Skip to content
2000
Volume 21, Issue 17
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

In the field of pharmaceutical chemistry, the anti-cancer activity of such compounds received great attention. For both medicinal and industrial studies. Xanthene derivatives are important class of compounds that have had many applications and this enhanced their uses in recent years. Xanthene and its derivatives are extensively used scaffolds in drug designing and the development of novel anti-cancer agents due to their large pharmaceutical applications.

Objective

The 3,3-dimethyl-2,3-dihydro-1-xanthen-1-one was used to synthesise anti-cancer agents of fused pyran, pyridine, pyridazine, and thiophene derivatives. As the potentially privileged scaffolds, xanthene-fused bicyclic heterocycles may be used to discover new drugs with similar biological targets and improved therapeutic efficacy.

Methods

The key starting compound the 3,3-dimethyl-2,3-dihydro-1-xanthen-1-one that was used in many heterocyclization reactions through its reactions with different reagents like aryldiazonium salts, reaction with S and producing fused tetracyclic compounds.

Results

Through this work, new compounds were synthesized, characterized, and evaluated toward the six cancer cell lines, namely A549, HT-29, MKN-45, U87MG, and SMMC-7721 and H460. The inhibitions on tyrosine kinases c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR for selected compounds were studied and the results were supplied by studying the mechanism of action toward EGFR. Furthermore, the morphological changes of selected cell lines by the effect of compounds and were studied.

Conclusion

We focused our attention on the synthesis of heterocyclic compounds based on xanthene moiety. After a detailed optimization study, many of the synthesized compounds can be considered anticancer agents, enhancing further studies.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808299889240722114041
2024-07-31
2025-06-29
Loading full text...

Full text loading...

