. Sci. Vitaminol. 201864645446510.3177/jnsv.64.454 30606968
    [Google Scholar]
  297. ShanT. WangP. FangF. TangM. Effects of low-dose aspirin combined with vitamin E on the incidence of intrauterine growth restriction and hemorheological indexes of pregnant women in patients with gestational hypertension.Comput. Math. Methods Med.202220221510.1155/2022/6328807 35237342
    [Google Scholar]
  298. SANTHOSHAKUMARI T.; MATHIVANAN, J.; JEYALAKSHMI, J. Role of vitamin C and vitamin E on hypertension.Asian J. Pharm. Clin. Res.2019129959810.22159/ajpcr.2019.v12i9.32634
    [Google Scholar]
  299. ZieglerM. WallertM. LorkowskiS. PeterK. Cardiovascular and metabolic protection by vitamin E: A matter of treatment strategy?Antioxidants202091093510.3390/antiox9100935 33003543
    [Google Scholar]
  300. MellyanaO. WidajatR. SekarwanaN. Combined supplementation with α-tocopherol and vitamin C improves the blood pressure of pediatric idiopathic nephrotic syndrome patients.Clin. Nutr. Exp.2019231611612110.1016/j.yclnex.2017.09.002
    [Google Scholar]
  301. HodgsonJ.M. CroftK.D. WoodmanR.J. PuddeyI.B. BondonnoC.P. WuJ.H.Y. BeilinL.J. LukoshkovaE.V. HeadG.A. WardN.C. Effects of vitamin E, vitamin C and polyphenols on the rate of blood pressure variation: Results of two randomised controlled trials.Br. J. Nutr.201411291551156110.1017/S0007114514002542 25234339
    [Google Scholar]
  302. PlantingaY. GhiadoniL. MagagnaA. GiannarelliC. FranzoniF. TaddeiS. SalvettiA. Supplementation with vitamins C and E improves arterial stiffness and endothelial function in essential hypertensive patients.Am. J. Hypertens.200720439239710.1016/j.amjhyper.2006.09.021 17386345
    [Google Scholar]
  303. Office of Dietary Supplements, “Vitamin E,” National Institues of Health.2021Available from: https://ods.od.nih.gov/factsheets/VitaminE-Consumer/
    [Google Scholar]
  304. FahmyM.I.M. SayedR.H. El-YamanyM.F. El-NaggarR. EliwaA. H. Rosuvastatin and co-enzyme Q10 improve high-fat and high-fructose diet-induced metabolic syndrome in rats via ameliorating inflammatory and oxidative burden.Biomed. Pharmacother.202215311352610.1016/j.biopha.2022.113526 36076607
    [Google Scholar]
  305. ZozinaV.I. CovantevS. GoroshkoO.A. KrasnykhL.M. KukesV.G. Coenzyme Q10 in cardiovascular and metabolic diseases: Current state of the problem.Curr. Cardiol. Rev.201814316417410.2174/1573403X14666180416115428 29663894
    [Google Scholar]
  306. MehrabaniS. AskariG. MiraghajaniM. TavakolyR. ArabA. Effect of coenzyme Q10 supplementation on fatigue: A systematic review of interventional studies.Complement. Ther. Med.20194318118710.1016/j.ctim.2019.01.022 30935528
    [Google Scholar]
  307. ShuklaS. DubeyK.K. CoQ10 a super-vitamin: Review on application and biosynthesis3 Biotech2018824910.1007/s13205‑018‑1271‑6
    [Google Scholar]
  308. CiceroA.F.G. FogacciF. Di MicoliA. VeronesiM. BorghiC. Noninvasive instrumental evaluation of coenzyme Q 10 phytosome on endothelial reactivity in healthy nonsmoking young volunteers: A double‐blind, randomized, placebo‐controlled crossover clinical trial.Biofactors20224851160116510.1002/biof.1839 35342994
    [Google Scholar]
  309. MazzaA. LentiS. SchiavonL. Di GiacomoE. TomasiM. ManuntaR. TorinG. TownsendD.M. RubelloD. Effect of Monacolin K and COQ10 supplementation in hypertensive and hypercholesterolemic subjects with metabolic syndrome.Biomed. Pharmacother.201810599299610.1016/j.biopha.2018.06.076 30021394
    [Google Scholar]
  310. TabriziR. AkbariM. SharifiN. LankaraniK.B. MoosazadehM. KolahdoozF. TaghizadehM. AsemiZ. The effects of coenzyme Q10 supplementation on blood pressures among patients with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials.High Blood Press. Cardiovasc. Prev.2018251415010.1007/s40292‑018‑0247‑2 29330704
    [Google Scholar]
  311. BullarboM. MattsonH. BromanA.K. ÖdmanN. NielsenT.F. Magnesium supplementation and blood pressure in pregnancy: A double-blind randomized multicenter study.J. Pregnancy2018201811010.1155/2018/4843159 30002931
    [Google Scholar]
  312. ZhaoD. Dose-response effect of coenzyme Q10 supplementation on blood pressure among patients with cardiometabolic disorders: A GRADE-assessed systematic review and meta-analysis of randomized controlled trials.Adv. Nutr.20221362180219410.1093/advances/nmac100 36130103
    [Google Scholar]
  313. ChenH.H. YehT.C. ChengP.W. HoW.Y. HoC.Y. LaiC.C. SunG.C. TsengC.J. Antihypertensive potential of coenzyme Q10 via free radical scavenging and enhanced Akt‐nNOS signaling in the nucleus tractus solitarii in rats.Mol. Nutr. Food Res.2019636180104210.1002/mnfr.201801042 30668894
    [Google Scholar]
