Skip to content
2000
Volume 21, Issue 17
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Intra-abdominal adhesions are a commonly occurring postoperative complication following abdominopelvic surgery. Peritoneal adhesion formation can lead to infertility, chronic pelvic pain, and intestinal obstruction. The anti-inflammatory and anti-oxidant activities of () and Mill () have been reported. Here, we have explored the therapeutic potential of () and against postsurgical adhesion band formation. The NC3Rs ARRIVE guidelines were followed during experimental studies.

Methods

powder (800 mg/kg) and powder (400 mg/kg) were administered using oral gavage to different groups of male albino Wistar rats. After ten days of treatment, macroscopic evidence for peritoneal adhesions and adhesion band score were determined. Furthermore, the anti-inflammatory and antifibrosis effects of and were assessed using histopathology, ELISA, and real-time polymerase chain reaction methods. Also, alterations in some oxidative stress parameters were evaluated.

Results

and significantly decreased adhesion bands and were associated with a reduction in inflammatory cell infiltration into damaged tissues and the mRNA and protein expression of inflammatory cytokines modulation of TNF-α, IL-6, IL-1β, and TGF-β. Moreover, both agents inhibited fibrotic adhesion band formation by decreasing collagen deposition and reducing profibrotic marker expression, Col1A1, at the peritoneum adhesion tissues. and improved some antioxidant factors in rats’ adhesion tissues. The result of LC-MS showed that and consist of components with antioxidant activity, including ganoderic acid, lucidenic acid, quercetin, linoleic acid, malic acid, and benzoic acid.

Conclusion

The results have demonstrated the therapeutic potential of and in reducing peritoneal adhesion through anti-inflammatory and anti-fibrotic properties, indicating their promising value as a new therapeutic approach in preventing postsurgical adhesion.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808298079240818170758
2024-08-26
2025-06-24
Loading full text...

Full text loading...

References

  1. LiakakosT. ThomakosN. FineP.M. DervenisC. YoungR.L. Peritoneal adhesions: Etiology, pathophysiology, and clinical significance. Recent advances in prevention and management.Dig. Surg.200118426027310.1159/000050149 11528133
    [Google Scholar]
  2. BrüggmannD. TchartchianG. WallwienerM. MünstedtK. TinnebergH-R. HackethalA. Intra-abdominal adhesions: Definition, origin, significance in surgical practice, and treatment options.Dtsch. Arztebl. Int.201010744769775 21116396
    [Google Scholar]
  3. HolmdahlL. Making and covering of surgical footprints.Lancet199935391631456145710.1016/S0140‑6736(99)90061‑2 10232305
    [Google Scholar]
  4. EllisH. The aetiology of post-operative abdominal adhesions an experimental study.Br. J. Surg.200550219101610.1002/bjs.18005021904 13889984
    [Google Scholar]
  5. SaedG.M. ZhangW. DiamondM.P. Molecular characterization of fibroblasts isolated from human peritoneum and adhesions.Fertil. Steril.200175476376810.1016/S0015‑0282(00)01799‑4 11287032
    [Google Scholar]
  6. CheongY.C. LairdS.M. LiT.C. SheltonJ.B. LedgerW.L. CookeI.D. Peritoneal healing and adhesion formation/reformation.Hum. Reprod. Update20017655656610.1093/humupd/7.6.556 11727864
    [Google Scholar]