References

  1. MahmoudN.F.H. El-SewedyA. Facile synthesis of novel heterocyclic compounds based on pyridine moiety with pharmaceutical activities.J. Heterocycl. Chem.20205741559157210.1002/jhet.3881
    [Google Scholar]
  2. LimS.J. FoxP. Effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds using a modified QSAR model.Sci. Total Environ.2014470-47134835510.1016/j.scitotenv.2013.09.089 24144939
    [Google Scholar]
  3. SrivastavaV. SinghP.K. TivariS. SinghP.P. Visible light photocatalysis in the synthesis of pharmaceutically relevant heterocyclic scaffolds.Org. Chem. Front.2022951485150710.1039/D1QO01602D
    [Google Scholar]
  4. KabirE. UzzamanM. A review on biological and medicinal impact of heterocyclic compounds.Results Chem.2022410060610.1016/j.rechem.2022.100606
    [Google Scholar]
  5. SallamE.R. AboulnagaS.F. SamyA.M. BeltagyD.M. DesoukyJ.M.E. Abdel-HamidH. FetouhH.A. Synthesis, characterization of new heterocyclic compound: pyrazolyl hydrazino quinoxaline derivative: 3-[5-(hydroxy1methyl)-1-phenylpyrazol-3-yl]-2-[2, 4, 5-trimethoxybenzylidine] hydrazonyl-quinoxaline of potent antimicrobial, antioxidant, antiviral, and antitumor activity.J. Mol. Struct.2023127113398310.1016/j.molstruc.2022.133983
    [Google Scholar]
  6. BanerjeeA.G. KothapalliL.P. SharmaP.A. ThomasA.B. NandaR.K. ShrivastavaS.K. KhatanglekarV.V. A facile microwave assisted one pot synthesis of novel xanthene derivatives as potential anti-inflammatory and analgesic agents.Arab. J. Chem.20169S480S48910.1016/j.arabjc.2011.06.001
    [Google Scholar]
  7. Srinivas Lavanya KumarM. SinghJ. MannaS.K. MajiS. KonwarR. PandaG. Diversity oriented synthesis of chromene-xanthene hybrids as anti-breast cancer agents.Bioorg. Med. Chem. Lett.201828477878210.1016/j.bmcl.2017.12.065 29352645
    [Google Scholar]
  8. KhakiD. NamaziH. AmininasabS.M. Synthesis and identification of new thermostable polyamides containing xanthene units with antibacterial properties and relevant composite grafted with modified GO nanoparticles.React. Funct. Polym.202115810478010.1016/j.reactfunctpolym.2020.104780
    [Google Scholar]
  9. KusampallyU. PagadalaR. KamatalaC.R. Metal free Lewis acid promoted one-pot synthesis of 14-aryl-14H dibenzo [a,j] xanthenes and their simple biological evolution.Tetrahedron Lett.201758333316331810.1016/j.tetlet.2017.07.037
    [Google Scholar]
  10. AlmalkiF.A. An overview of structure-based activity outcomes of pyran derivatives against Alzheimer’s disease.Saudi Pharm. J.2023316998101810.1016/j.jsps.2023.04.030 37234350
    [Google Scholar]
  11. ZhangC. WuJ. LiuW. ZhangW. LeeC.S. WangP. NIR-II xanthene dyes with structure-inherent bacterial targeting for efficient photothermal and broad-spectrum antibacterial therapy.Acta Biomater.202315924725810.1016/j.actbio.2023.01.031 36724864
    [Google Scholar]
  12. MaiaM. ResendeD.I.S.P. DurãesF. PintoM.M.M. SousaE. Xanthenes in medicinal chemistry: Synthetic strategies and biological activities.Eur. J. Med. Chem.202121011308510.1016/j.ejmech.2020.113085 33310284
    [Google Scholar]
  13. AbdolmohammadiS. HossainiZ. AziziZ. Green synthesis of new xanthene-based azo dyes using CuI-graphene nanocomposite and evaluation of their antioxidant and antimicrobial activities.Polycycl. Aromat. Compd.20244442257226910.1080/10406638.2023.2214664
    [Google Scholar]
  14. GuoX. WeiX.R. SunR. XuY.J. ChenY. GeJ.F. The optical properties of 9-amino-9H-xanthene derivatives in different pH and their application for biomarkers in lysosome and mitochondria.Sens. Actuators B Chem.201929612662110.1016/j.snb.2019.05.098
    [Google Scholar]
  15. GerstmeierJ. KretzerC. Di MiccoS. MiekL. ButschekH. CantoneV. BilanciaR. RizzaR. TroisiF. CardulloN. TringaliC. IalentiA. RossiA. BifulcoG. WerzO. PaceS. Novel benzoxanthene lignans that favorably modulate lipid mediator biosynthesis: A promising pharmacological strategy for anti-inflammatory therapy.Biochem. Pharmacol.201916526327410.1016/j.bcp.2019.03.003 30836057
    [Google Scholar]
  16. MennanaI. NemouchiS. SehoutI. KridA. BoulcinaR. MechoucheM.S. DebacheA. Synthesis, Characterization, in silico molecular docking and antibacterial properties of some tetrahydrobenzo[a]xanthene-11-ones.Org. Prep. Proced. Int.202411310.1080/00304948.2024.2327227
    [Google Scholar]
  17. ThankarajanE. WalunjD. BazylevichA. PrasadC. HesinA. PatsenkerL. GellermanG. A novel, dual action chimera comprising DNA methylating agent and near-IR xanthene-cyanine photosensitizer for combined anticancer therapy.Photodiagn. Photodyn. Ther.20223710272210.1016/j.pdpdt.2022.102722 35032703