  314. Gutierrez-MariscalF.M. Arenas-de LarrivaA.P. Limia-PerezL. Romero-CabreraJ.L. Yubero-SerranoE.M. López-MirandaJ. Coenzyme q10 supplementation for the reduction of oxidative stress: Clinical implications in the treatment of chronic diseases.Int. J. Mol. Sci.20202121787010.3390/ijms21217870 33114148
    [Google Scholar]
  315. Rabanal-RuizY. Llanos-GonzálezE. AlcainF.J. The use of coenzyme q10 in cardiovascular diseases.Antioxidants202110575510.3390/antiox10050755 34068578
    [Google Scholar]
  316. ZhangP. YangC. GuoH. WangJ. LinS. LiH. YangY. LingW. Treatment of coenzyme Q10 for 24 weeks improves lipid and glycemic profile in dyslipidemic individuals.J. Clin. Lipidol.2018122417427.e510.1016/j.jacl.2017.12.006 29454678
    [Google Scholar]
  317. Gutierrez-MariscalF.M. de la Cruz-AresS. Torres-PeñaJ.D. Alcalá-DiazJ.F. Yubero-SerranoE.M. López-MirandaJ. Coenzyme Q10 and cardiovascular diseases.Antioxidants202110690610.3390/antiox10060906 34205085
    [Google Scholar]
  318. ZouJ. TianZ. ZhaoY. QiuX. MaoY. LiK. ShiY. ZhaoD. LiangY. JiQ. LingW. YangY. Coenzyme Q10 supplementation improves cholesterol efflux capacity and antiinflammatory properties of high-density lipoprotein in Chinese adults with dyslipidemia.Nutrition202210111170310.1016/j.nut.2022.111703 35700592
    [Google Scholar]
  319. MazzaA. SchiavonL. RigatelliG. TorinG. LentiS. The effects of a new generation of nutraceutical compounds on lipid profile and glycaemia in subjects with pre-hypertension.High Blood Press. Cardiovasc. Prev.201926434535010.1007/s40292‑019‑00332‑6 31352663
    [Google Scholar]
  320. Garrido-MaraverJ. CorderoM.D. Oropesa-ÁvilaM. Fernández VegaA. de la MataM. Delgado PavónA. de MiguelM. Pérez CaleroC. Villanueva PazM. CotánD. Sánchez-AlcázarJ.A. Coenzyme Q<sub>10</sub> Therapy.Mol. Syndromol.201453-418719710.1159/000360101 25126052
    [Google Scholar]
  321. LiK. WangX.F. LiD.Y. ChenY.C. ZhaoL.J. LiuX.G. GuoY.F. ShenJ. LinX. DengJ. ZhouR. DengH.W. The good, the bad, and the ugly of calcium supplementation: A review of calcium intake on human health.Clin. Interv. Aging2018132443245210.2147/CIA.S157523 30568435
    [Google Scholar]
  322. JayediA. ZargarM.S. Dietary calcium intake and hypertension risk: A dose–response meta-analysis of prospective cohort studies.Eur. J. Clin. Nutr.201973796997810.1038/s41430‑018‑0275‑y 30097650
    [Google Scholar]
  323. CormickG. CiapponiA. CafferataM.L. BelizánJ.M. BelizánJ.M. Calcium supplementation for prevention of primary hypertension.Cochrane Libr.201588CD01003710.1002/14651858.CD010037.pub2 34693985
    [Google Scholar]
  324. KhanamF. HossainB. MistryS.K. MitraD.K. RazaW.A. RifatM. AfsanaK. RahmanM. The association between daily 500 mg calcium supplementation and lower pregnancy-induced hypertension risk in Bangladesh.BMC Pregnancy Childbirth201818140610.1186/s12884‑018‑2046‑0 30332997
    [Google Scholar]
  325. HofmeyrG.J. ManyameS. MedleyN. WilliamsM.J. Calcium supplementation commencing before or early in pregnancy, for preventing hypertensive disorders of pregnancy.Cochrane Libr.201920199CD01119210.1002/14651858.CD011192.pub3 31523806
    [Google Scholar]
  326. EhichioyaD.E. AmahG.H. AkamoJ.A. SofolaO.A. Effect of dietary calcium and vitamin D supplementation on blood pressure control following salt loading.Sci. Am.202113e0090310.1016/j.sciaf.2021.e00903
    [Google Scholar]
  327. KunutsorS.K. LaukkanenJ.A. Circulating active serum calcium reduces the risk of hypertension.Eur. J. Prev. Cardiol.201724323924310.1177/2047487316681174 27885057
    [Google Scholar]
  328. GarlandC.J. BagherP. PowellC. YeX. LemmeyH.A.L. BorysovaL. DoraK.A. Voltage-dependent Ca 2+ entry into smooth muscle during contraction promotes endothelium-mediated feedback vasodilation in arterioles.Sci. Signal.201710486eaal380610.1126/scisignal.aal3806 28676489
    [Google Scholar]
  329. JacksonR.D. LaCroixA.Z. GassM. WallaceR.B. RobbinsJ. LewisC.E. BassfordT. BeresfordS.A.A. BlackH.R. BlanchetteP. BondsD.E. BrunnerR.L. BrzyskiR.G. CaanB. CauleyJ.A. ChlebowskiR.T. CummingsS.R. GranekI. HaysJ. HeissG. HendrixS.L. HowardB.V. HsiaJ. HubbellF.A. JohnsonK.C. JuddH. KotchenJ.M. KullerL.H. LangerR.D. LasserN.L. LimacherM.C. LudlamS. MansonJ.E. MargolisK.L. McGowanJ. OckeneJ.K. O’SullivanM.J. PhillipsL. PrenticeR.L. SartoG.E. StefanickM.L. Van HornL. Wactawski-WendeJ. WhitlockE. AndersonG.L. AssafA.R. BaradD. Calcium plus vitamin D supplementation and the risk of fractures.N. Engl. J. Med.2006354766968310.1056/NEJMoa055218 16481635
    [Google Scholar]
