Skip to content
2000
Volume 21, Issue 16
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Alzheimer's disease (AD), a central cause of dementia, is characterized by the accumulation of amyloid β-peptide (Aβ) peptides in the brain. P-glycoprotein (P-gp), a highly expressed protein in the BBB, plays a fundamental role in transporting Aβ from the brain to the blood and protecting the blood-brain barrier (BBB). The dysfunction or decreased abundance of this transporting protein is associated with the accumulation of Aβ, leading to dementia and cognitive deficits. In this review article, we consolidate the existing literature on the impact of P-gp in the pathophysiology and therapy of AD. Current evidence claims that p-gp is involved in AD pathology and that enhancing the activity of this transporter may be a promising therapeutic approach to hinder AD progression. There is also a growing interest in P-gp as a potential therapeutic target for AD. Hence, ongoing clinical trials and research should investigate P-gp inhibitor efficacy as a therapeutic approach for improving AD drug delivery to the brain and treatment outcomes.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808293022240216070603
2024-02-28
2025-01-24
Loading full text...

Full text loading...

References

  1. Dementia by health world organization.2020 Available from: https://www.who.int/news-room/fact-sheets/detail/dementia(Accessed on December 9, 2020).
  2. BertramL. McQueenM.B. MullinK. BlackerD. TanziR.E. Systematic meta-analyses of Alzheimer disease genetic association studies: The AlzGene database.Nat. Genet.2007391172310.1038/ng193417192785
    [Google Scholar]
  3. JellingerK.A. Neuropathological aspects of Alzheimer disease, Parkinson disease and frontotemporal dementia.Neurodegener. Dis.2013132-3939624008813
    [Google Scholar]
  4. LivingstonG. SommerladA. OrgetaV. CostafredaS.G. HuntleyJ. AmesD. BallardC. BanerjeeS. BurnsA. Cohen-MansfieldJ. CooperC. FoxN. GitlinL.N. HowardR. KalesH.C. LarsonE.B. RitchieK. RockwoodK. SampsonE.L. SamusQ. SchneiderL.S. SelbækG. TeriL. MukadamN. Dementia prevention, intervention, and care.Lancet2017390101132673273410.1016/S0140‑6736(17)31363‑628735855
    [Google Scholar]
  5. PovovaJ. AmbrozP. BarM. PavukovaV. SeryO. TomaskovaH. JanoutV. Epidemiological of and risk factors for Alzheimer’s disease: A review.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.2012156210811410.5507/bp.2012.05522837131
    [Google Scholar]
  6. SureshS. SinghS. A.; Rushendran, R.; Vellapandian, C.; Prajapati, B. Alzheimer’s disease: The role of extrinsic factors in its development, an investigation of the environmental enigma.Front. Neurol.202314130311110.3389/fneur.2023.130311138125832
    [Google Scholar]
  7. AnderssonJ. OudinA. SundströmA. ForsbergB. AdolfssonR. NordinM. Road traffic noise, air pollution, and risk of dementia: Results from the Betula project.Environ. Res.201816633433910.1016/j.envres.2018.06.00829909174
    [Google Scholar]
  8. KumarN ChourasiyaS KumarA Nath, BJECJ Assessment of ozone and nitrogen oxides variations in urban region of Patna. India20223417019210.1080/10406026.2021.1957588
    [Google Scholar]
  9. JungC.R. LinY.T. HwangB.F. Ozone, particulate matter, and newly diagnosed Alzheimer’s disease: A population-based cohort study in Taiwan.J. Alzheimers Dis.201544257358410.3233/JAD‑14085525310992
    [Google Scholar]
  10. CassereauJ. FerréM. ChevrollierA. CodronP. VernyC. HomedanC. LenaersG. ProcaccioV. May-PanloupP. ReynierP. Neurotoxicity of insecticides.Curr. Med. Chem.201724272988300110.2174/092986732466617052612265428552054
    [Google Scholar]
  11. VoorheesJ.R. RemyM.T. EricksonC.M. DutcaL.M. BratD.J. PieperA.A. Occupational-like organophosphate exposure disrupts microglia and accelerates deficits in a rat model of Alzheimer’s disease.NPJ Aging Mech. Dis.201951310.1038/s41514‑018‑0033‑330701080
    [Google Scholar]
  12. NotarachilleG. ArnesanoF. CalòV. MeleleoD. Heavy metals toxicity: Effect of cadmium ions on amyloid beta protein 1–42. Possible implications for Alzheimer’s disease.Biometals201427237138810.1007/s10534‑014‑9719‑624557150
    [Google Scholar]
  13. ColominaM.T. Peris-SampedroF. Aluminum and Alzheimer’s Disease.Adv. Neurobiol.20171818319710.1007/978‑3‑319‑60189‑2_928889268
    [Google Scholar]
  14. MartinsA.C.Jr GubertP. Villas BoasG.R. Meirelles PaesM. SantamaríaA. LeeE. TinkovA.A. BowmanA.B. AschnerM. Manganese-induced neurodegenerative diseases and possible therapeutic approaches.Expert Rev. Neurother.202020111109112110.1080/14737175.2020.180733032799578
    [Google Scholar]
  15. BihaqiS.W. ZawiaN.H. Enhanced taupathy and AD-like pathology in aged primate brains decades after infantile exposure to lead (Pb).Neurotoxicology2013399510110.1016/j.neuro.2013.07.01023973560
    [Google Scholar]
  16. del PinoJ. ZeballosG. AnadónM.J. MoyanoP. DíazM.J. GarcíaJ.M. FrejoM.T. Cadmium-induced cell death of basal forebrain cholinergic neurons mediated by muscarinic M1 receptor blockade, increase in GSK-3β enzyme, β-amyloid and tau protein levels.Arch. Toxicol.20169051081109210.1007/s00204‑015‑1540‑726026611
    [Google Scholar]
  17. WangH. ZhangL. AbelG.M. StormD.R. XiaZ. Cadmium exposure impairs cognition and olfactory memory in male C57BL/6 mice.Toxicol. Sci.201816118710210.1093/toxsci/kfx20229029324
    [Google Scholar]
  18. SureshS. VellapandianC. Cyanidin ameliorates bisphenol A-induced Alzheimer’s disease pathology by restoring Wnt/β-catenin signaling Cascade: An in vitro study.Mol. Neurobiol.20232023367210.1007/s12035‑023‑03672‑637843801
    [Google Scholar]
  19. LiuS. DashperS.G. ZhaoR. Association between oral bacteria and alzheimer’s disease: A systematic review and Meta-analysis.J. Alzheimers Dis.202391112915010.3233/JAD‑22062736404545
    [Google Scholar]
  20. GoldhardtO. FreibergerR. DreyerT. WillnerL. YakushevI. OrtnerM. FörstlH. Diehl-SchmidJ. MilzE. PrillerJ. RamirezA. MagdolenV. ThalerM. GrimmerT. Herpes simplex virus alters Alzheimer’s disease biomarkers: A hypothesis paper.Alzheimers Dement.20231952117213410.1002/alz.1283436396609
    [Google Scholar]
  21. PhunaZ.X. MadhavanP. A closer look at the mycobiome in Alzheimer’s disease: Fungal species, pathogenesis and transmission.Eur. J. Neurosci.20225551291132110.1111/ejn.1559935048439
    [Google Scholar]
  22. SamadiM. MoradiS. MoradinazarM. MostafaiR. PasdarY. Dietary pattern in relation to the risk of Alzheimer’s disease: A systematic review.Neurol. Sci.201940102031204310.1007/s10072‑019‑03976‑331240575
    [Google Scholar]
  23. DoorduijnA.S. van de RestO. van der FlierW.M. VisserM. de van der Schueren, M.A.E. Energy and protein intake of Alzheimer’s disease patients compared to cognitively Normal controls: Systematic review.J. Am. Med. Dir. Assoc.2019201142110.1016/j.jamda.2018.06.01930100233
