Skip to content
2000
Volume 21, Issue 17
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Postoperative adhesions commonly occur after abdominal surgery and can lead to significant complications. There is increasing evidence that targeting the renin-angiotensin system (RAS) can reduce inflammation and fibrosis. This study investigates the therapeutic potential of enalapril, an RAS inhibitor, in a rat model of postsurgical adhesion band formation.

Methods

A total of 12 male albino Wistar rats received intraperitoneal administration of enalapril (10 mg/kg). After 9 days, the anti-inflammatory and antifibrotic effects were evaluated using RT-PCR and ELISA, alongside hematoxylin and eosin and Masson's trichrome staining.

Results

The statistical analysis of findings showed that enalapril significantly reduced the frequency and stability of adhesion bands. It attenuated submucosal edema by suppressing pro-inflammatory cytokines, decreasing pro-inflammatory cell infiltration, and inhibiting oxidative stress at the peritoneal surgery site. Additionally, enalapril inhibited fibrotic adhesion band formation by reducing collagen deposition and suppressing the expression of profibrotic genes in peritoneal adhesion tissues.

Conclusion

These findings demonstrate the therapeutic potential of enalapril in preventing postsurgical adhesion band formation by inhibiting key pathological responses of inflammation and fibrosis, supporting its use as a preventive treatment in postoperative adhesion management.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808293346240726110944
2024-07-29
2025-05-28
Loading full text...

Full text loading...