  7. ColemanM.G. McLainA.D. MoranB.J. Impact of previous surgery on time taken for incision and division of adhesions during laparotomy.Dis. Colon Rectum20004391297129910.1007/BF02237441 11005501
    [Google Scholar]
  8. Van GoorH. Consequences and complications of peritoneal adhesions.Colorectal Dis.20079Suppl. 2253410.1111/j.1463‑1318.2007.01358.x 17824967
    [Google Scholar]
  9. LowerA.M. HawthornR.J. ClarkD. BoydJ.H. FinlaysonA.R. KnightA.D. CroweA.M. Surgical and clinical research (SCAR) group.Adhesion-related readmissions following gynaecological laparoscopy or laparotomy in Scotland: An epidemiological study of 24 046 patients.Hum. Reprod.20041981877188510.1093/humrep/deh321 15178659
    [Google Scholar]
  10. AhmedK. WangT.T. PatelV.M. NagpalK. ClarkJ. AliM. DeebaS. AshrafianH. DarziA. AthanasiouT. ParaskevaP. The role of single-incision laparoscopic surgery in abdominal and pelvic surgery: A systematic review.Surg. Endosc.201125237839610.1007/s00464‑010‑1208‑6 20623239
    [Google Scholar]
  11. GreensteinG. CavallaroJ. RomanosG. TarnowD. Clinical recommendations for avoiding and managing surgical complications associated with implant dentistry: A review.J. Periodontol.20087981317132910.1902/jop.2008.070067 18672980
    [Google Scholar]
  12. MaqboolM. DarM.A. GaniI. MirS.A. KhanM. Herbal medicines as an alternative source of therapy: A review.World J. Pharm. Pharm. Sci.201932374380
    [Google Scholar]
  13. CarmonaF. Soares PereiraA.M. Herbal medicines: Old and new concepts, truths and misunderstandings.Rev. Bras. Farmacogn.201323237938510.1590/S0102‑695X2013005000018
    [Google Scholar]
  14. KoehnF.E. CarterG.T. The evolving role of natural products in drug discovery.Nat. Rev. Drug Discov.20054320622010.1038/nrd1657 15729362
    [Google Scholar]
  15. YasunagaH. MiyataH. HoriguchiH. KuwabaraK. HashimotoH. MatsudaS. Effect of the japanese herbal kampo medicine dai-kenchu-to on postoperative adhesive small bowel obstruction requiring long-tube decompression: A propensity score analysis.Evid. Based Complement. Alternat. Med.2011201126428910.1155/2011/264289
    [Google Scholar]
  16. WasserS.P. Ganoderma lucidum.Encyclopedia of dietary supplements; 20051603622
    [Google Scholar]
  17. BohB. BerovicM. ZhangJ. Zhi-BinL. Ganoderma lucidum and its pharmaceutically active compounds.Biotechnol. Annu. Rev.20071326530110.1016/S1387‑2656(07)13010‑6 17875480
    [Google Scholar]
  18. AhmadR. RiazM. KhanA. AljameaA. AlgheryafiM. SewaketD. AlqathamaA. Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties.Phytother. Res.202135116030606210.1002/ptr.7215 34411377
    [Google Scholar]
  19. LauM-F. ChuaK-H. SabaratnamV. KuppusamyU.R. In vitro anti-colorectal cancer potential of the medicinal mushroom ganoderma neo-japonicum imazeki in hyperglycemic condition: Impact on oxidative stress, cell cycle and apoptosis.Nutr. Cancer2021743118 34085886
    [Google Scholar]
  20. JiaoC. ChenW. TanX. LiangH. LiJ. YunH. HeC. ChenJ. MaX. XieY. YangB.B. Ganoderma lucidum spore oil induces apoptosis of breast cancer cells in vitro and in vivo by activating caspase-3 and caspase-9.J. Ethnopharmacol.202024711225610.1016/j.jep.2019.112256 31586690
    [Google Scholar]
  21. RahmanM.A. AbdullahN. AminudinN. Evaluation of the antioxidative and hypo-cholesterolemic effects of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), in ameliorating cardiovascular disease.Int. J. Med. Mushrooms2018201096196910.1615/IntJMedMushrooms.2018028370 30806268
    [Google Scholar]