    [Google Scholar]
  24. García-CasaresN. Gallego FuentesP. BarbanchoM.Á. López-GigososR. García-RodríguezA. Gutiérrez-BedmarM. Alzheimer’s disease, mild cognitive impairment and Mediterranean diet. A systematic review and dose-response Meta-analysis.J. Clin. Med.20211020464210.3390/jcm1020464234682764
    [Google Scholar]
  25. HossainM.F. WangN. ChenR. LiS. RoyJ. UddinM.G. LiZ. LimL.W. SongY.Q. Exploring the multifunctional role of melatonin in regulating autophagy and sleep to mitigate Alzheimer’s disease neuropathology.Ageing Res. Rev.20216710130410.1016/j.arr.2021.10130433610813
    [Google Scholar]
  26. LuceyB.P. It’s complicated: The relationship between sleep and Alzheimer’s disease in humans.Neurobiol. Dis.202014410503110.1016/j.nbd.2020.10503132738506
    [Google Scholar]
  27. SelkoeD.J. Alzheimer’s disease: Genes, proteins, and therapy.Physiol. Rev.200181274176610.1152/physrev.2001.81.2.74111274343
    [Google Scholar]
  28. Ferreira-VieiraT.H. GuimaraesI.M. SilvaF.R. RibeiroF.M. Alzheimer’s disease: Targeting the cholinergic system.Curr. Neuropharmacol.201614110111510.2174/1570159X1366615071616572626813123
    [Google Scholar]
  29. ButterfieldD.A. SwomleyA.M. SultanaR. Amyloid beta-peptide (1-42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression.Antioxid. Redox Signal.201421182744275710.1089/ars.2012.502723249141
    [Google Scholar]
  30. HenekaM.T. CarsonM.J. KhouryJ.E. LandrethG.E. BrosseronF. FeinsteinD.L. JacobsA.H. Wyss-CorayT. VitoricaJ. RansohoffR.M. HerrupK. FrautschyS.A. FinsenB. BrownG.C. VerkhratskyA. YamanakaK. KoistinahoJ. LatzE. HalleA. PetzoldG.C. TownT. MorganD. ShinoharaM.L. PerryV.H. HolmesC. BazanN.G. BrooksD.J. HunotS. JosephB. DeigendeschN. GaraschukO. BoddekeE. DinarelloC.A. BreitnerJ.C. ColeG.M. GolenbockD.T. KummerM.P. Neuroinflammation in Alzheimer’s disease.Lancet Neurol.201514438840510.1016/S1474‑4422(15)70016‑525792098
    [Google Scholar]
  31. SivamaruthiB.S. RaghaniN. ChorawalaM. BhattacharyaS. PrajapatiB.G. ElossailyG.M. ChaiyasutC. NF-κB pathway and its inhibitors: A promising frontier in the management of alzheimer’s disease.Biomedicines2023119258710.3390/biomedicines1109258737761028
    [Google Scholar]
  32. ZhuH. BaiY. WangG. SuY. TaoY. WangL. YangL. WuH. HuangF. ShiH. WuX. Hyodeoxycholic acid inhibits lipopolysaccharide-induced microglia inflammatory responses through regulating TGR5/AKT/NF-κB signaling pathway.J. Psychopharmacol.202236784985910.1177/0269881122108904135475391
    [Google Scholar]
  33. YangG. HuY. QinX. SunJ. MiaoZ. WangL. KeZ. ZhengY. Micheliolide attenuates neuroinflammation to improve cognitive impairment of Alzheimer’s disease by inhibiting NF-κB and PI3K/Akt signaling pathways.Heliyon202397e1784810.1016/j.heliyon.2023.e1784837456020
    [Google Scholar]
  34. Molina-SalinasG. Rodríguez-ChávezV. LangleyE. CerbonM. Prolactin-induced neuroprotection against excitotoxicity is mediated via PI3K/AKT and GSK3β/NF-κB in primary cultures of hippocampal neurons.Peptides202316617103710.1016/j.peptides.2023.17103737301481
    [Google Scholar]
  35. YangS. MagnutzkiA. AlamiN.O. LattkeM. HeinT.M. SchellerJ.S. KrögerC. OswaldF. Yilmazer-HankeD. WirthT. BaumannB. IKK2/NF-κB activation in astrocytes reduces amyloid β deposition: A process associated with specific microglia polarization.Cells20211010266910.3390/cells1010266934685649
    [Google Scholar]
  36. HaydenM.S. WestA.P. GhoshS. NF-κB and the immune response.Oncogene200625516758678010.1038/sj.onc.120994317072327
    [Google Scholar]
  37. VogelgesangS. CascorbiI. SchroederE. PahnkeJ. KroemerH.K. SiegmundW. Kunert-KeilC. WalkerL.C. WarzokR.W. Deposition of Alzheimer’s?? -amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans.Pharmacogenetics200212753554110.1097/00008571‑200210000‑0000512360104
    [Google Scholar]
  38. ChorawalaM.R. ShahA.C. PandyaA.J. KothariN.R. PrajapatiB.G. Symptoms and conventional treatments of Alzheimer’s disease.Alzheimer’s Disease and Advanced Drug Delivery Strategies.Academic Press202421323410.1016/B978‑0‑443‑13205‑6.00009‑1
    [Google Scholar]
  39. SharmaK. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review).Mol. Med. Rep.20192021479148731257471
    [Google Scholar]
  40. PooladgarP. SakhabakhshM. TaghvaA. Soleiman-MeigooniS. Donepezil beyond Alzheimer’s Disease? A narrative review of therapeutic potentials of donepezil in different diseases.Iran. J. Pharm. Res.2022211e12840810.5812/ijpr‑12840836942075
    [Google Scholar]
  41. SantosG.S. SinotiS.B.P. de AlmeidaF.T.C. SilveiraD. SimeoniL.A. Gomes-CopelandK.K.P. Use of galantamine in the treatment of Alzheimer’s disease and strategies to optimize its biosynthesis using the in vitro culture technique.Plant Cell Tissue Organ Cult.20201431132910.1007/s11240‑020‑01911‑5
    [Google Scholar]
  42. NguyenK. HoffmanH. ChakkamparambilB. GrossbergG.T. Evaluation of rivastigmine in Alzheimer’s disease.Neurodegener. Dis. Manag.2021111354810.2217/nmt‑2020‑005233198569
    [Google Scholar]
  43. StaziM. WirthsO. Chronic memantine treatment ameliorates behavioral deficits, neuron loss, and impaired neurogenesis in a model of Alzheimer’s disease.Mol. Neurobiol.202158120421610.1007/s12035‑020‑02120‑z32914393
    [Google Scholar]
  44. BeshirS.A. AadithsooryaA.M. ParveenA. GohS.S.L. HussainN. MenonV.B. Aducanumab therapy to treat Alzheimer’s disease: A narrative review.Int. J. Alzheimers Dis.2022202211010.1155/2022/934351435308835
    [Google Scholar]
  45. LloretA. EsteveD. MonllorP. Cervera-FerriA. LloretA. The effectiveness of vitamin E treatment in Alzheimer’s disease.Int. J. Mol. Sci.201920487910.3390/ijms2004087930781638
    [Google Scholar]
  46. MielechA. Puścion-JakubikA. Markiewicz-ŻukowskaR. SochaK. Vitamins in Alzheimer’s disease: Review of the latest reports.Nutrients20201211345810.3390/nu1211345833187212
    [Google Scholar]
  47. LangeK.W. GuoJ. KanayaS. LangeK.M. NakamuraY. LiS. Medical foods in Alzheimer’s disease.Food Sci. Hum. Wellness2019811710.1016/j.fshw.2019.02.002
    [Google Scholar]
  48. ZucchellaC. SinforianiE. TamburinS. FedericoA. MantovaniE. BerniniS. CasaleR. BartoloM. The multidisciplinary approach to Alzheimer’s disease and dementia. A narrative review of non-pharmacological treatment.Front. Neurol.20189105810.3389/fneur.2018.0105830619031
    [Google Scholar]
  49. LiB.S.Y. ChanC.W.H. LiM. WongI.K.Y. YuY.H.U. Effectiveness and safety of aromatherapy in managing behavioral and psychological symptoms of dementia: A mixed-methods systematic review.Dement. Geriatr. Cogn. Disord. Extra202111327329710.1159/00051991535082824
    [Google Scholar]