  330. WallaceR.B. Wactawski-WendeJ. O’SullivanM.J. LarsonJ.C. CochraneB. GassM. MasakiK. Urinary tract stone occurrence in the Women’s Health Initiative (WHI) randomized clinical trial of calcium and vitamin D supplements.Am. J. Clin. Nutr.201194127027710.3945/ajcn.110.003350 21525191
    [Google Scholar]
  331. PoorolajalJ. ZeraatiF. SoltanianA.R. SheikhV. HooshmandE. MalekiA. Oral potassium supplementation for management of essential hypertension: A meta-analysis of randomized controlled trials.PLoS One2017124e017496710.1371/journal.pone.0174967
    [Google Scholar]
  332. OkudaN. OkayamaA. MiuraK. YoshitaK. MiyagawaN. SaitohS. NakagawaH. SakataK. ChanQ. ElliottP. UeshimaH. StamlerJ. Food sources of dietary potassium in the adult Japanese population: The international study of macro-/micronutrients and blood pressure (INTERMAP).Nutrients202012378710.3390/nu12030787 32192157
    [Google Scholar]
  333. DickinsonH.O. NicolsonD. CampbellF. BeyerF.R. MasonJ. Potassium supplementation for the management of primary hypertension in adults.Cochrane Libr.20063CD00464110.1002/14651858.CD004641.pub2 16856053
    [Google Scholar]
  334. FilippiniT. VioliF. D’AmicoR. VincetiM. The effect of potassium supplementation on blood pressure in hypertensive subjects: A systematic review and meta-analysis.Int. J. Cardiol.201723012713510.1016/j.ijcard.2016.12.048 28024910
    [Google Scholar]
  335. FilippiniT. NaskaA. KasdagliM.I. TorresD. LopesC. CarvalhoC. MoreiraP. MalavoltiM. OrsiniN. WheltonP.K. VincetiM. Potassium intake and blood pressure: A dose-response meta-analysis of randomized controlled trials.J. Am. Heart Assoc.2020912e01571910.1161/JAHA.119.015719 32500831
    [Google Scholar]
  336. BurnierM. Should we eat more potassium to better control blood pressure in hypertension?Nephrol. Dial. Transplant.201934218419310.1093/ndt/gfx340 29301002
    [Google Scholar]
  337. SuX.T. YangC.L. EllisonD.H. Kidney is essential for blood pressure modulation by dietary potassium.Curr. Cardiol. Rep.2020221012410.1007/s11886‑020‑01359‑1 32789612
    [Google Scholar]
  338. Medlineplus, “Potassium,” National Library of Medicine.2015Available from: https://medlineplus.gov/druginfo/meds/a601099.html (accessed Nov. 03, 2022).
  339. SchuttenJ.C. JoostenM.M. de BorstM.H. BakkerS.J.L. Magnesium and blood pressure: A physiology-based approach.Adv. Chronic Kidney Dis.201825324425010.1053/j.ackd.2017.12.003 29793663
    [Google Scholar]
  340. DominguezL.J. VeroneseN. BarbagalloM. Magnesium and hypertension in old age.Nutrients202013113910.3390/nu13010139 33396570
    [Google Scholar]
  341. ZhangX. LiY. Del GobboL.C. RosanoffA. WangJ. ZhangW. SongY. Effects of magnesium supplementation on blood pressure.Hypertension201668232433310.1161/HYPERTENSIONAHA.116.07664 27402922
    [Google Scholar]
  342. Rosique-EstebanN. Guasch-FerréM. Hernández-AlonsoP. Salas-SalvadóJ. Dietary magnesium and cardiovascular disease: A review with emphasis in epidemiological studies.Nutrients201810216810.3390/nu10020168 29389872
    [Google Scholar]
  343. BanjaninN. BelojevicG. Changes of blood pressure and hemodynamic parameters after oral magnesium supplementation in patients with essential hypertension: An intervention study.Nutrients201810558110.3390/nu10050581 29738504
    [Google Scholar]
  344. MarquesB.C.A.A. KleinM.R.S.T. da CunhaM.R. de Souza MattosS. de Paula NogueiraL. de PaulaT. CorrêaF.M. OigmanW. NevesM.F. Effects of oral magnesium supplementation on vascular function: A systematic review and meta-analysis of randomized controlled trials.High Blood Press. Cardiovasc. Prev.2020271192810.1007/s40292‑019‑00355‑z 31845310
    [Google Scholar]
  345. MurphyC. ByrneJ. KeoghJ.B. HeadlandM.L. CliftonP.M. The acute effect of magnesium supplementation on endothelial function: A randomized cross-over pilot study.Int. J. Environ. Res. Public Health20211810530310.3390/ijerph18105303 34067524
    [Google Scholar]
  346. CheungM.M. DallR.D. ShewokisP.A. AltasanA. VolpeS.L. AmoriR. SinghH. SukumarD. The effect of combined magnesium and vitamin D supplementation on vitamin D status, systemic inflammation, and blood pressure: A randomized double-blinded controlled trial.Nutrition202299-10011167410.1016/j.nut.2022.111674 35576873
    [Google Scholar]
  347. RomaniA.M.P. Beneficial role of Mg 2+ in prevention and treatment of hypertension.Int. J. Hypertens.201820181710.1155/2018/9013721 29992053
    [Google Scholar]
  348. KostovK. HalachevaL. Role of magnesium deficiency in promoting atherosclerosis, endothelial dysfunction, and arterial stiffening as risk factors for hypertension.Int. J. Mol. Sci.2018196172410.3390/ijms19061724 29891771
    [Google Scholar]