References

  1. WangY. ZhaiW. YangL. ChengS. CuiW. LiJ. Establishments and evaluations of post‐operative adhesion animal models.Adv. Ther.202364220029710.1002/adtp.202200297
    [Google Scholar]
  2. LuoG. ZhouZ. HuangC. ZhangP. SunN. ChenW. DengC. LiX. WuP. TangJ. QingL. Itaconic acid induces angiogenesis and suppresses apoptosis via Nrf2/autophagy to prolong the survival of multi-territory perforator flaps.Heliyon202397e1790910.1016/j.heliyon.2023.e17909 37456049
    [Google Scholar]
  3. BeyeneR.T. KavalukasS.L. BarbulA. Intra-abdominal adhesions: Anatomy, physiology, pathophysiology, and treatment.Curr. Probl. Surg.201552727131910.1067/j.cpsurg.2015.05.001 26258583
    [Google Scholar]
  4. TabibianN. SwehliE. BoydA. UmbreenA. TabibianJ.H. Abdominal adhesions: A practical review of an often overlooked entity.Ann. Med. Surg. 20171591310.1016/j.amsu.2017.01.021 28203370
    [Google Scholar]
  5. FuP.C. WangJ.Y. SuY. LiaoY.Q. LiS.L. XuG.L. HuangY.J. HuM.H. CaoL.M. Intravascular ultrasonography assisted carotid artery stenting for treatment of carotid stenosis: Two case reports.World J. Clin. Cases202311297127713510.12998/wjcc.v11.i29.7127 37946762
    [Google Scholar]
  6. ZhouX. LuJ. WuB. GuoZ. HOXA11-AS facilitates the proliferation, cell cycle process and migration of keloid fibroblasts through sponging miR-188–5p to regulate VEGFA.J. Dermatol. Sci.2022106211111810.1016/j.jdermsci.2022.04.004 35491288
    [Google Scholar]
  7. Gerner-RasmussenJ. DonatskyA.M. BjerrumF. The role of non-invasive imaging techniques in detecting intra-abdominal adhesions: A systematic review.Langenbecks Arch. Surg.2019404665366110.1007/s00423‑018‑1732‑8 30483880
    [Google Scholar]
  8. SkoglarA. GunnarssonU. FalkP. Band adhesions not related to previous abdominal surgery – A retrospective cohort analysis of risk factors.Ann. Med. Surg.20183618519010.1016/j.amsu.2018.11.007 30505438
    [Google Scholar]
  9. LiuD. LiuX. ChenZ. ZuoZ. TangX. HuangQ. AraiT. Magnetically driven soft continuum microrobot for intravascular operations in microscale.Cyborg Bionic Syst., 2022, 2022, 2022/9850832.10.34133/2022/985083236285316
    [Google Scholar]
  10. GeH ZhouT ZhangC CunY ChenW YangY Targeting ASIC1a promotes neural progenitor cell migration and neurogenesis in ischemic stroke.Research, 20236010510.34133/research.0105
    [Google Scholar]
  11. WardB.C. PanitchA. Abdominal adhesions: Current and novel therapies.J. Surg. Res.201116519111110.1016/j.jss.2009.09.015 20036389
    [Google Scholar]
  12. WallwienerM. BrölmannH. KoninckxP.R. LundorffP. LowerA.M. WattiezA. MaraM. De WildeR.L. Adhesions after abdominal, pelvic and intra-uterine surgery and their prevention.Gynecol. Surg.20129446546610.1007/s10397‑012‑0762‑4 23144644
    [Google Scholar]
  13. ZhangX. LiH. WangH. ZhangQ. DengX. ZhangS. WangL. GuoC. ZhaoF. YinY. ZhouT. ZhongJ. FengH. ChenW. ZhangJ. FengH. HuR. Iron/ROS/Itga3 mediated accelerated depletion of hippocampal neural stem cell pool contributes to cognitive impairment after hemorrhagic stroke.Redox Biol.20247110308610.1016/j.redox.2024.103086 38367510
    [Google Scholar]
  14. JunS. Juan-juanC. FengX. Li-zhouW. JuS. MiR-125b-5p inhibits angiogenesis by targeting VEGFA to improve the efficacy of transcatheter arterial chemoembolization in the treatment of hepatocellular carcinoma.J. Biol. Regul. Homeost. Agents2023371266256635
    [Google Scholar]
  15. YangC. ShengD. YangB. ZhengW. LiuC. A dual-domain diffusion model for sparse-view ct reconstruction.IEEE Signal Process. Lett.2024311279128310.1109/LSP.2024.3392690
    [Google Scholar]
  16. WangY. ZhaiW. ZhangH. ChengS. LiJ. Injectable polyzwitterionic lubricant for complete prevention of cardiac adhesion.Macromol. Biosci.2023234220055410.1002/mabi.202200554 36866621
    [Google Scholar]
  17. EhanireT. RenL. BondJ. MedinaM. LiG. BashirovL. ChenL. KokosisG. IbrahimM. SelimA. BlobeG.C. LevinsonH. Angiotensin II stimulates canonical TGF-β signaling pathway through angiotensin type 1 receptor to induce granulation tissue contraction.J. Mol. Med. 201593328930210.1007/s00109‑014‑1211‑9 25345602
    [Google Scholar]