  50. MikiE. Effects of touch and massage care in advanced alzheimer patient: A pilot case report.Graduate School of Biomedical and Health Sciences: Hiroshima University202010.5742/MEWFM.2020.93819
    [Google Scholar]
  51. RaglioA. PavlicE. BellandiD. Music listening for people living with dementia.J. Am. Med. Dir. Assoc.201819872272310.1016/j.jamda.2018.05.02730056951
    [Google Scholar]
  52. KnektP. JärvinenR. RissanenH. HeliövaaraM. AromaaA. Does sauna bathing protect against dementia?Prev. Med. Rep.20202010122110.1016/j.pmedr.2020.10122133088678
    [Google Scholar]
  53. SinghB. ParsaikA.K. MielkeM.M. ErwinP.J. KnopmanD.S. PetersenR.C. RobertsR.O. Association of mediterranean diet with mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis.J. Alzheimers Dis.201439227128210.3233/JAD‑13083024164735
    [Google Scholar]
  54. AvgerinosK.I. EganJ.M. MattsonM.P. KapogiannisD. Medium chain triglycerides induce mild ketosis and may improve cognition in alzheimer’s disease. A systematic review and meta-analysis of human studies.Ageing Res. Rev.20205810100110.1016/j.arr.2019.10100131870908
    [Google Scholar]
  55. LiD. MaJ. WeiB. GaoS. LangY. WanX. Effectiveness and safety of ginkgo biloba preparations in the treatment of Alzheimer’s disease: A systematic review and meta-analysis.Front. Aging Neurosci.202315112471010.3389/fnagi.2023.112471036960422
    [Google Scholar]
  56. WangS. LiuH.Y. ChengY.C. SuC.H. Exercise dosage in reducing the risk of dementia development: Mode, duration, and intensity—A narrative review.Int. J. Environ. Res. Public Health202118241333110.3390/ijerph18241333134948942
    [Google Scholar]
  57. ElzayatE.M. ShahienS.A. El-SherifA.A. HosneyM. Therapeutic potential of stem cells and acitretin on inflammatory signaling pathway-associated genes regulated by miRNAs 146a and 155 in AD-like rats.Sci. Rep.2023131961310.1038/s41598‑023‑36772‑337311848
    [Google Scholar]
  58. KorkmazA. ReiterR.J. TopalT. ManchesterL.C. OterS. TanD.X. Melatonin: An established antioxidant worthy of use in clinical trials.Mol. Med.2009151-2435010.2119/molmed.2008.0011719011689
    [Google Scholar]
  59. MerloS. CarusoG.I. KordeD.S. KhodorovskaA. HumpelC. SortinoM.A. Melatonin activates anti-inflammatory features in microglia in a multicellular context: Evidence from organotypic brain slices and HMC3 cells.Biomolecules202313237310.3390/biom1302037336830742
    [Google Scholar]
  60. CookM. LinH. MishraS.K. WangG.Y. BAY 11-7082 inhibits the secretion of interleukin-6 by senescent human microglia.Biochem. Biophys. Res. Commun.2022617Pt 1303510.1016/j.bbrc.2022.05.09035671608
    [Google Scholar]
  61. LinY.Z. YaoS. VeachR.A. TorgersonT.R. HawigerJ. Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence.J. Biol. Chem.199527024142551425810.1074/jbc.270.24.142557782278
    [Google Scholar]
  62. El-SaharA.E. ShihaN.A. El SayedN.S. AhmedL.A. Alogliptin attenuates lipopolysaccharide-induced neuroinflammation in mice through modulation of TLR4/MYD88/NF-κB and miRNA-155/SOCS-1 signaling pathways.Int. J. Neuropsychopharmacol.202124215816910.1093/ijnp/pyaa07833125461
    [Google Scholar]
  63. SarnicoI. BoroniF. BenareseM. AlghisiM. ValerioA. BattistinL. SpanoP. PizziM. Targeting IKK2 by pharmacological inhibitor AS602868 prevents excitotoxic injury to neurons and oligodendrocytes.J. Neural Transm.2008115569370110.1007/s00702‑007‑0016‑118197358
    [Google Scholar]
  64. KongF. JiangX. WangR. ZhaiS. ZhangY. WangD. Forsythoside B attenuates memory impairment and neuroinflammation via inhibition on NF-κB signaling in Alzheimer’s disease.J. Neuroinflammation202017130510.1186/s12974‑020‑01967‑233059746
    [Google Scholar]
  65. YoussefM. IbrahimA. AkashiK. HossainM.S. PUFA-plasmalogens attenuate the LPS-induced nitric oxide production by inhibiting the NF-kB, p38 MAPK and JNK pathways in microglial cells.Neuroscience2019397183010.1016/j.neuroscience.2018.11.03030496826
    [Google Scholar]
  66. ShehataM.K. IsmailA.A. KamelM.A. Combined donepezil with astaxanthin via nanostructured lipid carriers effective delivery to brain for alzheimer’s disease in rat model.Int. J. Nanomedicine2023184193422710.2147/IJN.S41792837534058
    [Google Scholar]
  67. UddinF. RudinC.M. SenT. CRISPR gene therapy: Applications, limitations, and implications for the future.Front. Oncol.202010138710.3389/fonc.2020.0138732850447
    [Google Scholar]
  68. RawalS. KhodakiyaA. PrajapatiB.G. Nanotechnology-based delivery for CRISPR-Cas 9 cargo in Alzheimer’s disease.Alzheimer’s Disease and Advanced Drug Delivery Strategies.Academic Press202413915210.1016/B978‑0‑443‑13205‑6.00012‑1
    [Google Scholar]
  69. HanafyA.S. SchochS. LamprechtA. CRISPR/CAS9 delivery potentials in alzheimer’s disease management: A mini review.Pharmaceutics202012980110.3390/pharmaceutics1209080132854251
    [Google Scholar]
  70. DuY. LiuY. HuJ. PengX. LiuZ. CRISPR/Cas9 systems: Delivery technologies and biomedical applications.Asian J. Pharma. Sci2023
    [Google Scholar]
  71. GyörgyB. LöövC. ZaborowskiM.P. TakedaS. KleinstiverB.P. ComminsC. KastanenkaK. MuD. VolakA. GiedraitisV. LannfeltL. MaguireC.A. JoungJ.K. HymanB.T. BreakefieldX.O. IngelssonM. CRISPR/Cas9 mediated disruption of the Swedish APP allele as a therapeutic approach for early-onset Alzheimer’s disease.Mol. Ther. Nucleic Acids20181142944010.1016/j.omtn.2018.03.00729858078
    [Google Scholar]
  72. ParkH. OhJ. ShimG. ChoB. ChangY. KimS. BaekS. KimH. ShinJ. ChoiH. YooJ. KimJ. JunW. LeeM. LengnerC.J. OhY.K. KimJ. In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease.Nat. Neurosci.201922452452810.1038/s41593‑019‑0352‑030858603
    [Google Scholar]
  73. SunJ. Carlson-StevermerJ. DasU. ShenM. DelenclosM. SneadA.M. KooS.Y. WangL. QiaoD. LoiJ. PetersenA.J. StocktonM. BhattacharyyaA. JonesM.V. ZhaoX. McLeanP.J. SproulA.A. SahaK. RoyS. CRISPR/Cas9 editing of APP C-terminus attenuates β-cleavage and promotes α-cleavage.Nat. Commun.20191015310.1038/s41467‑018‑07971‑830604771
    [Google Scholar]
  74. KomorA.C. KimY.B. PackerM.S. ZurisJ.A. LiuD.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.Nature2016533760342042410.1038/nature1794627096365
    [Google Scholar]
  75. OffenD. RabinowitzR. MichaelsonD. Ben-ZurT. Towards gene-editing treatment for alzheimer’s disease: ApoE4 allele-specific knockout using a CRISPR cas9 variant.Cytotherapy2018205S1810.1016/j.jcyt.2018.02.036
    [Google Scholar]
  76. HolstegeH. van der LeeS.J. HulsmanM. WongT.H. van RooijJ.G.J. WeissM. LouwersheimerE. WoltersF.J. AminN. UitterlindenA.G. HofmanA. IkramM.A. van SwietenJ.C. Meijers-HeijboerH. van der FlierW.M. ReindersM.J.T. van DuijnC.M. ScheltensP. Characterization of pathogenic SORL1 genetic variants for association with Alzheimer’s disease: A clinical interpretation strategy.Eur. J. Hum. Genet.201725897398110.1038/ejhg.2017.8728537274