  349. PatniN. FatimaM. LamisA. SiddiquiS.W. AshokT. MuhammadA. Magnesium and hypertension: Decoding novel anti-hypertensives.Cureus2022146e2583910.7759/cureus.25839 35836446
    [Google Scholar]
  350. Cheteu WaboT.M. WuX. SunC. BoahM. Ngo NkondjockV.R. Kosgey CheruiyotJ. Amporfro AdjeiD. ShahI. Association of dietary calcium, magnesium, sodium, and potassium intake and hypertension: A study on an 8-year dietary intake data from the National Health and Nutrition Examination Survey.Nutr. Res. Pract.2022161749310.4162/nrp.2022.16.1.74 35116129
    [Google Scholar]
  351. KnoxJ. GasterB. Dietary supplements for the prevention and treatment of coronary artery disease.J. Altern. Complement. Med.2007131839610.1089/acm.2006.6206 17309382
    [Google Scholar]
  352. IslamM. MahmudN. NawasT. FangY. XiaW. Health benefits and spray drying microencapsulation process of fish oil (Omega-3).Am. J. Food Sci. Nutr. Res.2018522942Available from: http://www.openscienceonline.com/journal/archive2?journalId=744&paperId=4299
    [Google Scholar]
  353. NestelP.J. Dietary fat and blood pressure.Curr. Hypertens. Rep.20192121710.1007/s11906‑019‑0918‑y 30747320
    [Google Scholar]
  354. InnesJ.K. CalderP.C. Marine omega-3 (N-3) fatty acids for cardiovascular health: An update for 2020.Int. J. Mol. Sci.2020214136210.3390/ijms21041362 32085487
    [Google Scholar]
  355. FilipovicM.G. AeschbacherS. ReinerM.F. StivalaS. GobbatoS. BonettiN. RischM. RischL. CamiciG.G. LuescherT.F. von SchackyC. ConenD. BeerJ.H. Whole blood omega-3 fatty acid concentrations are inversely associated with blood pressure in young, healthy adults.J. Hypertens.20183671548155410.1097/HJH.0000000000001728 29570511
    [Google Scholar]
  356. ChoutheR.S. ShelkeS.D. KshirsagarR.P. Effect of omega-3 fatty acids enriched fish oil on dexamethasone induced insulin resistance and hypertension in rats.Ind. Res. J. Pharmac. Sci.2019611796180310.21276/irjps.2019.6.1.5
    [Google Scholar]
  357. ChuZ. WeiY. HaoY. WangJ. HuangF. HouM. Clinical effectiveness of fish oil on arterial stiffness: A systematic review and meta-analysis of randomized controlled trials.Nutr. Metab. Cardiovasc. Dis.20213151339134810.1016/j.numecd.2020.12.033 33741211
    [Google Scholar]
  358. JacaA. DurãoS. HarbronJ. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease.S. Afr. Med. J.2020110121158115910.7196/SAMJ.2020.v110i12.14730 33403957
    [Google Scholar]
  359. ClarkC.M. MonahanK.D. DrewR.C. Omega-3 polyunsaturated fatty acid supplementation reduces blood pressure but not renal vasoconstrictor response to orthostatic stress in healthy older adults.Physiol. Rep.201868e1367410.14814/phy2.13674 29673104
    [Google Scholar]
  360. BerceaC.I. CottrellG.S. TamagniniF. McNeishA.J. Omega‐3 polyunsaturated fatty acids and hypertension: A review of vasodilatory mechanisms of docosahexaenoic acid and eicosapentaenoic acid.Br. J. Pharmacol.2021178486087710.1111/bph.15336 33283269
    [Google Scholar]
  361. TaoL.Y. WangY.R. ZhangY.F. LiuP. ChenX.H. Does omega-3 lower blood pressure?Medicine 20209935e2195510.1097/MD.0000000000021955 32871944
    [Google Scholar]
  362. GuoX. LiK. LiJ. LiD. Effects of EPA and DHA on blood pressure and inflammatory factors: A meta-analysis of randomized controlled trials.Crit. Rev. Food Sci. Nutr.201959203380339310.1080/10408398.2018.1492901 29993265
    [Google Scholar]
  363. YangB. ShiL. WangA. ShiM. LiZ. ZhaoF. GuoX. LiD. Lowering effects of n-3 fatty acid supplements on blood pressure by reducing plasma angiotensin II in inner mongolia hypertensive patients: A double-blind randomized controlled trial.J. Agric. Food Chem.201967118419210.1021/acs.jafc.8b05463 30511840
    [Google Scholar]
  364. YangB. RenX. LiZ. ShiM. DingF. SuK.P. GuoX. LiD. Lowering effects of fish oil supplementation on proinflammatory markers in hypertension: Results from a randomized controlled trial.Food Funct.20201121779178910.1039/C9FO03085A 32044905
    [Google Scholar]
  365. SidiarthaI.G.L. VedaswariP.D. SuryawanI.W.B. Fish oil capsule supplementation in children with obesity reduced c-reactive protein and improved blood pressure.Malays. J. Nutr.202026345346010.31246/mjn‑2019‑0132
    [Google Scholar]
  366. LeeS.R. JoE. KhamouiA.V. Chronic fish oil consumption with resistance older adults.Sports 2019716710.3390/sports7070167 31323951
    [Google Scholar]
  367. ZhangX. RitonjaJ.A. ZhouN. ChenB.E. LiX. Omega‐3 polyunsaturated fatty acids intake and blood pressure: a dose‐response meta‐analysis of randomized controlled trials.J. Am. Heart Assoc.20221111e02507110.1161/JAHA.121.025071 35647665
    [Google Scholar]