  18. ZhaoX. ZhangG. ChenJ. LiZ. ShiY. LiG. ZhaiC. NieL. A rationally designed nuclei-targeting FAPI 04-based molecular probe with enhanced tumor uptake for PET/CT and fluorescence imaging.Eur. J. Nucl. Med. Mol. Imaging20245161593160410.1007/s00259‑024‑06691‑0 38512485
    [Google Scholar]
  19. WangX. YangT. ShiS. XuC. WangF. DaiD. GuanG. ZhangY. WangS. WangJ. ZhangB. LiuP. BaiX. JinY. LiX. ZhuC. ChenD. XuQ. GuoY. Heterogeneity‐induced NGF‐NGFR communication inefficiency promotes mitotic spindle disorganization in exhausted T cells through PREX1 suppression to impair the anti‐tumor immunotherapy with PD ‐1 MAB in hepatocellular carcinoma.Cancer Med.2024133e673610.1002/cam4.6736 38204220
    [Google Scholar]
  20. KimJ.M. HeoH.S. HaY.M. YeB.H. LeeE.K. ChoiY.J. YuB.P. ChungH.Y. Mechanism of Ang II involvement in activation of NF-κB through phosphorylation of p65 during aging.Age 2012341112510.1007/s11357‑011‑9207‑7 21318332
    [Google Scholar]
  21. SrivastavaS.P. GoodwinJ.E. KanasakiK. KoyaD. Inhibition of Angiotensin-Converting Enzyme Ameliorates Renal Fibrosis by Mitigating DPP-4 Level and Restoring Antifibrotic MicroRNAs.Genes 202011221110.3390/genes11020211 32085655
    [Google Scholar]
  22. AmbariA.M. SetiantoB. SantosoA. RadiB. DwiputraB. SusilowatiE. TulrahmiF. DoevendansP.A. CramerM.J. Angiotensin Converting Enzyme Inhibitors (ACEIs) decrease the progression of cardiac fibrosis in rheumatic heart disease through the inhibition of IL-33/sST2.Front. Cardiovasc. Med.2020711510.3389/fcvm.2020.00115 32850979
    [Google Scholar]
  23. AmannB. TinzmannR. AngelkortB. ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1.Diabetes Care20032682421242510.2337/diacare.26.8.2421 12882873
    [Google Scholar]
  24. Khalili-TanhaG. Khalili-TanhaN. NazariS.E. Chaeichi-TehraniN. KhazaeiM. AliakbarianM. HassanianS.M. Ghayour-MobarhanM. FernsG.A. AvanA. The therapeutic potential of targeting the angiotensin pathway as a novel therapeutic approach to ameliorating post-surgical adhesions.Curr. Pharm. Des.202228318018610.2174/1381612827666210625153011 34176457
    [Google Scholar]
  25. LouZ. GongY.Q. ZhouX. HuG.H. Low expression of miR 199 in hepatocellular carcinoma contributes to tumor cell hyper proliferation by negatively suppressing XBP1.Oncol. Lett.20181656531653910.3892/ol.2018.9476 30405792
    [Google Scholar]
  26. XiongT. LiZ. HuangX. LuK. XieW. ZhouZ. TuJ. TO901317 inhibits the development of hepatocellular carcinoma by LXRα/Glut1 decreasing glycometabolism.Am. J. Physiol. Gastrointest. Liver Physiol.20193165G598G60710.1152/ajpgi.00061.2018 30817182
    [Google Scholar]
  27. HemadehO. ChilukuriS. BonetV. HusseinS. ChaudryI.H. Prevention of peritoneal adhesions by administration of sodium carboxymethyl cellulose and oral vitamin E.Surgery19931145907910 8236013
    [Google Scholar]
  28. ZhangC. GeH. ZhangS. LiuD. JiangZ. LanC. LiL. FengH. HuR. Hematoma evacuation via image-guided para-corticospinal tract approach in patients with spontaneous intracerebral hemorrhage.Neurol. Ther.20211021001101310.1007/s40120‑021‑00279‑8 34515953
    [Google Scholar]
  29. LvJ. XuY. XuL. NieL. Quantitative functional evaluation of liver fibrosis in mice with dynamic contrast-enhanced photoacoustic imaging.Radiology20213001899710.1148/radiol.2021204134 33904773
    [Google Scholar]
  30. NairS.K. BhatI.K. AuroraA.L. Role of proteolytic enzyme in the prevention of postoperative intraperitoneal adhesions.Arch. Surg.1974108684985310.1001/archsurg.1974.01350300081019 4829809
    [Google Scholar]
  31. LeachR.E. BurnsJ.W. DaweE.J. SmithBarbour, M.D.; Diamond, M.P. Reduction of postsurgical adhesion formation in the rabbit uterine horn model with use of hyaluronate/carboxymethylcellulose gel.Fertil. Steril.199869341541810.1016/S0015‑0282(97)00573‑6 9531869
    [Google Scholar]
  32. ZhengJ. YueR. YangR. WuQ. WuY. HuangM. ChenX. LinW. HuangJ. ChenX. JiangY. YangB. LiaoY. Visualization of zika virus infection via a light-initiated bio-orthogonal cycloaddition labeling strategy.Front. Bioeng. Biotechnol.20221094051110.3389/fbioe.2022.940511 35875483
    [Google Scholar]
  33. KimS-J KimM-G KimJ JeonJS ParkJ YiH-G Bioprinting methods for fabricating in vitro tubular blood vessel models.Cyborg Bionic Syst,20234004310.34133/cbsystems.0043