    [Google Scholar]
  77. KnuppA. MishraS. MartinezR. BragginJ.E. SzaboM. KinoshitaC. HaileyD.W. SmallS.A. JayadevS. YoungJ.E. Depletion of the AD risk gene SORL1 selectively impairs neuronal endosomal traffic independent of amyloidogenic APP processing.Cell Rep.202031910771910.1016/j.celrep.2020.10771932492427
    [Google Scholar]
  78. BhardwajS. KesariK.K. RachamallaM. ManiS. AshrafG.M. JhaS.K. KumarP. AmbastaR.K. DurejaH. DevkotaH.P. GuptaG. ChellappanD.K. SinghS.K. DuaK. RuokolainenJ. KamalM.A. OjhaS. JhaN.K. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics.J. Adv. Res.20224020722110.1016/j.jare.2021.07.00136100328
    [Google Scholar]
  79. CorreiaA.C. MonteiroA.R. SilvaR. MoreiraJ.N. SousaLobo J.M.; Silva, A.C. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood–brain barrier (BBB) to manage neurological disorders.Adv. Drug Deliv. Rev.202218911448510.1016/j.addr.2022.11448535970274
    [Google Scholar]
  80. ChenY.P. ChouC.M. ChangT.Y. TingH. DembéléJ. ChuY.T. LiuT.P. ChangouC.A. LiuC.W. ChenC.T. Bridging size and charge effects of mesoporous silica nanoparticles for crossing the blood–brain barrier.Front Chem.20221093158410.3389/fchem.2022.93158435880111
    [Google Scholar]
  81. ManzanoM. Vallet-RegíM. Mesoporous silica nanoparticles for drug delivery.Adv. Funct. Mater.2020302190263410.1002/adfm.201902634
    [Google Scholar]
  82. SivamaruthiB.S. KapoorD.U. KukkarR.R. GaurM. ElossailyG.M. PrajapatiB.G. ChaiyasutC. Mesoporous silica nanoparticles: Types, synthesis, role in the treatment of alzheimer’s disease, and other applications.Pharmaceutics20231512266610.3390/pharmaceutics1512266638140007
    [Google Scholar]
  83. PandeyP.K. SharmaA.K. RaniS. MishraG. KandasamyG. PatraA.K. RanaM. SharmaA.K. YadavA.K. GuptaU. MCM-41 nanoparticles for brain delivery: Better choline-esterase and amyloid formation inhibition with improved kinetics.ACS Biomater. Sci. Eng.2018482860286910.1021/acsbiomaterials.8b0033533435009
    [Google Scholar]
  84. HalevasE. MavroidiB. NdayC.M. TangJ. SmithG.C. BoukosN. LitsardakisG. PelecanouM. SalifoglouA. Modified magnetic core-shell mesoporous silica nano-formulations with encapsulated quercetin exhibit anti-amyloid and antioxidant activity.J. Inorg. Biochem.202021311127110.1016/j.jinorgbio.2020.11127133069945
    [Google Scholar]
  85. SinghA.K. SinghS.S. RathoreA.S. SinghS.P. MishraG. AwasthiR. MishraS.K. GautamV. SinghS.K. Lipid-coated MCM-41 mesoporous silica nanoparticles loaded with berberine improved inhibition of acetylcholine esterase and amyloid formation.ACS Biomater. Sci. Eng.2021783737375310.1021/acsbiomaterials.1c0051434297529
    [Google Scholar]
  86. RibeiroT.C. SábioR.M. LuizM.T. de SouzaL.C. Fonseca-SantosB. Cides da SilvaL.C. FantiniM.C.A. PlanetaC.S. ChorilliM. Curcumin-loaded mesoporous silica nanoparticles dispersed in thermo-responsive hydrogel as potential alzheimer disease therapy.Pharmaceutics2022149197610.3390/pharmaceutics1409197636145723
    [Google Scholar]
  87. LiuN. YangC. LiangX. CaoK. XieJ. LuoQ. LuoH. Mesoporous silica nanoparticle-encapsulated Bifidobacterium attenuates brain Aβ burden and improves olfactory dysfunction of APP/PS1 mice by nasal delivery.J. Nanobiotechnology202220143910.1186/s12951‑022‑01642‑z36207740
    [Google Scholar]
  88. XuL. GuoM. HungC.T. ShiX.L. YuanY. ZhangX. JinR.H. LiW. DongQ. ZhaoD. Chiral skeletons of mesoporous silica nanospheres to mitigate alzheimer’s β-Amyloid aggregation.J. Am. Chem. Soc.2023145147810781910.1021/jacs.2c1221437002870
    [Google Scholar]
  89. CummingsJ. LeeG. RitterA. SabbaghM. ZhongK. Alzheimer’s disease drug development pipeline: 2019.Alzheimers Dement.20195127229310.1016/j.trci.2019.05.00831334330
    [Google Scholar]
  90. AbbottN.J. PatabendigeA.A.K. DolmanD.E.M. YusofS.R. BegleyD.J. Structure and function of the blood–brain barrier.Neurobiol. Dis.2010371132510.1016/j.nbd.2009.07.03019664713
    [Google Scholar]
  91. HawkinsR.A. The blood-brain barrier and brain homeostasis.The blood-brain barrier and its role in cerebral edema. HawkinsR.A. LajthaW.N. Springer2009110
    [Google Scholar]
  92. SweeneyM.D. ZhaoZ. MontagneA. NelsonA.R. ZlokovicB.V. Blood-brain barrier: From physiology to disease and back.Physiol. Rev.2019991217810.1152/physrev.00050.201730280653
    [Google Scholar]
  93. ObermeierB. DanemanR. RansohoffR.M. Development, maintenance and disruption of the blood-brain barrier.Nat. Med.201319121584159610.1038/nm.340724309662
    [Google Scholar]
  94. WiseJ.G. Catalytic transitions in the human MDR1 P-glycoprotein drug binding sites.Biochemistry201251255125514110.1021/bi300299z22647192
    [Google Scholar]
  95. KimY. ChenJ. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation.Science2018359637891591910.1126/science.aar738929371429
    [Google Scholar]
  96. SilvaR. Vilas-BoasV. CarmoH. Dinis-OliveiraR.J. CarvalhoF. de Lourdes BastosM. RemiãoF. Modulation of P-glycoprotein efflux pump: Induction and activation as a therapeutic strategy.Pharmacol. Ther.2015149112310.1016/j.pharmthera.2014.11.01325435018
    [Google Scholar]
  97. BikadiZ. HazaiI. MalikD. JemnitzK. VeresZ. HariP. NiZ. LooT.W. ClarkeD.M. HazaiE. MaoQ. Predicting P-glycoprotein-mediated drug transport based on support vector machine and three-dimensional crystal structure of P-glycoprotein.PLoS One2011610e2581510.1371/journal.pone.002581521991360
    [Google Scholar]
  98. CoxB. NicolaïJ. WilliamsonB. The role of the efflux transporter, P‐glycoprotein, at the blood–brain barrier in drug discovery.Biopharm. Drug Dispos.202344111312610.1002/bdd.233136198662
    [Google Scholar]
  99. HanL. Modulation of the blood–brain barrier for drug delivery to brain.Pharmaceutics20211312202410.3390/pharmaceutics1312202434959306
    [Google Scholar]
  100. DeoA.K. BorsonS. LinkJ.M. DominoK. EaryJ.F. KeB. RichardsT.L. MankoffD.A. MinoshimaS. O’SullivanF. EyalS. HsiaoP. MaravillaK. UnadkatJ.D. Activity of P-glycoprotein, a β-amyloid transporter at the blood–brain barrier, is compromised in patients with mild Alzheimer disease.J. Nucl. Med.20145571106111110.2967/jnumed.113.13016124842892
    [Google Scholar]
  101. CirritoJ.R. DeaneR. FaganA.M. SpinnerM.L. ParsadanianM. FinnM.B. JiangH. PriorJ.L. SagareA. BalesK.R. PaulS.M. ZlokovicB.V. Piwnica-WormsD. HoltzmanD.M. P-glycoprotein deficiency at the blood-brain barrier increases amyloid- deposition in an Alzheimer disease mouse model.J. Clin. Invest.2005115113285329010.1172/JCI2524716239972
    [Google Scholar]
  102. HartzA.M.S. ZhongY. WolfA. LeVineH.III MillerD.S. BauerB. Aβ40 reduces P-glycoprotein at the blood–brain barrier through the ubiquitin–proteasome pathway.J. Neurosci.20163661930194110.1523/JNEUROSCI.0350‑15.201626865616