  368. MaM. YangF. WangZ. BaoQ. ShenJ. XieX. Association of plasma polyunsaturated fatty acids with arterial blood pressure.Medicine 20211003e2435910.1097/MD.0000000000024359 33546071
    [Google Scholar]
  369. WangH. LiQ. ZhuY. ZhangX. Omega-3 polyunsaturated fatty acids: Versatile roles in blood pressure regulation.Antioxid. Redox Signal.2021341080081010.1089/ars.2020.8108 32349540
    [Google Scholar]
  370. BorghiC. FogacciF. AgnolettiD. CiceroA.F.G. Hypertension and dyslipidemia combined therapeutic approaches.High Blood Press. Cardiovasc. Prev.202229322123010.1007/s40292‑022‑00507‑8 35334087
    [Google Scholar]
  371. NiaziZ.R. SilvaG.C. RibeiroT.P. León-GonzálezA.J. KassemM. MirajkarA. AlviA. AbbasM. ZgheelF. Schini-KerthV.B. AugerC. EPA:DHA 6:1 prevents angiotensin II-induced hypertension and endothelial dysfunction in rats: role of NADPH oxidase- and COX-derived oxidative stress.Hypertens. Res.2017401296697510.1038/hr.2017.72 28878301
    [Google Scholar]
  372. SunQ. WuY. ZhaoF. WangJ. Maresin 1 ameliorates lung ischemia/reperfusion injury by suppressing oxidative stress via activation of the Nrf-2-mediated HO-1 signaling pathway.Oxid. Med. Cell. Longev.2017201711210.1155/2017/9634803 28751936
    [Google Scholar]
  373. KrupaK. FritzK. ParmarM. Omega-3 Fatty Acids. . StatPearls; StatPearls Publishing: Treasure Island, FL2022Available from: https://www.ncbi.nlm.nih.gov/books/NBK564314/
    [Google Scholar]
  374. ManB. CuiC. ZhangX. SugiyamaD. Barinas-MitchellE. SekikawaA. The effect of soy isoflavones on arterial stiffness: A systematic review and meta-analysis of randomized controlled trials.Eur. J. Nutr.202160260361410.1007/s00394‑020‑02300‑6 32529287
    [Google Scholar]
  375. LiT. ZhangX. RenY. ZengY. HuangQ. WangC. Antihypertensive effect of soybean bioactive peptides: A review.Curr. Opin. Pharmacol.202262748110.1016/j.coph.2021.11.005
    [Google Scholar]
  376. WangX. WangY. XuW. LanL. LiY. WangL. SunX. YangC. JiangY. FengR. Dietary isoflavones intake is inversely associated with non-alcoholic fatty liver disease, hyperlipidaemia and hypertension.Int. J. Food Sci. Nutr.2022731607010.1080/09637486.2021.1910630 33899670
    [Google Scholar]
  377. SilvaH. The vascular effects of isolated isoflavones: A focus on the determinants of blood pressure regulation.Biology 20211014910.3390/biology10010049 33445531
    [Google Scholar]
  378. MaalikiD. ShaitoA.A. PintusG. El-YazbiA. EidA.H. Flavonoids in hypertension: A brief review of the underlying mechanisms.Curr. Opin. Pharmacol.201945576510.1016/j.coph.2019.04.014 31102958
    [Google Scholar]
  379. Malek RivanN.F. ShaharS. HaronH. AmbakR. OthmanF. Association between intake of soy isoflavones and blood pressure among urban and rural Malaysian adults.Malays. J. Nutr.2018243381393
    [Google Scholar]
  380. MovahedianM. TabibiH. AtabakS. HedayatiM. RahmaniL. YariZ. Effects of soy isoflavones on glycemic parameters and blood pressure in peritoneal dialysis patients: A randomized, double blind, placebo-controlled trial.Iran. J. Kidney Dis.202112134142 33764324
    [Google Scholar]
  381. DechichiJ.G.C. Isoflavone supplementation does not potentiate the effect of combined exercise training on resting and ambulatory blood pressure in non-obese.Nutrients202012349510.3390/nu12113495 33203003
    [Google Scholar]
  382. LuL.J.W. ChenN.W. NayeemF. NagamaniM. AndersonK.E. Soy isoflavones interact with calcium and contribute to blood pressure homeostasis in women: A randomized, double-blind, placebo controlled trial.Eur. J. Nutr.20205962369238110.1007/s00394‑019‑02085‑3 31535213
    [Google Scholar]
  383. ShahR.D. TangZ.Z. ChenG. HuangS. FergusonJ.F. Soy food intake associates with changes in the metabolome and reduced blood pressure in a gut microbiota dependent manner.Nutr. Metab. Cardiovasc. Dis.20203091500151110.1016/j.numecd.2020.05.001 32620337
    [Google Scholar]
  384. SteinbergF.M. MurrayM.J. LewisR.D. CramerM.A. AmatoP. YoungR.L. BarnesS. KonzelmannK.L. FischerJ.G. EllisK.J. ShypailoR.J. FraleyJ.K. SmithE.O.B. WongW.W. Clinical outcomes of a 2-y soy isoflavone supplementation in menopausal women.Am. J. Clin. Nutr.201193235636710.3945/ajcn.110.008359 21177797
    [Google Scholar]
  385. YuJ. BiX. YuB. ChenD. Isoflavones: Anti-inflammatory benefit and possible caveats.Nutrients20168636110.3390/nu8060361 27294954
    [Google Scholar]
  386. SzefelJ. DanielakA. KruszewskiW.J. Metabolic pathways of L-arginine and therapeutic consequences in tumors.Adv. Med. Sci.201964110411010.1016/j.advms.2018.08.018 30605863
    [Google Scholar]
  387. ShirasebF. AsbaghiO. BagheriR. WongA. FigueroaA. MirzaeiK. Effect of l-arginine supplementation on blood pressure in adults: A systematic review and dose–response meta-analysis of randomized clinical trials.Adv. Nutr.20221341226124210.1093/advances/nmab155 34967840