    [Google Scholar]
  18. KaramanO. AlkanG.A. KizilenisC. AkgulC.C. GunbasG. Xanthene dyes for cancer imaging and treatment: A material odyssey.Coord. Chem. Rev.202347521484110.1016/j.ccr.2022.214841
    [Google Scholar]
  19. Espinar-BarrancoL. Luque-NavarroP. StrnadM.A. Herrero-FoncubiertaP. CrovettoL. MiguelD. GironM.D. OrteA. CuervaJ.M. SaltoR. Alvarez-PezJ.M. ParedesJ.M. A solvatofluorochromic silicon-substituted xanthene dye useful in bioimaging.Dyes Pigments201916826427210.1016/j.dyepig.2019.04.024
    [Google Scholar]
  20. MroßG. ReinkeH. FischerC. LangerP. Synthesis of functionalized 2-alkoxybenzoates, 2-aryloxybenzoates and xanthones based on formal [3+3] cyclocondensations of 3-alkoxy- and 3-aryloxy-1-silyloxy-1,3-butadienes with 3-silyloxy-2-en-1-ones.Tetrahedron200965193910391710.1016/j.tet.2009.02.052
    [Google Scholar]
  21. AnnaC.Z. ChenZ. QiaoH. GaoJ. ZhuM. LiC. Synthesis of xanthones from 4-(2-phenoxyphenyl)-1-tosyl-1H-1,2,3-triazole via rhodium-catalyzed annulation/oxidation.Catal. Commun.202116110636010.1016/j.catcom.2021.106360
    [Google Scholar]
  22. SahooS.R. SinghV.K. Brønsted acid catalyzed friedel–crafts alkylation of naphthols with in situ generated naphthol-derived ortho -quinone methides: Synthesis of chiral and achiral xanthene derivatives.J. Org. Chem.20238853159317210.1021/acs.joc.2c02939 36866580
    [Google Scholar]
  23. Lokesh KumarS. TabassumS. GovindarajuS. Novel deep eutectic solvent catalysed single-pot open flask synthesis of tetrasubstituted-1H-Pyrroles.J. Mol. Liq.202440112459210.1016/j.molliq.2024.124592
    [Google Scholar]
  24. GovindarajuS. DanielN.K. TabassumS. Sulfamic acid catalyzed grinding: A facile one-pot approach for the synthesis of polysubstituted pyrazoles under green conditions.Mater. Today Proc.2022625336534010.1016/j.matpr.2022.03.416
    [Google Scholar]
  25. TabassumS. ServeshA. DanielN.K. GovindarajuS. Synthesis of 1, 8-Naphthyridine-3-Carbonitriles under solvent-free conditions using ceric ammonium nitrate.Mater. Today Proc.202310.1016/j.matpr.2023.07.144
    [Google Scholar]
  26. Lokesh KumarS. ChundattuS.J. GovindarajuS. TabassumS. Three-component p-TSA catalyzed synthesis of hydrazinyl thiazole derivatives.Mater. Today Proc.202310.1016/j.matpr.2023.06.101
    [Google Scholar]
  27. TabassumS. ThangaiyanP. GovindarajuS. DanielN.K. ThomasR. Pyrazole derivative containing naphthalene moiety: cytotoxocity (breast and cervical cancer), antibacterial and antifungal studies using experimental and theoretical tools.Polycycl. Aromat. Compd.20234398544856110.1080/10406638.2022.2149564
    [Google Scholar]
  28. KumarS. L.; Servesh, A.; Kumar Sriwastav, Y.; Balasubramanian, S.; Tabassum, S.; Govindaraju, S. A bird’s‐eye view on deep eutectic solvent‐mediated multicomponent synthesis of N ‐heterocycles.ChemistrySelect2023816e20230105410.1002/slct.202301054
    [Google Scholar]
  29. TabassumS. GovindarajuS. White LED light-mediated eosin y-photocatalyzed one-pot synthesis of novel 1,2,4-triazol-3-amines by sequential addition.Top. Catal.2022202211110.1007/s11244‑022‑01590‑w
    [Google Scholar]
  30. MoharebR.M. IbrahimR.A. Al FaroukF.O. AlwanE.S. Ionic liquid immobilized synthesis of new xantheses derivatives and their antiproliferative, molecular docking and morphological studies.Anticancer. Agents Med. Chem.20242413990100810.2174/0118715206299407240324110505
    [Google Scholar]
  31. MoharebR.M. AbdallahA.E.M. AbdelazizM.A. New approaches for the synthesis of pyrazole, thiophene, thieno[2,3-b]pyridine, and thiazole derivatives together with their anti-tumor evaluations.Med. Chem. Res.201423256457910.1007/s00044‑013‑0664‑7
    [Google Scholar]
  32. MoharebR.M. WardakhanW.W. HamedF.I. Synthesis and cytotoxicity of fused thiophene and pyrazole derivatives derived from 2-N-acetyl-3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophene.Med. Chem. Res.20152452043205410.1007/s00044‑014‑1273‑9
    [Google Scholar]
  33. SunderhausJ.D. MartinS.F. Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds.Chemistry20091561300130810.1002/chem.200802140 19132705
    [Google Scholar]
  34. JohnS.E. GulatiS. ShankaraiahN. Recent advances in multi-component reactions and their mechanistic insights: A triennium review.Org. Chem. Front.202184237428710.1039/D0QO01480J
    [Google Scholar]
  35. ZhongY. Arylformylacetonitriles in multicomponent reactions leading to heterocycles.Eur. J. Org. Chem.2022202248e20220103810.1002/ejoc.202201038