    [Google Scholar]
  103. PfundsteinG. NikonenkoA.G. SytnykV. Amyloid precursor protein (APP) and amyloid β (Aβ) interact with cell adhesion molecules: Implications in Alzheimer’s disease and normal physiology.Front. Cell Dev. Biol.20221096954710.3389/fcell.2022.96954735959488
    [Google Scholar]
  104. Sadigh-EteghadS. SabermaroufB. MajdiA. TalebiM. FarhoudiM. MahmoudiJ. Amyloid-beta: A crucial factor in Alzheimer’s disease.Med. Princ. Pract.201524111010.1159/00036910125471398
    [Google Scholar]
  105. HampelH. HardyJ. BlennowK. ChenC. PerryG. KimS.H. VillemagneV.L. AisenP. VendruscoloM. IwatsuboT. MastersC.L. ChoM. LannfeltL. CummingsJ.L. VergalloA. The amyloid-β pathway in Alzheimer’s disease.Mol. Psychiatry202126105481550310.1038/s41380‑021‑01249‑034456336
    [Google Scholar]
  106. ZhangY. ChenH. LiR. SterlingK. SongW. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future.Signal Transduct. Target. Ther.20238124810.1038/s41392‑023‑01484‑737386015
    [Google Scholar]
  107. ChaiA.B. HartzA.M.S. GaoX. YangA. CallaghanR. GelissenI.C. New evidence for P-gp-mediated export of amyloid-β PEPTIDES in molecular, blood-brain barrier and neuronal models.Int. J. Mol. Sci.202022124610.3390/ijms2201024633383667
    [Google Scholar]
  108. StorckS.E. HartzA.M.S. BernardJ. WolfA. KachlmeierA. MahringerA. WeggenS. PahnkeJ. PietrzikC.U. The concerted amyloid-beta clearance of LRP1 and ABCB1/P-gp across the blood-brain barrier is linked by PICALM.Brain Behav. Immun.201873213310.1016/j.bbi.2018.07.01730041013
    [Google Scholar]
  109. WeissN. MillerF. CazaubonS. CouraudP.O. The blood-brain barrier in brain homeostasis and neurological diseases.Biochim. Biophys. Acta Biomembr.20091788484285710.1016/j.bbamem.2008.10.02219061857
    [Google Scholar]
  110. DeaneR. SagareA. ZlokovicB. The role of the cell surface LRP and soluble LRP in blood-brain barrier Abeta clearance in Alzheimer’s disease.Curr. Pharm. Des.200814161601160510.2174/13816120878470548718673201
    [Google Scholar]
  111. WolfA. BauerB. HartzA.M.S. ABC transporters and the Alzheimer’s disease enigma.Front. Psychiatry201235410.3389/fpsyt.2012.0005422675311
    [Google Scholar]
  112. DingY. ZhongY. BaldeshwilerA. AbnerE.L. BauerB. HartzA.M.S. Protecting P-glycoprotein at the blood–brain barrier from degradation in an Alzheimer’s disease mouse model.Fluids Barriers CNS20211811010.1186/s12987‑021‑00245‑433676539
    [Google Scholar]
  113. HartzA.M.S. ZhongY. ShenA.N. AbnerE.L. BauerB. Preventing P-gp ubiquitination lowers aβ brain levels in an Alzheimer’s disease mouse model.Front. Aging Neurosci.20181018610.3389/fnagi.2018.0018629997495
    [Google Scholar]
  114. MandelkowE.M. MandelkowE. Biochemistry and cell biology of tau protein in neurofibrillary degeneration.Cold Spring Harb. Perspect. Med.201227a00624710.1101/cshperspect.a00624722762014
    [Google Scholar]
  115. GuoT. NobleW. HangerD.P. Roles of tau protein in health and disease.Acta Neuropathol.2017133566570410.1007/s00401‑017‑1707‑928386764
    [Google Scholar]
  116. SukanyaP. Dual specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) inhibitors: The quest for a disease-modifying treatment for alzheimer’s disease.In Deciphering Drug Targets for Alzheimer’s Disease.SingaporeSpringer2023699410.1007/978‑981‑99‑2657‑2_4
    [Google Scholar]
  117. SamudraN. Lane-DonovanC. VandeVredeL. BoxerA.L. Tau pathology in neurodegenerative disease: disease mechanisms and therapeutic avenues.J. Clin. Invest.202313312e16855310.1172/JCI16855337317972
    [Google Scholar]
  118. SilvaM.C. HaggartyS.J. Tauopathies: Deciphering disease mechanisms to develop effective therapies.Int. J. Mol. Sci.20202123894810.3390/ijms2123894833255694
    [Google Scholar]
  119. PradeepkiranJ.A. ReddyP.H. Phosphorylated tau targeted small-molecule PROTACs for the treatment of Alzheimer’s disease and tauopathies.Biochim. Biophys. Acta Mol. Basis Dis.20211867816616210.1016/j.bbadis.2021.16616233940164
    [Google Scholar]
  120. SenguptaU. KayedR. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases.Prog. Neurobiol.202221410227010.1016/j.pneurobio.2022.10227035447272
    [Google Scholar]
  121. VyasJ. RaytthathaN. PrajapatiB.G. Amyloid cascade hypothesis, tau synthesis, and role of oxidative stress in AD.Alzheimer’s Disease and Advanced Drug Delivery Strategies.Academic Press2024739210.1016/B978‑0‑443‑13205‑6.00023‑6
    [Google Scholar]
  122. De FeliceF.G. VelascoP.T. LambertM.P. ViolaK. FernandezS.J. FerreiraS.T. KleinW.L. Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine.J. Biol. Chem.200728215115901160110.1074/jbc.M60748320017308309
    [Google Scholar]
  123. JohnA. ReddyP.H. Synaptic basis of Alzheimer’s disease: Focus on synaptic amyloid β, P-tau and mitochondria.Ageing Res. Rev.20216510120810.1016/j.arr.2020.10120833157321
    [Google Scholar]
  124. SultanaR. Boyd-KimballD. PoonH.F. CaiJ. PierceW.M. KleinJ.B. MerchantM. MarkesberyW.R. ButterfieldD.A. Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: An approach to understand pathological and biochemical alterations in AD.Neurobiol. Aging200627111564157610.1016/j.neurobiolaging.2005.09.02116271804
    [Google Scholar]
  125. ResendeR. MoreiraP.I. ProençaT. DeshpandeA. BusciglioJ. PereiraC. OliveiraC.R. Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease.Free Radic. Biol. Med.200844122051205710.1016/j.freeradbiomed.2008.03.01218423383
    [Google Scholar]
  126. TokutakeT. KasugaK. YajimaR. SekineY. TezukaT. NishizawaM. IkeuchiT. Hyperphosphorylation of Tau induced by naturally secreted amyloid-β at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3β signaling pathway.J. Biol. Chem.201228742352223523310.1074/jbc.M112.34830022910909
    [Google Scholar]
  127. WuH.Y. KuoP.C. WangY.T. LinH.T. RoeA.D. WangB.Y. HanC.L. HymanB.T. ChenY.J. TaiH.C. β-Amyloid induces pathology-related patterns of tau hyperphosphorylation at synaptic terminals.J. Neuropathol. Exp. Neurol.201877981482610.1093/jnen/nly05930016458
    [Google Scholar]
  128. ZhangH. WeiW. ZhaoM. MaL. JiangX. PeiH. CaoY. LiH. Interaction between Aβ and tau in the pathogenesis of Alzheimer’s disease.Int. J. Biol. Sci.20211792181219210.7150/ijbs.5707834239348
    [Google Scholar]
  129. ZhangL. LiangX. ZhangZ. LuoH. Cerebrospinal fluid and blood biomarkers in the diagnostic assays of Alzheimer’s disease.J. Innov. Opt. Health Sci.2022151223000110.1142/S1793545822300014
    [Google Scholar]
  130. Alavi NainiS.M. Soussi-YanicostasN. Tau hyperphosphorylation and oxidative stress, a critical vicious circle in neurodegenerative tauopathies?Oxid. Med. Cell. Longev.2015201511710.1155/2015/15197926576216
    [Google Scholar]