    [Google Scholar]
  34. AsgharzadehF. BargiR. BeheshtiF. HosseiniM. FarzadniaM. KhazaeiM. Thymoquinone restores liver fibrosis and improves oxidative stress status in a lipopolysaccharide-induced inflammation model in rats.Avicenna J. Phytomed.201776502510 29299433
    [Google Scholar]
  35. HashemzehiM. Behnam-RassouliR. HassanianS.M. Moradi-BinabajM. Moradi-MarjanehR. RahmaniF. FiujiH. JamiliM. MirahmadiM. BoromandN. PiranM. JafariM. SahebkarA. AvanA. KhazaeiM. Phytosomal‐curcumin antagonizes cell growth and migration, induced by thrombin through AMP‐Kinase in breast cancer.J. Cell. Biochem.201811975996600710.1002/jcb.26796 29600521
    [Google Scholar]
  36. MarjanehR.M. RahmaniF. HassanianS.M. RezaeiN. HashemzehiM. BahramiA. AriakiaF. FiujiH. SahebkarA. AvanA. KhazaeiM. Phytosomal curcumin inhibits tumor growth in colitis‐associated colorectal cancer.J. Cell. Physiol.2018233106785679810.1002/jcp.26538 29737515
    [Google Scholar]
  37. YuY. WangL. NiS. LiD. LiuJ. ChuH.Y. ZhangN. SunM. LiN. RenQ. ZhuoZ. ZhongC. XieD. LiY. ZhangZ.K. ZhangH. LiM. ZhangZ. ChenL. PanX. XiaW. ZhangS. LuA. ZhangB.T. ZhangG. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation.Nat. Commun.2022131424110.1038/s41467‑022‑31997‑8 35869074
    [Google Scholar]
  38. LiB. WangW. ZhaoL. LiM. YanD. LiX. ZhangJ. GaoQ. FengY. ZhengJ. ShuB. YanY. WangJ. WangH. HeL. WuY. ZhouS. QinX. ChenW. QiuK. ShenC. WangD. TangB.Z. LiaoY. Aggregation‐induced emission‐based macrophage‐like nanoparticles for targeted photothermal therapy and virus transmission blockage in Monkeypox.Adv. Mater.2024369230537810.1002/adma.202305378 37931029
    [Google Scholar]
  39. de CavanaghE.M.V. InserraF. FerderL. FragaC.G. Enalapril and captopril enhance glutathione-dependent antioxidant defenses in mouse tissues.Am. J. Physiol. Regul. Integr. Comp. Physiol.20002783R572R57710.1152/ajpregu.2000.278.3.R572 10712274
    [Google Scholar]
  40. MurphyA.M. WongA.L. BezuhlyM. Modulation of angiotensin II signaling in the prevention of fibrosis.Fibrogenesis Tissue Repair201581710.1186/s13069‑015‑0023‑z 25949522
    [Google Scholar]
  41. YangF. HuangX.R. ChungA.C.K. HouC.C. LaiK.N. LanH.Y. Essential role for Smad3 in angiotensin II‐induced tubular epithelial–mesenchymal transition.J. Pathol.2010221439040110.1002/path.2721 20593491
    [Google Scholar]
  42. ArjmandM.H. HashemzehiM. SoleimaniA. AsgharzadehF. AvanA. MehrabanS. FakhraeiM. FernsG.A. RyzhikovM. GharibM. SalariR. Sayyed HoseinianS.H. ParizadehM.R. KhazaeiM. HassanianS.M. Therapeutic potential of active components of saffron in post-surgical adhesion band formation.J. Tradit. Complement. Med.202111432833510.1016/j.jtcme.2021.01.002 34195027
    [Google Scholar]
  43. SatouR. PenroseH. NavarL.G. Inflammation as a regulator of the renin-angiotensin system and blood pressure.Curr. Hypertens. Rep.2018201210010.1007/s11906‑018‑0900‑0 30291560
    [Google Scholar]
  44. HahnA.W.A. JonasU. BühlerF.R. ResinkT.J. Activation of human peripheral monocytes by angiotensin II.FEBS Lett.19943472-317818010.1016/0014‑5793(94)00531‑1 7518396
    [Google Scholar]
  45. ZhangL. DuJ. HuZ. HanG. DelafontaineP. GarciaG. MitchW.E. IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting.J. Am. Soc. Nephrol.200920360461210.1681/ASN.2008060628 19158350
    [Google Scholar]
  46. MengY. ChenC. LiuY. TianC. LiH.H. Angiotensin II regulates dendritic cells through activation of NF-κB/p65, ERK1/2 and STAT1 pathways.Cell. Physiol. Biochem.20174241550155810.1159/000479272 28723692
    [Google Scholar]
  47. GuzikT.J. HochN.E. BrownK.A. McCannL.A. RahmanA. DikalovS. GoronzyJ. WeyandC. HarrisonD.G. Role of the T cell in the genesis of angiotensin II–induced hypertension and vascular dysfunction.J. Exp. Med.2007204102449246010.1084/jem.20070657 17875676
    [Google Scholar]
  48. de CavanaghE.M. FragaC.G. FerderL. InserraF. Enalapril and captopril enhance antioxidant defenses in mouse tissues.Am. J. Physiol.19972722 Pt 2R514R5189124472
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808293346240726110944
Loading
/content/journals/lddd/10.2174/0115701808293346240726110944
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test