    [Google Scholar]
  36. JavahershenasR. Recent advances in the application of deep eutectic solvents for the synthesis of Spiro heterocyclic scaffolds via multicomponent reactions.J. Mol. Liq.202338512239810.1016/j.molliq.2023.122398
    [Google Scholar]
  37. JabeenT. AslamS. YaseenM. Jawwad SaifM. AhmadM. Al-HussainS.A. ZakiM.E.A. Recent synthetic strategies of medicinally important imidazothiadiazoles.J. Saudi Chem. Soc.202327410167910.1016/j.jscs.2023.101679
    [Google Scholar]
  38. OliveiraG.H.C. RamosL.M. de PaivaR.K.C. PassosS.T.A. SimõesM.M. MachadoF. CorreaJ.R. NetoB.A.D. Synthetic enzyme-catalyzed multicomponent reaction for Isoxazol-5(4 H)-one Syntheses, their properties and biological application; why should one study mechanisms?Org. Biomol. Chem.20211971514153110.1039/D0OB02114H 33332518
    [Google Scholar]
  39. OrganS.L. TsaoM.S. An overview of the c-MET signaling pathway.Ther. Adv. Med. Oncol.201131_suppl)(Suppl.S7S1910.1177/175883401142255622128289
    [Google Scholar]
  40. JeffersM. RongS. Vande WoudeG.F. Hepatocyte growth factor/scatter factor Met signaling in tumorigenicity and invasion/metastasis.J. Mol. Med.199674950551310.1007/BF00204976 8892055
    [Google Scholar]
  41. KnudsenB.S. GmyrekG.A. InraJ. ScherrD.S. VaughanE.D. NanusD.M. KattanM.W. GeraldW.L. Vande WoudeG.F. High expression of the Met receptor in prostate cancer metastasis to bone.Urology20026061113111710.1016/S0090‑4295(02)01954‑4 12475693
    [Google Scholar]
  42. HumphreyP.A. ZhuX. ZarnegarR. SwansonP.E. RatliffT.L. VollmerR.T. DayM.L. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma.Am. J. Pathol.19951472386396 7639332
    [Google Scholar]
  43. VerrasM. LeeJ. XueH. LiT.H. WangY. SunZ. The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression.Cancer Res.200767396797510.1158/0008‑5472.CAN‑06‑3552 17283128
    [Google Scholar]
  44. De BaccoF. LuraghiP. MedicoE. ReatoG. GirolamiF. PereraT. GabrieleP. ComoglioP.M. BoccaccioC. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer.J. Natl. Cancer Inst.2011103864566110.1093/jnci/djr093 21464397
    [Google Scholar]
  45. RubinJ. BottaroD.P. AaronsonS.A. Hepatocyte growth factor/scatter factor and its receptor, the c-met proto-oncogene product.Biochim. Biophys. Acta Rev. Cancer19931155335737110.1016/0304‑419X(93)90015‑5 8268192
    [Google Scholar]
  46. JeffersM. RongS. Vande WoudeG.F. Hepatocyte growth factor/scatter factor—Met signaling in tumorigenicity and invasion/metastasis.J. Mol. Med. (Berl.)199674950551310.1007/BF00204976 8892055
    [Google Scholar]
  47. Mariam RajuR. JoyA. J.; Nulgumnalli Manjunathaiah, R.; Justin, A.; Prashantha Kumar, B.R. EGFR as therapeutic target to develop new generation tyrosine kinase inhibitors against breast cancer: A critical review.Results Chem.2024710149010.1016/j.rechem.2024.101490
    [Google Scholar]
  48. OtaniT. SuzukiM. TakakuraH. HanaokaH. Synthesis and biological evaluation of EGFR binding peptides for near-infrared photoimmunotherapy.Bioorg. Med. Chem.202410511771710.1016/j.bmc.2024.117717 38614014
    [Google Scholar]
  49. LiS. ZhaoY. WangK. GaoY. HanJ. CuiB. GongP. Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors.Bioorg. Med. Chem.201321112843285510.1016/j.bmc.2013.04.013 23628470
    [Google Scholar]
  50. MalichG. MarkovicB. WinderC. The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines.Toxicology1997124317919210.1016/S0300‑483X(97)00151‑0 9482120
    [Google Scholar]
  51. GieniR.S. LiY. HayGlass, K.T. Comparison of [3H]thymidine incorporation with MTT- and MTS-based bioassays for human and murine IL-2 and IL-4 analysis Tetrazolium assays provide markedly enhanced sensitivity.J. Immunol. Methods19951871859310.1016/0022‑1759(95)00170‑F 7490461
    [Google Scholar]
  52. DevoosL. BiguenetA. RousselotJ. BourM. PlésiatP. FournieD. JeannotK. Performance of discs, sensititre EUMDROXF microplates and MTS gradient strips for the determination of the susceptibility of multidrug-resistant Pseudomonas aeruginosa to cefiderocol.Clin. Microbiol. Infect.2023295652.e110.1016/j.cmi.2022.12.021
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808299889240722114041
Loading
/content/journals/lddd/10.2174/0115701808299889240722114041
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): anti-cancer agents; cytotoxicity; Dimedone; morphological studies; multicomponent; xanthenes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test