  131. SuB. WangX. LeeH. TabatonM. PerryG. SmithM.A. ZhuX. Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells.Neurosci. Lett.2010468326727110.1016/j.neulet.2009.11.01019914335
    [Google Scholar]
  132. Ibáñez-SalazarA. Bañuelos-HernándezB. Rodríguez-LeyvaI. Chi-AhumadaE. Monreal-EscalanteE. Jiménez-CapdevilleM.E. Rosales-MendozaS. Oxidative stress modifies the levels and phosphorylation state of tau protein in human fibroblasts.Front. Neurosci.20171149510.3389/fnins.2017.0049528936161
    [Google Scholar]
  133. LovellM.A. XiongS. XieC. DaviesP. MarkesberyW.R. Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase kinase-3.J. Alzheimers Dis.20056665967110.3233/JAD‑2004‑661015665406
    [Google Scholar]
  134. MelovS. AdlardP.A. MortenK. JohnsonF. GoldenT.R. HinerfeldD. SchillingB. MavrosC. MastersC.L. VolitakisI. LiQ.X. LaughtonK. HubbardA. ChernyR.A. GibsonB. BushA.I. Mitochondrial oxidative stress causes hyperphosphorylation of tau.PLoS One200726e53610.1371/journal.pone.000053617579710
    [Google Scholar]
  135. HaqueM.M. MuraleD.P. KimY.K. LeeJ.S. Crosstalk between oxidative stress and tauopathy.Int. J. Mol. Sci.2019208195910.3390/ijms2008195931013607
    [Google Scholar]
  136. AtlanteA. ValentiD. LatinaV. AmadoroG. Role of oxygen radicals in alzheimer’s disease: Focus on tau protein.Oxygen2021129612010.3390/oxygen1020010
    [Google Scholar]
  137. EsterasN. KundelF. AmodeoG.F. PavlovE.V. KlenermanD. AbramovA.Y. Insoluble tau aggregates induce neuronal death through modification of membrane ion conductance, activation of voltage‐gated calcium channels and NADPH oxidase.FEBS J.2021288112714110.1111/febs.1534032338825
    [Google Scholar]
  138. LiuZ. LiP. WuJ. WangY. LiP. HouX. The cascade of oxidative stress and tau protein autophagic dysfunction in alzheimer’s disease.Alzheimer’s Dis Challenges Future, 2.InTech201510.5772/59980
    [Google Scholar]
  139. YoshiyamaY. LeeV.M.Y. TrojanowskiJ.Q. Therapeutic strategies for tau mediated neurodegeneration.J. Neurol. Neurosurg. Psychiatry201384778479510.1136/jnnp‑2012‑30314423085937
    [Google Scholar]
  140. CunninghamD. DeBarberA.E. BirN. BinkleyL. MerkensL.S. SteinerR.D. HermanG.E. Analysis of hedgehog signaling in cerebellar granule cell precursors in a conditional Nsdhl allele demonstrates an essential role for cholesterol in postnatal CNS development.Hum. Mol. Genet.201524102808282510.1093/hmg/ddv04225652406
    [Google Scholar]
  141. HussainG. WangJ. RasulA. AnwarH. ImranA. QasimM. ZafarS. KamranS.K.S. RazzaqA. AzizN. AhmadW. ShabbirA. IqbalJ. BaigS.M. SunT. Role of cholesterol and sphingolipids in brain development and neurological diseases.Lipids Health Dis.20191812610.1186/s12944‑019‑0965‑z30683111
    [Google Scholar]
  142. QianL. ChaiA.B. GelissenI.C. BrownA.J. Balancing cholesterol in the brain: From synthesis to disposal.Exploration of Neuroprotective Therapy2022212710.37349/ent.2022.00015
    [Google Scholar]
  143. MahleyR.W. Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism.Arterioscler. Thromb. Vasc. Biol.20163671305131510.1161/ATVBAHA.116.30702327174096
    [Google Scholar]
  144. WoodW.G. LiL. MüllerW.E. EckertG.P. Cholesterol as a causative factor in Alzheimer’s disease: A debatable hypothesis.J. Neurochem.2014129455957210.1111/jnc.1263724329875
    [Google Scholar]
  145. PopugaevaE. PchitskayaE. BezprozvannyI. Dysregulation of intracellular calcium signaling in Alzheimer’s disease.Antioxid. Redox Signal.201829121176118810.1089/ars.2018.750629890840
    [Google Scholar]
  146. KodisE.J. ChoiS. SwansonE. FerreiraG. BloomG.S. N‐methyl‐D‐aspartate receptor–mediated calcium influx connects amyloid‐β oligomers to ectopic neuronal cell cycle reentry in Alzheimer’s disease.Alzheimers Dement.201814101302131210.1016/j.jalz.2018.05.01730293574
    [Google Scholar]
  147. ChungJ. PhukanG. VergoteD. MohamedA. MaulikM. StahnM. Endosomal-lysosomal cholesterol sequestration by U18666A differentially regulates APP metabolism in normal and APP overexpressing cells.Mol. Cell. Biol.20183811529517
    [Google Scholar]
  148. OveisgharanS. BuchmanA.S. YuL. FarfelJ. HachinskiV. GaiteriC. De JagerP.L. SchneiderJ.A. BennettD.A. APOE ε2ε4 genotype, incident AD and MCI, cognitive decline, and AD pathology in older adults.Neurology20189024e2119e212610.1212/WNL.0000000000005677
    [Google Scholar]
  149. LiZ. ShueF. ZhaoN. ShinoharaM. BuG. APOE2: protective mechanism and therapeutic implications for Alzheimer’s disease.Mol. Neurodegener.20201516310.1186/s13024‑020‑00413‑433148290
    [Google Scholar]
  150. GambaP. TestaG. SotteroB. GargiuloS. PoliG. LeonarduzziG. The link between altered cholesterol metabolism and Alzheimer’s disease.Ann. N. Y. Acad. Sci.201212591546410.1111/j.1749‑6632.2012.06513.x22758637
    [Google Scholar]
  151. ShangJ. YamashitaT. FukuiY. SongD. LiX. ZhaiY. NakanoY. MoriharaR. HishikawaN. OhtaY. AbeK. Different associations of plasma biomarkers in alzheimer’s disease, mild cognitive impairment, vascular dementia, and ischemic stroke.J. Clin. Neurol.2018141293410.3988/jcn.2018.14.1.2929629537
    [Google Scholar]
  152. CatapanoA.L. Atherogenic lipoproteins as treatment targets.Nat. Rev. Cardiol.2018152757610.1038/nrcardio.2017.22129336436
    [Google Scholar]
  153. FenyvesiF. FenyvesiÉ. SzenteL. GodaK. BacsóZ. BácskayI. VáradiJ. KissT. MolnárÉ. JanákyT. SzabóG.Jr VecsernyésM. P-glycoprotein inhibition by membrane cholesterol modulation.Eur. J. Pharm. Sci.2008344-523624210.1016/j.ejps.2008.04.00518539442
    [Google Scholar]
  154. TroostJ. LindenmaierH. HaefeliW.E. WeissJ. Modulation of cellular cholesterol alters P-glycoprotein activity in multidrug-resistant cells.Mol. Pharmacol.20046651332133910.1124/mol.104.00232915308763
    [Google Scholar]
  155. RadevaG. PeraboJ. SharomF.J. P‐Glycoprotein is localized in intermediate‐density membrane microdomains distinct from classical lipid rafts and caveolar domains.FEBS J.2005272194924493710.1111/j.1742‑4658.2005.04905.x16176266
    [Google Scholar]
  156. TarlingE.J. VallimT.Q.A. EdwardsP.A. Role of ABC transporters in lipid transport and human disease.Trends Endocrinol. Metab.201324734235010.1016/j.tem.2013.01.00623415156
    [Google Scholar]
  157. HochmanJ.H. PudvahN. QiuJ. YamazakiM. TangC. LinJ.H. PrueksaritanontT. Interactions of human P-glycoprotein with simvastatin, simvastatin acid, and atorvastatin.Pharm. Res.20042191686169110.1023/B:PHAM.0000041466.84653.8c15497697
    [Google Scholar]
  158. HoltzmanC.W. WigginsB.S. SpinlerS.A. Role of P-glycoprotein in statin drug interactions.Pharmacotherapy200626111601160710.1592/phco.26.11.160117064205
    [Google Scholar]
  159. BogmanK. PeyerA.K. TörökM. KüstersE. DreweJ. HMG‐CoA reductase inhibitors and P‐glycoprotein modulation.Br. J. Pharmacol.200113261183119210.1038/sj.bjp.070392011250868