    [Google Scholar]
  388. GambardellaJ. KhondkarW. MorelliM.B. WangX. SantulliG. TrimarcoV. Arginine and endothelial function.Biomedicines20208827710.3390/biomedicines8080277 32781796
    [Google Scholar]
  389. RashidJ. KumarS.S. JobK.M. LiuX. FikeC.D. SherwinC.M.T. Therapeutic potential of citrulline as an arginine supplement: A clinical pharmacology review.Paediatr. Drugs202022327929310.1007/s40272‑020‑00384‑5 32140997
    [Google Scholar]
  390. GrandvuilleminI. BuffatC. BoubredF. LamyE. FromonotJ. CharpiotP. SimonciniS. SabatierF. Dignat-GeorgeF. PeyterA.C. SimeoniU. YzydorczykC. Arginase upregulation and eNOS uncoupling contribute to impaired endothelium-dependent vasodilation in a rat model of intrauterine growth restriction.Am. J. Physiol. Regul. Integr. Comp. Physiol.20183153R509R52010.1152/ajpregu.00354.2017 29741931
    [Google Scholar]
  391. KuczeriszkaM. WalkowskaA. OlszynskiK.H. RafalowskaJ. SadowskiJ. Kompanowska-JezierskaE. Arginine and tetrahydrobiopterin supplementation in rats with salt-induced blood pressure increase: minor hypotensive effect but improvement of renal haemodynamics.J. Physiol. Pharmacol.201970221922710.26402/jpp.2019.2.05 31356183
    [Google Scholar]
  392. OludareG.O. JinaduH.D. AroO.O. L-arginine attenuates blood pressure and reverses the suppression of angiogenic risk factors in a rat model of preeclampsia.Pathophysiology201825438939510.1016/j.pathophys.2018.08.001 30119970
    [Google Scholar]
  393. ArikaweA. OlusanyaA. UdenzeI. AkinnibosunO. AdejareA. OlumideO. Olatunji-BelloI. Anselmo-FranciJ. L-arginine supplementation reduces blood pressure and plasma lipid levels in an animal model of perimenopause induced by 4-Vinylcyclohexene diepoxide.Bull. Egypt.Soc. Physiol. Sci.201939111812810.21608/besps.2019.6288.1008
    [Google Scholar]
  394. ArikaweA.P. UdenzeI.C. OlusanyaA.W. AkinnibosunO.A. DikeI. DuruB.N. L-arginine supplementation lowers blood pressure, protein excretion and plasma lipid profile in experimental salt-induced hypertension in pregnancy: Relevance to preeclampsia.Pathophysiology2019263-419119710.1016/j.pathophys.2019.02.002 30797659
    [Google Scholar]
  395. OyagbemiA.A. L-arginine supplementation protections sodium fluoride-induced nephrotoxicity and hypertension by suppressing mineralocorticoid receptor and angiotensin converting enzyme activity.Res. Sq.202112510.21203/rs.3.rs‑1016429/v1
    [Google Scholar]
  396. AdejareA. OloyoA. AnigboguC. JajaS. l-arginine supplementation increased only endothelium-dependent relaxation in sprague-dawley rats fed a high-salt diet by enhancing abdominal aorta endothelial nitric oxide synthase gene expression.Clin. Med. Insights Cardiol.20201410.1177/1179546820902843 32063725
    [Google Scholar]
  397. WeckmanA.M. McDonaldC.R. BaxterJ.A.B. FawziW.W. ConroyA.L. KainK.C. Perspective: L-arginine and L-citrulline supplementation in pregnancy: A potential strategy to improve birth outcomes in low-resource settings.Adv. Nutr.201910576577710.1093/advances/nmz015 31075164
    [Google Scholar]
  398. MonariF. MenichiniD. PignattiL. BasileL. FacchinettiF. NeriI. Effect of L-arginine supplementation in pregnant women with chronic hypertension and previous placenta vascular disorders receiving Aspirin prophylaxis: A randomized control trial.Minerva Obstet. Gynecol.202173678278910.23736/S2724‑606X.21.04827‑2 33978350
    [Google Scholar]
  399. BordbarazariB. GholamiM. EbrahimK. NatanziH.A. GhazalianF. The effect of endurance training along with L-arginine supplementation on the levels of MMP-2 and MMP-9 in postmenopausal hypertensive women.J. Basic Res. Med. Sci.201964202810.23736/S2724‑606X.21.04827‑2
    [Google Scholar]
  400. CasonattoJ. ZagoD.M. EnokidaD.M. GrandolfiK. AguiarA.F. L-arginine supplementation improves post-exercise hypotension in elderly women.Rev. Bras. Med. Esporte201925433333710.1590/1517‑869220192504182865
    [Google Scholar]
  401. MenzelD. HallerH. WilhelmM. RobenekH. l-Arginine and B vitamins improve endothelial function in subjects with mild to moderate blood pressure elevation.Eur. J. Nutr.201857255756810.1007/s00394‑016‑1342‑6 27817128
    [Google Scholar]
  402. Alves PortoA. Almeida GonzagaL. BenjamimC.J.R. GarnerD.M. AdamiF. ValentiV.E. Effect of oral l-arginine supplementation on post-exercise blood pressure in hypertensive adults: A systematic review with meta-analysis of randomized double-blind, placebo-controlled studies.Sci. Sports202237755256110.1016/j.scispo.2021.04.003
    [Google Scholar]