  22. KluppN.L. ChangD. HawkeF. KiatH. CaoH. GrantS.J. Ganoderma lucidum mushroom for the treatment of cardiovascular risk factors.CDSR2015
    [Google Scholar]
  23. HossainM.S. BaruaA. TanimM.A.H. HasanM.S. IslamM.J. HossainM.R. EmonN.U. HossenS.M.M. Ganoderma applanatum mushroom provides new insights into the management of diabetes mellitus, hyperlipidemia, and hepatic degeneration: A comprehensive analysis.Food Sci. Nutr.2021984364437410.1002/fsn3.2407 34401085
    [Google Scholar]
  24. HassanH.M. MahranY.F. GhanimA.M.H. Ganoderma lucidum ameliorates the diabetic nephropathy via down-regulatory effect on TGFβ-1 and TLR-4/NFκB signalling pathways.J. Pharm. Pharmacol.20217391250126110.1093/jpp/rgab058
    [Google Scholar]
  25. ZhangR. XuS. CaiY. ZhouM. ZuoX. ChanP. Ganoderma lucidum protects dopaminergic neuron degeneration through inhibition of microglial activation.Evid. Based Complement. Alternat. Med.201115681010.1093/ecam/nep075 19617199
    [Google Scholar]
  26. RahmanM.A. HossainS. AbdullahN. AminudinN. Lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), ameliorates nonspatial learning and memory deficits in rats with hypercholesterolemia and alzheimer’s disease.Int. J. Med. Mushrooms202022111067107810.1615/IntJMedMushrooms.2020036354 33426838
    [Google Scholar]
  27. LinZ. DengA. Antioxidative and Free Radical Scavenging Activity of Ganoderma (Lingzhi).Adv. Exp. Med. Biol.2019118227129710.1007/978‑981‑32‑9421‑9_12
    [Google Scholar]
  28. HasnatM.A. PervinM. ChaK.M. KimS.K. LimB.O. Anti-inflammatory activity on mice of extract of Ganoderma lucidum grown on rice via modulation of MAPK and NF-κB pathways.Phytochemistry201511412513610.1016/j.phytochem.2014.10.019 25457483
    [Google Scholar]
  29. KwonS.C. KimY.B. Antifibrotic activity a fermentation filtrate of Ganoderma lucidum.Lab. Anim. Res.201127436937110.5625/lar.2011.27.4.369 22232650
    [Google Scholar]
  30. LinW.C. LinW.L. Ameliorative effect of Ganoderma lucidum on carbon tetrachloride-induced liver fibrosis in rats.World J. Gastroenterol.200612226527010.3748/wjg.v12.i2.265 16482628
    [Google Scholar]
  31. LinJ.M. LinC.C. ChiuH.F. YangJ.J. LeeS.G. Evaluation of the anti-inflammatory and liver-protective effects of anoectochilus formosanus, Ganoderma lucidum and Gynostemma pentaphyllum in rats.Am. J. Chin. Med.1993211596910.1142/S0192415X9300008X 8328423
    [Google Scholar]
  32. SargowoD. W, T.A.; Heriansyah, T.; Prasetya, I.; Ashriyah, R.; Setyawati, I. Anti inflammation and anti oxidant effect of active agent polysaccharide peptide (Ganoderma lucidum) in preventing atherosclerotic diseases.Biomed. Pharmacol. J.201581273310.13005/bpj/578
    [Google Scholar]
  33. ZhangY. LiH. SongL. XueJ. WangX. SongS. WangS. Polysaccharide from Ganoderma lucidum ameliorates cognitive impairment by regulating the inflammation of the brain–liver axis in rats.Food Funct.202112156900691410.1039/D1FO00355K 34338268
    [Google Scholar]
  34. Oluwafemi AdetuyiB. Olamide OkeowoT. Adefunke AdetuyiO. Abraham AdebisiO. OgunlanaO.O. Janet OretadeO. MarraikiN. BeshbishyA.M. N WelsonN. Batiha, G.E. Ganoderma lucidum from red mushroom attenuates formaldehyde-induced liver damage in experimental male rat model.Biology 202091031310.3390/biology9100313 32992510
    [Google Scholar]
  35. JiX. PengQ. YuanY. ShenJ. XieX. WangM. Isolation, structures and bioactivities of the polysaccharides from jujube fruit (Ziziphus jujuba Mill.): A review.Food Chem.201722734935710.1016/j.foodchem.2017.01.074 28274443