    [Google Scholar]
  160. ShepardsonN.E. ShankarG.M. SelkoeD.J. Cholesterol level and statin use in Alzheimer disease: II. Review of human trials and recommendations.Arch. Neurol.201168111385139210.1001/archneurol.2011.24222084122
    [Google Scholar]
  161. RehakovaR. CebovaM. MatuskovaZ. KosutovaM. KovacsovaM. PechanovaO.G. Brain cholesterol and the role of statins in neuroprotection.Act. Nerv. Super Rediviva20165811117
    [Google Scholar]
  162. LushchakV.I. DuszenkoM. GospodaryovD.V. GaraschukO. Oxidative stress and energy metabolism in the brain: Midlife as a turning point.Antioxidants20211011171510.3390/antiox1011171534829586
    [Google Scholar]
  163. KayaM. AhishaliB. Basic physiology of the blood-brain barrier in health and disease: A brief overview.Tissue Barriers202191184091310.1080/21688370.2020.184091333190576
    [Google Scholar]
  164. SinghA. KukretiR. SasoL. KukretiS. Oxidative stress: A key modulator in neurodegenerative diseases.Molecules2019248158310.3390/molecules2408158331013638
    [Google Scholar]
  165. KwonH.S. KohS.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes.Transl. Neurodegener.2020914210.1186/s40035‑020‑00221‑233239064
    [Google Scholar]
  166. RizzoM.T. SaquibM. LeaverH.A. Oxidative stress and brain endothelial cells. Systems biology of free radicals and antioxidants. LaherI. 20141959197710.1007/978‑3‑642‑30018‑9_93
    [Google Scholar]
  167. CosteaL. MészárosÁ. BauerH. BauerH.C. TrawegerA. WilhelmI. FarkasA.E. KrizbaiI.A. The blood–brain barrier and its intercellular junctions in age-related brain disorders.Int. J. Mol. Sci.20192021547210.3390/ijms2021547231684130
    [Google Scholar]
  168. SitaG. HreliaP. TarozziA. MorroniF. P-glycoprotein (ABCB1) and oxidative stress: focus on Alzheimer’s disease.Oxid. Med. Cell. Longev.2017201711310.1155/2017/790548629317984
    [Google Scholar]
  169. MillerD.S. Regulation of ABC transporters at the blood–brain barrier.Clin. Pharmacol. Ther.201597439540310.1002/cpt.6425670036
    [Google Scholar]
  170. HulsM. RusselF.G.M. MasereeuwR. The role of ATP binding cassette transporters in tissue defense and organ regeneration.J. Pharmacol. Exp. Ther.200932813910.1124/jpet.107.13222518791064
    [Google Scholar]
  171. HartzA.M.S. MillerD.S. BauerB. Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-β in a mouse model of Alzheimer’s disease.Mol. Pharmacol.201077571572310.1124/mol.109.06175420101004
    [Google Scholar]
  172. GuoJ. HuangX. DouL. YanM. ShenT. TangW. LiJ. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments.Signal Transduct. Target. Ther.20227139110.1038/s41392‑022‑01251‑036522308
    [Google Scholar]
  173. AbuznaitA.H. CainC. IngramD. BurkD. KaddoumiA. Up-regulation of P-glycoprotein reduces intracellular accumulation of beta amyloid: investigation of P-glycoprotein as a novel therapeutic target for Alzheimer’s disease.J. Pharm. Pharmacol.20116381111111810.1111/j.2042‑7158.2011.01309.x21718295
    [Google Scholar]
  174. DemeuleM. RéginaA. JodoinJ. LaplanteA. DagenaisC. BertheletF. MoghrabiA. BéliveauR. Drug transport to the brain: Key roles for the efflux pump P-glycoprotein in the blood–brain barrier.Vascul. Pharmacol.200238633934810.1016/S1537‑1891(02)00201‑X12529928
    [Google Scholar]
  175. TsujiA. Influx transporters and drug targeting: Application of peptide and cation transporters.International Congress SeriesElsevier20051277758410.1016/j.ics.2005.02.013
    [Google Scholar]
  176. PrachayasittikulV. P-glycoprotein transporter in drug development.EXCLI J.20161511311827047321
    [Google Scholar]
  177. DavisT.P. Sanchez-CovarubiasL. TomeM.E. P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery.Adv. Pharmacol.201471254410.1016/bs.apha.2014.06.00925307213
    [Google Scholar]
  178. DongX. Current strategies for brain drug delivery.Theranostics2018861481149310.7150/thno.2125429556336
    [Google Scholar]
  179. AminM.L. P-glycoprotein inhibition for optimal drug delivery.Drug Target Insights201372734
    [Google Scholar]
  180. MitusovaK. PeltekO.O. KarpovT.E. MuslimovA.R. ZyuzinM.V. TiminA.S. Overcoming the blood–brain barrier for the therapy of malignant brain tumor: current status and prospects of drug delivery approaches.J. Nanobiotechnology202220141210.1186/s12951‑022‑01610‑736109754
    [Google Scholar]
  181. Ates-AlagozZ. AdejareA. Physicochemical properties for potential Alzheimer’s disease drugs.Drug Discovery Approaches for the Treatment of Neurodegenerative Disorders.Academic press2017598210.1016/B978‑0‑12‑802810‑0.00005‑2
    [Google Scholar]
  182. WongK. RiazM. XieY. ZhangX. LiuQ. ChenH. BianZ. ChenX. LuA. YangZ. Review of current strategies for delivering Alzheimer’s disease drugs across the blood-brain barrier.Int. J. Mol. Sci.201920238110.3390/ijms2002038130658419
    [Google Scholar]
  183. SpielerD. NamendorfC. NamendorfT. von CubeM. UhrM. Donepezil, a cholinesterase inhibitor used in Alzheimer’s disease therapy, is actively exported out of the brain by abcb1ab p-glycoproteins in mice.J. Psychiatr. Res.2020124293310.1016/j.jpsychires.2020.01.01232114029
    [Google Scholar]
  184. FinchA. PillansP. P-glycoprotein and its role in drug-drug interactions.Aust. Prescr.201437413713910.18773/austprescr.2014.050
    [Google Scholar]
  185. WanekT. RömermannK. MairingerS. StanekJ. SaubererM. FilipT. TraxlA. KuntnerC. PahnkeJ. BauerF. ErkerT. LöscherW. MüllerM. LangerO. Factors governing P-glycoprotein-mediated drug–drug interactions at the blood–brain barrier measured with positron emission tomography.Mol. Pharm.20151293214322510.1021/acs.molpharmaceut.5b0016826202880
    [Google Scholar]
  186. PanzaF. LozuponeM. LogroscinoG. ImbimboB.P. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease.Nat. Rev. Neurol.2019152738810.1038/s41582‑018‑0116‑630610216
    [Google Scholar]
  187. LoebM.B. MolloyD.W. SmiejaM. StandishT. GoldsmithC.H. MahonyJ. SmithS. BorrieM. DecoteauE. DavidsonW. McdougallA. GnarpeJ. O’donnellM. CherneskyM. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer’s disease.J. Am. Geriatr. Soc.200452338138710.1111/j.1532‑5415.2004.52109.x14962152
    [Google Scholar]
  188. SudsakornS. BahadduriP. FretlandJ. LuC. 2020 FDA drug-drug interaction guidance: A comparison analysis and action plan by pharmaceutical industrial scientists.Curr. Drug Metab.202021640342610.2174/138920022166620062021052232562522
    [Google Scholar]
  189. MohamedL.A. KellerJ.N. KaddoumiA. Role of P-glycoprotein in mediating rivastigmine effect on amyloid-β brain load and related pathology in Alzheimer’s disease mouse model.Biochim. Biophys. Acta Mol. Basis Dis.20161862477878710.1016/j.bbadis.2016.01.01326780497
    [Google Scholar]