  403. BahramiD. Mozaffari-KhosraviH. The effect of Oral L-arginine supplementation on blood pressure in patients with metabolic syndrome : A randomized clinical trial Nutr. food Secur.201811727Available from: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01659505/full
    [Google Scholar]
  404. TemiyeE.O. EimunjezeO.P. OgungbemiS.I. JajaS.I. Blood pressure, hematologic and biochemical changes following L-arginine supplementation in children with sickle cell anaemia already on hydroxyurea therapy.Niger. J. Physiol. Sci.2020352131134 34009196
    [Google Scholar]
  405. OnaloR. CilliersA. CooperP. Impact of oral L-arginine supplementation on blood pressure dynamics in children with severe sickle cell vaso-occlusive crisis.Am. J. Cardiovasc. Dis.2021111136147 33815929
    [Google Scholar]
  406. McNealC.J. MeiningerC.J. WilbornC.D. TekweC.D. WuG. Safety of dietary supplementation with arginine in adult humans.Amino Acids20185091215122910.1007/s00726‑018‑2594‑7 29858688
    [Google Scholar]
  407. KhalafD. KrügerM. WehlandM. InfangerM. GrimmD. The effects of oral l-arginine and l-citrulline supplementation on blood pressure.Nutrients2019117167910.3390/nu11071679 31336573
    [Google Scholar]
  408. DixonA. RobertsonK. YungA. QueM. RandallH. WellalagodageD. CoxT. RobertsonD. ChiC. SunJ. Efficacy of probiotics in patients of cardiovascular disease risk: A systematic review and meta-analysis.Curr. Hypertens. Rep.20202297410.1007/s11906‑020‑01080‑y 32860083
    [Google Scholar]
  409. de Brito AlvesJ.L. de SousaV.P. Cavalcanti NetoM.P. MagnaniM. BragaV.A. Costa-SilvaJ.H. LeandroC.G. VidalH. PirolaL. New insights on the use of dietary polyphenols or probiotics for the management of arterial hypertension.Front. Physiol.2016744810.3389/fphys.2016.00448 27766081
    [Google Scholar]
  410. JoseP.A. RajD. Gut microbiota in hypertension.Curr. Opin. Nephrol. Hypertens.201524540340910.1097/MNH.0000000000000149 26125644
    [Google Scholar]
  411. MellB. JalaV.R. MathewA.V. ByunJ. WaghuldeH. ZhangY. HaribabuB. Vijay-KumarM. PennathurS. JoeB. Evidence for a link between gut microbiota and hypertension in the Dahl rat.Physiol. Genomics201547618719710.1152/physiolgenomics.00136.2014 25829393
    [Google Scholar]
  412. EttingerG. MacDonaldK. ReidG. BurtonJ.P. The influence of the human microbiome and probiotics on cardiovascular health.Gut Microbes20145671972810.4161/19490976.2014.983775 25529048
    [Google Scholar]
  413. Robles-VeraI. ToralM. de la VisitaciónN. SánchezM. Gómez-GuzmánM. RomeroM. YangT. Izquierdo-GarciaJ.L. JiménezR. Ruiz-CabelloJ. Guerra-HernándezE. RaizadaM.K. Pérez-VizcaínoF. DuarteJ. Probiotics prevent dysbiosis and the rise in blood pressure in genetic hypertension: Role of short‐chain fatty acids.Mol. Nutr. Food Res.2020646190061610.1002/mnfr.201900616 31953983
    [Google Scholar]
  414. QiD. NieX.L. ZhangJ.J. The effect of probiotics supplementation on blood pressure: A systemic review and meta-analysis.Lipids Health Dis.20201917910.1186/s12944‑020‑01259‑x 32334580
    [Google Scholar]
  415. Lewis-MikhaelA.M. DavoodvandiA. JafarnejadS. Effect of Lactobacillusplantarum containing probiotics on blood pressure: A systematic review and meta-analysis.Pharmacol. Res.202015310466310.1016/j.phrs.2020.104663 31987993
    [Google Scholar]
  416. MählerA. WilckN. RauchG. DechendR. MüllerD.N. Effect of a probiotic on blood pressure in grade 1 hypertension (HYPRO): Protocol of a randomized controlled study.Trials2020211103210.1186/s13063‑020‑04973‑0 33375942
    [Google Scholar]
  417. LiangT. WuL. XiY. LiY. XieX. FanC. YangL. YangS. ChenX. ZhangJ. WuQ. Probiotics supplementation improves hyperglycemia, hypercholesterolemia, and hypertension in type 2 diabetes mellitus: An update of meta-analysis.Crit. Rev. Food Sci. Nutr.202161101670168810.1080/10408398.2020.1764488 32436397
    [Google Scholar]
  418. HendijaniF. AkbariV. Probiotic supplementation for management of cardiovascular risk factors in adults with type II diabetes: A systematic review and meta-analysis.Clin. Nutr.201837253254110.1016/j.clnu.2017.02.015 28318686
    [Google Scholar]
  419. EjtahedH.S. ArdeshirlarijaniE. Tabatabaei-MalazyO. Hoseini-TavassolZ. Hasani-RanjbarS. SoroushA.R. LarijaniB. Effect of probiotic foods and supplements on blood pressure: A systematic review of meta-analyses studies of controlled trials.J. Diabetes Metab. Disord.202019161762310.1007/s40200‑020‑00525‑0 32550214
    [Google Scholar]
  420. ChiC. LiC. WuD. BuysN. WangW. FanH. SunJ. Effects of probiotics on patients with hypertension: A systematic review and meta-analysis.Curr. Hypertens. Rep.20202253310.1007/s11906‑020‑01041‑5 32200440