    [Google Scholar]
  36. TripathiS. Ziziphus jujuba: A phytopharmacological review.IJRDPL201433959966
    [Google Scholar]
  37. IvanišováE. GrygorievaO. AbrahamováV. SchubertovaZ. TerentjevaM. BrindzaJ. Characterization of morphological parameters and biological activity of jujube fruit (Ziziphus jujuba Mill.).J. Berry Res.20177424926010.3233/JBR‑170162
    [Google Scholar]
  38. KumarS.P. AsdaqS.B. KumarN.P. AsadM. KhajuriaD. Protective effect of Zizyphus jujuba fruit extract against paracetamol and thioacetamide induced hepatic damage in rats.Int. J. Pharmacol.20097113667
    [Google Scholar]
  39. ResimS. KoluşE. BarutO. KucukdurmazF. BaharA.Y. DagliH. Ziziphus jujube ameliorated cavernosal oxidative stress and fibrotic processes in cavernous nerve injury‐induced erectile dysfunction in a rat model.Andrologia2020527e1363210.1111/and.13632 32430921
    [Google Scholar]
  40. LiangQ. WangX. YangS. YuL. GaoQ. YangX. ZhaoY. Characterization of the antioxidative polysaccharides from Ziziphus jujube cv. Goutouzao and its tumor‐inhibitory effects on human colorectal carcinoma LoVo cells via immunocyte activation.J. Food Biochem.20204411e1346210.1111/jfbc.13462 32954518
    [Google Scholar]
  41. JiX. HouC. ZhangX. HanL. YinS. PengQ. WangM. Microbiome-metabolomic analysis of the impact of Zizyphus jujuba cv. Muzao polysaccharides consumption on colorectal cancer mice fecal microbiota and metabolites.Int. J. Biol. Macromol.20191311067107610.1016/j.ijbiomac.2019.03.175 30926487
    [Google Scholar]
  42. KimY. OhJ. JangC.H. LimJ.S. LeeJ.S. KimJ.S. In vivo anti-inflammatory potential of viscozyme®-treated jujube fruit.Foods202098103310.3390/foods9081033 32752184
    [Google Scholar]
  43. GoyalR. SharmaP.L. SinghM. Possible attenuation of nitric oxide expression in anti-inflammatory effect of Ziziphus jujuba in rat.J. Nat. Med.2011653-451451810.1007/s11418‑011‑0531‑0 21479860
    [Google Scholar]
  44. Goli-malekabadiN. AsgaryS. RashidiB. Rafieian-KopaeiM. GhannadianM. HajianS. SahebkarA. The protective effects of Ziziphus vulgaris L. fruits on biochemical and histological abnormalities induced by diabetes in rats.J. Complement. Integr. Med.201411317117710.1515/jcim‑2014‑0010 24940719
    [Google Scholar]
  45. WangS.Q. KangY.M. QiZ.C. MaX.R. LiangY.F. LiD.G. Effects of Ganoderma lucidum spores powder on expression of NCAM‐1 and NCAM‐L1 in hippocampus of rats with epilepsy.The FASEB Journal.201024993999
    [Google Scholar]
  46. Percie du SertN. HurstV. AhluwaliaA. AlamS. AveyM.T. BakerM. BrowneW.J. ClarkA. CuthillI.C. DirnaglU. EmersonM. GarnerP. HolgateS.T. HowellsD.W. KarpN.A. LazicS.E. LidsterK. MacCallumC.J. MacleodM. PearlE.J. PetersenO.H. RawleF. ReynoldsP. RooneyK. SenaE.S. SilberbergS.D. StecklerT. WürbelH. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research.J. Cereb. Blood Flow Metab.20204091769177710.1177/0271678X20943823 32663096
    [Google Scholar]
  47. HemadehO. ChilukuriS. BonetV. HusseinS. ChaudryI.H. Prevention of peritoneal adhesions by administration of sodium carboxymethyl cellulose and oral vitamin E.Surgery19931145907910 8236013
    [Google Scholar]
  48. MengG. ZhuH. YangS. WuF. ZhengH. ChenE. XuJ. Attenuating effects of Ganoderma lucidum polysaccharides on myocardial collagen cross-linking relates to advanced glycation end product and antioxidant enzymes in high-fat-diet and streptozotocin-induced diabetic rats.Carbohydr. Polym.201184118018510.1016/j.carbpol.2010.11.016