    [Google Scholar]
  421. ZarezadehM. MusazadehV. GhalichiF. KavyaniZ. NaserniaR. ParangM. JamilianP. JamilianP. FakhrL. OstadrahimiA. MekaryR.A. Effects of probiotics supplementation on blood pressure: An umbrella meta-analysis of randomized controlled trials.Nutr. Metab. Cardiovasc. Dis.202333227528610.1016/j.numecd.2022.09.005 36599781
    [Google Scholar]
  422. DoronS. SnydmanD.R. Risk and safety of probiotics.Clin. Infect. Dis.,201560Suppl 2)(2S129S13410.1093/cid/civ08525922398
    [Google Scholar]
  423. Wan ZairullahW.N.A.A. FauziN.Y.M. JofrryS.M. FahrniM.L. MingL.C. ChooC.Y. Herbs used for the management of hypertension: A systematic review.Curr. Tradit. Med.2024103e17042321588810.2174/2215083810666230417095441
    [Google Scholar]
  424. GerbinoA. CarmosinoM. Methods for studying the activity of natural extracts on renal transporters i̇nvolved in the regulation of blood pressure. In: Methods for Preclinical Evaluation of Bioactive Natural Products; Bentham science publishers,202322924410.2174/9789815123043123010010
    [Google Scholar]
  425. MauryaR. BoiniT. MisroL. RadhakrishnanT. SinghR. Review on pharmacognostic, phytochemical and pharmacological characteristics of medicinal plants which can be used to design a novel ayurvedic formulation to treat hypertension in multidimensional approaches.Curr. Hypertens. Rev.2023192677810.2174/1573402119666230221084859 36809945
    [Google Scholar]
  426. ZarougE.E.H. AlbashirT.O.A. ArbabA.H. MudawiM.M.E. Updates on the interactions of herbs constituents with cytochrome p450 drug metabolizing enzymes.Curr. Enzym. Inhib.202319316717810.2174/1573408019666230601121657
    [Google Scholar]
  427. RahmatikaH. LestariS.R. SariM.S. Single garlic extract potential in lowering blood pressure of high fat diet (HFD) mice. AIP Conf. Proc.,20232634102011610.1063/5.0111557
    [Google Scholar]
  428. DelgodaR. WestlakeA.C.G. Herbal interactions involving cytochrome p450 enzymes: A mini review.Toxicol. Rev.200423423924910.2165/00139709‑200423040‑00004 15898829
    [Google Scholar]
  429. MansoorG. Herbs and alternative therapies in the hypertension clinic.Am. J. Hypertens.200114997197510.1016/S0895‑7061(01)02172‑0 11587167
    [Google Scholar]
  430. KumariL. ChoudhariY. PatelP. GuptaG.D. SinghD. RosenholmJ.M. BansalK.K. KurmiB.D. Advancement in solubilization approaches: A step towards bioavailability enhancement of poorly soluble drugs.Life2023135109910.3390/life13051099 37240744
    [Google Scholar]
  431. BhardwajK. SharmaA. KumarR. TyagiV. KumarR. Improving oral bioavailability of herbal drugs: A focused review of self-emulsifying drug delivery system for colon cancer.Curr. Drug Deliv.202421338940210.2174/1567201820666230505113108 37151062
    [Google Scholar]
  432. MohapatraD. AgrawalA.K. SahuA.N. Exploring the potential of solid dispersion for improving solubility, dissolution & bioavailability of herbal extracts, enriched fractions, and bioactives.J. Microencapsul.2021387-859461210.1080/02652048.2021.1963342 34338596
    [Google Scholar]
  433. Ahmad DarR. ShahnawazM. Ahmad AhangerM. Exploring the diverse bioactive compounds from medicinal plants: A review.J. Phytopharm.202312318919510.31254/phyto.2023.12307
    [Google Scholar]
  434. BurdejovaL. TobolkovaB. PolovkaM. NeugebauerovaJ. Differentiation of medicinal plants according to solvents, processing, origin, and season by means of multivariate analysis of spectroscopic and liquid chromatography data.Molecules20232810407510.3390/molecules28104075 37241816
    [Google Scholar]
  435. DasguptaS.C. Bioactive compounds from medicinal plants and its therapeutic uses in the traditional healthcare system.Medicinal plants: Biodiversity, Biotechnology and conservation.SingaporeSpringer202352553710.1007/978‑981‑19‑9936‑9_19
    [Google Scholar]
  436. KarioK. HaradaN. OkuraA. Digital therapeutics in hypertension: Evidence and perspectives.Hypertension202279102148215810.1161/HYPERTENSIONAHA.122.19414 35726619
    [Google Scholar]
  437. Salinas-ArellanoE.D. Castro-DionicioI.Y. JeyarajJ.G. Mirtallo EzzoneN.P. Carcache de BlancoE.J. Phytochemical profiles and biological studies of selected botanical dietary supplements used in the united states BT: Progress in the Chemistry of Organic Natural Products 122: Botanical Dietary Supplements and Herbal Medicines.Progress in the Chemistry of Organic Natural Products. KinghornA.D. FalkH. GibbonsS. AsakawaY. LiuJ-K. DirschV.M. ChamSpringer Nature Switzerland2023116210.1007/978‑3‑031‑26768‑0_1
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808297606240628065101
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test