    [Google Scholar]
  49. NairS.K. BhatI.K. AuroraA.L. Role of proteolytic enzyme in the prevention of postoperative intraperitoneal adhesions.Arch. Surg.1974108684985310.1001/archsurg.1974.01350300081019 4829809
    [Google Scholar]
  50. LeachR.E. BurnsJ.W. DaweE.J. SmithBarbour, M.D.; Diamond, M.P. Reduction of postsurgical adhesion formation in the rabbit uterine horn model with use of hyaluronate/carboxymethylcellulose gel.Fertil. Steril.199869341541810.1016/S0015‑0282(97)00573‑6 9531869
    [Google Scholar]
  51. WeiG. WuY. GaoQ. ShenC. ChenZ. WangK. YuJ. LiX. SunX. Gallic acid attenuates postoperative intra-abdominal adhesion by inhibiting inflammatory reaction in a rat model.Med. Sci. Monit.20182482783810.12659/MSM.908550 29429982
    [Google Scholar]
  52. BeheshtiF. HosseiniM. ShafeiM.N. SoukhtanlooM. GhasemiS. VafaeeF. ZarepoorL. The effects of Nigella sativa extract on hypothyroidism-associated learning and memory impairment during neonatal and juvenile growth in rats.Nutr. Neurosci.2017201495910.1179/1476830514Y.0000000144 25087773
    [Google Scholar]
  53. HashemzehiM. Behnam-RassouliR. HassanianS.M. Moradi-BinabajM. Moradi-MarjanehR. RahmaniF. FiujiH. JamiliM. MirahmadiM. BoromandN. PiranM. JafariM. SahebkarA. AvanA. KhazaeiM. Phytosomal‐curcumin antagonizes cell growth and migration, induced by thrombin through AMP‐Kinase in breast cancer.J. Cell. Biochem.201811975996600710.1002/jcb.26796 29600521
    [Google Scholar]
  54. HuQ. XiaX. KangX. SongP. LiuZ. WangM. GuanW. LiuS. LiuS. A review of physiological and cellular mechanisms underlying fibrotic postoperative adhesion.Int. J. Biol. Sci.202117129830610.7150/ijbs.54403 33390851
    [Google Scholar]
  55. IvarssonL.H.M-L. IvarssonM-L. The role of cytokines, coagulation, and fibrinolysis in peritoneal tissue repair.Eur. J. Surg.1999165111012101910.1080/110241599750007810 10595602
    [Google Scholar]
  56. AwonugaA.O. BelotteJ. AbuanzehS. FletcherN.M. DiamondM.P. SaedG.M. Advances in the pathogenesis of adhesion development: The role of oxidative stress.Reprod. Sci.201421782383610.1177/1933719114522550 24520085
    [Google Scholar]
  57. WangA. XiaoC. ZhengJ. YeC. DaiZ. WuQ. LiuJ. StrappeP. ZhouZ. Terpenoids of Ganoderma lucidum reverse cognitive impairment through attenuating neurodegeneration via suppression of PI3K/AKT/mTOR expression in vivo model.J. Funct. Foods20207310414210.1016/j.jff.2020.104142
    [Google Scholar]
  58. HassanH. Al-WahaibiL. ElmorsyM. MahranY. Suppression of cisplatin-induced hepatic injury in rats through alarmin high-mobility group box-1 pathway by Ganoderma lucidum: Theoretical and experimental study.Drug Des. Devel. Ther.2020142335235310.2147/DDDT.S249093 32606602
    [Google Scholar]
  59. StanleyG. HarveyK. SlivovaV. JiangJ. SlivaD. Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-β1 from prostate cancer cells.Biochem. Biophys. Res. Commun.20053301465210.1016/j.bbrc.2005.02.116 15781230
    [Google Scholar]
  60. ChenJ. DuC.Y.Q. LamK.Y.C. ZhangW.L. LamC.T.W. YanA.L. YaoP. LauD.T.W. DongT.T.X. TsimK.W.K. The standardized extract of Ziziphus jujuba fruit (jujube) regulates pro-inflammatory cytokine expression in cultured murine macrophages: Suppression of lipopolysaccharide-stimulated NF-κB activity.Phytother. Res.201428101527153210.1002/ptr.5160 24806434
    [Google Scholar]
  61. XueZ. FengW. CaoJ. CaoD. JiangW. Antioxidant activity and total phenolic contents in peel and pulp of Chinese jujube (Ziziphus jujuba Mill) fruits.J. Food Biochem.200933561362910.1111/j.1745‑4514.2009.00241.x
    [Google Scholar]
  62. ChoiS.H. AhnJ.B. KozukueN. LevinC.E. FriedmanM. Distribution of free amino acids, flavonoids, total phenolics, and antioxidative activities of Jujube (Ziziphus jujuba) fruits and seeds harvested from plants grown in Korea.J. Agric. Food Chem.201159126594660410.1021/jf200371r 21574660
    [Google Scholar]
  63. LiJ. LiuY. FanL. AiL. ShanL. Antioxidant activities of polysaccharides from the fruiting bodies of Zizyphus Jujuba cv.Jinsixiaozao. Carbohydr. Polym.201184139039410.1016/j.carbpol.2010.11.051
    [Google Scholar]
  64. BarbieriA. QuagliarielloV. Del VecchioV. FalcoM. LucianoA. AmruthrajN. NastiG. OttaianoA. BerrettaM. IaffaioliR. ArraC. Anticancer and anti-inflammatory properties of Ganoderma lucidum extract effects on melanoma and triple-negative breast cancer treatment.Nutrients20179321010.3390/nu9030210 28264501
    [Google Scholar]
  65. ZhangR. ZhangJ. GuoX. ChenY. SunJ. MiaoJ. CarpenaM. PrietoM.A. LiN. ZhouQ. LiuC. Molecular mechanisms of the chemical constituents from anti-inflammatory and antioxidant active fractions of Ganoderma neo-japonicum Imazeki.Curr. Res. Food Sci.2023610044110.1016/j.crfs.2023.100441 36756001
    [Google Scholar]
  66. BeeharryN. LoweJ.E. HernandezA.R. ChambersJ.A. FucassiF. CraggP.J. GreenM.H.L. GreenI.C. Linoleic acid and antioxidants protect against DNA damage and apoptosis induced by palmitic acid.Mutat. Res.20035301-2273310.1016/S0027‑5107(03)00134‑9 14563528
    [Google Scholar]
  67. Romero-SarmientoY. Soto-RodríguezI. Arzaba-VillalbaA. GarcíaH.S. Alexander-AguileraA. Effects of conjugated linoleic acid on oxidative stress in rats with sucrose-induced non-alcoholic fatty liver disease.J. Funct. Foods20124121922510.1016/j.jff.2011.10.009
    [Google Scholar]
  68. XuD. HuM.J. WangY.Q. CuiY.L. Antioxidant activities of quercetin and its complexes for medicinal application.Molecules2019246112310.3390/molecules24061123 30901869
    [Google Scholar]
  69. SriraksaN. WattanathornJ. MuchimapuraS. TiamkaoS. BrownK. ChaisiwamongkolK. Cognitive-enhancing effect of quercetin in a rat model of Parkinson’s disease induced by 6-hydroxydopamine.Evid. Based Complement. Alternat. Med.2012201282320610.1155/2012/823206 21792372
    [Google Scholar]
  70. ParkH. BaekS. KangH. LeeD. Biomaterials to prevent post-operative adhesion.Materials 20201314305610.3390/ma13143056 32650529
    [Google Scholar]
  71. CaiJ. GuoJ. WangS. Application of polymer hydrogels in the prevention of postoperative adhesion: A review.Gels2023929810.3390/gels9020098 36826268
    [Google Scholar]
  72. KargozarS. GorganiS. NazarnezhadS. WangA.Z. Biocompatible nanocomposites for postoperative adhesion: A state-of-the-art review.Nanomaterials 2023141410.3390/nano14010004 38202459
    [Google Scholar]
  73. JahandidehA. AbediG. AkbarzadehA. Histopathological assessment of nano n-acetyl cysteine effect on postoperative adhesion in rats.Iraqi J. Vet. Sci.202135358959710.33899/ijvs.2020.126857.1400
    [Google Scholar]
  74. LucasP.A. WarejckaD.J. ZhangL.M. NewmanW.H. YoungH.E. Effect of rat mesenchymal stem cells on development of abdominal adhesions after surgery.J. Surg. Res.199662222923210.1006/jsre.1996.0200 8632644
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808298079240818170758
Loading
/content/journals/lddd/10.2174/0115701808298079240818170758
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test