  190. MohamedL.A. QosaH. KaddoumiA. Age-related decline in brain and hepatic clearance of amyloid-beta is rectified by the cholinesterase inhibitors donepezil and rivastigmine in rats.ACS Chem. Neurosci.20156572573610.1021/acschemneuro.5b0004025782004
    [Google Scholar]
  191. QosaH. AbuznaitA.H. HillR.A. KaddoumiA. Enhanced brain amyloid-β clearance by rifampicin and caffeine as a possible protective mechanism against Alzheimer’s disease.J. Alzheimers Dis.201231115116510.3233/JAD‑2012‑12031922504320
    [Google Scholar]
  192. UmedaT. TanakaA. SakaiA. YamamotoA. SakaneT. TomiyamaT. Intranasal rifampicin for Alzheimer’s disease prevention.Alzheimers Dement.20184130431310.1016/j.trci.2018.06.01230094330
    [Google Scholar]
  193. WashingtonC.B. DuranG.E. ManM.C. SikicB.I. BlaschkeT.F. Interaction of anti-HIV protease inhibitors with the multidrug transporter P-glycoprotein (P-gp) in human cultured cells.J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.1998193203209
    [Google Scholar]
  194. VourvahisM. DumondJ. PattersonK. Effects of tipranavir/ritonavir (TPV/r) on the activity of hepatic and intestinal cytochrome.14th Conference on Retroviruses and Opportunistic Infections2007450Los Angeles
    [Google Scholar]
  195. NarangV.S. FragaC. KumarN. ShenJ. ThromS. StewartC.F. WatersC.M. Dexamethasone increases expression and activity of multidrug resistance transporters at the rat blood-brain barrier.Am. J. Physiol. Cell Physiol.20082952C440C45010.1152/ajpcell.00491.200718524938
    [Google Scholar]
  196. IqbalM. BaelloS. JavamM. AudetteM.C. GibbW. MatthewsS.G. Regulation of multidrug resistance p‐glycoprotein in the developing blood–brain barrier: Interplay between glucocorticoids and cytokines.J. Neuroendocrinol.2016283jne.1236010.1111/jne.1236026718627
    [Google Scholar]
  197. YangH. LiuH. LiuX. ZhangD. LiuY. LiuX. WangG. XieL. Increased P-glycoprotein function and level after long-term exposure of four antiepileptic drugs to rat brain microvascular endothelial cells in vitro.Neurosci. Lett.2008434329930310.1016/j.neulet.2008.01.07118313849
    [Google Scholar]
  198. OwenA. GoldringC. MorganP. ParkB.K. PirmohamedM. Induction of P‐glycoprotein in lymphocytes by carbamazepine and rifampicin: the role of nuclear hormone response elements.Br. J. Clin. Pharmacol.200662223724210.1111/j.1365‑2125.2006.02587.x16842400
    [Google Scholar]
  199. KeX. ChengY. YuN. DiQ. Effects of carbamazepine on the P-gp and CYP3A expression correlated with PXR or NF-κB activity in the bEnd.3 cells.Neurosci. Lett.2019690485510.1016/j.neulet.2018.10.01630312753
    [Google Scholar]
  200. StörmerE. von MoltkeL.L. PerloffM.D. GreenblattD.J. P-glycoprotein interactions of nefazodone and trazodone in cell culture.J. Clin. Pharmacol.200141770871410.1177/0091270012201060911452702
    [Google Scholar]
  201. ShirasakaY. KawasakiM. SakaneT. OmatsuH. MoriyaY. NakamuraT. SakaedaT. OkumuraK. LangguthP. YamashitaS. Induction of human P-glycoprotein in Caco-2 cells: Development of a highly sensitive assay system for P-glycoprotein-mediated drug transport.Drug Metab. Pharmacokinet.200621541442310.2133/dmpk.21.41417072095
    [Google Scholar]
  202. HarmsenS. MeijermanI. FebusC.L. Maas-BakkerR.F. BeijnenJ.H. SchellensJ.H.M. PXR-mediated induction of P-glycoprotein by anticancer drugs in a human colon adenocarcinoma-derived cell line.Cancer Chemother. Pharmacol.201066476577110.1007/s00280‑009‑1221‑420041327
    [Google Scholar]
  203. BrennA. GrubeM. JedlitschkyG. FischerA. StrohmeierB. EidenM. KellerM. GroschupM.H. VogelgesangS.St. John’s Wort reduces beta-amyloid accumulation in a double transgenic Alzheimer’s disease mouse model-role of P-glycoprotein.Brain Pathol.2014241182410.1111/bpa.1206923701205
    [Google Scholar]
  204. El MenuawyA. BrüningT. EirizI. HähnelU. MartheF. MöhleL. GórskaA.M. Santos-GarcíaI. WangensteenH. WuJ. PahnkeJ. Apolar extracts of St. John’s wort alleviate the effects of β-Amyloid toxicity in early alzheimer’s disease.Int. J. Mol. Sci.2024252130110.3390/ijms2502130138279301
    [Google Scholar]
  205. Clinical drug interaction studies: Cytochrome P450 enzyme- and transporter- mediated drug interactions guidance for industry by US Food and Drug Administration.2020Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-drug- (Accessed on December 9, 2020).
  206. HarbyS.A. NassraR.A. Memantine, as a p-glycoprotein expression modulator, enhances levetiracetam therapeutic response in epileptic patients.Asian J. Pharm. Clin. Res.2020135104108
    [Google Scholar]
  207. PangX. WangL. KangD. ZhaoY. WuS. LiuA.L. DuG.H. Effects of P-glycoprotein on the transport of DL0410, a potential multifunctional anti-Alzheimer agent.Molecules2017228124610.3390/molecules2208124628757552
    [Google Scholar]
  208. ChaiA.B. LeungG.K.F. CallaghanR. GelissenI.C. P‐glycoprotein: A role in the export of amyloid‐β in Alzheimer’s disease?FEBS J.2020287461262510.1111/febs.1514831750987
    [Google Scholar]
  209. WangW. Bodles-BrakhopA.M. BargerS.W. A role for P-glycoprotein in clearance of Alzheimer amyloid β-peptide from the brain.Curr. Alzheimer Res.201613661562010.2174/156720501366616031415101226971931
    [Google Scholar]
  210. OsgoodD. MillerM.C. MessierA.A. GonzalezL. SilverbergG.D. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.Neurobiol. Aging20175717818510.1016/j.neurobiolaging.2017.05.01128654861
    [Google Scholar]
  211. ZhangC. QinH. ZhengR. WangY. YanT. HuanF. HanY. ZhuW. ZhangL. A new approach for Alzheimer’s disease treatment through P-gp regulation via ibuprofen.Pathol. Res. Pract.2018214111765177110.1016/j.prp.2018.08.01130139557
    [Google Scholar]
  212. ZoufalV. WanekT. KrohnM. MairingerS. FilipT. SaubererM. StanekJ. PekarT. BauerM. PahnkeJ. LangerO. Age dependency of cerebral P-glycoprotein function in wild-type and APPPS1 mice measured with PET.J. Cereb. Blood Flow Metab.202040115016210.1177/0271678X1880664030354871
    [Google Scholar]
  213. VulinM. ZhongY. MaloneyB.J. BauerB. HartzA.M.S. Proteasome inhibition protects blood–brain barrier P-glycoprotein and lowers Aβ brain levels in an Alzheimer’s disease model.Fluids Barriers CNS20232017010.1186/s12987‑023‑00470‑z37803468
    [Google Scholar]
  214. PyunJ. KoayH. RunwalP. MawalC. BushA.I. PanY. DonnellyP.S. ShortJ.L. NicolazzoJ.A. Cu(ATSM) increases P-glycoprotein expression and function at the blood-brain barrier in C57BL6/J mice.Pharmaceutics2023158208410.3390/pharmaceutics1508208437631298
    [Google Scholar]
  215. AbuznaitA.H. KaddoumiA. Role of ABC transporters in the pathogenesis of Alzheimer’s disease.ACS Chem. Neurosci.201231182083110.1021/cn300077c23181169
    [Google Scholar]
  216. BelloI. SalernoM. Evidence against a role of P-glycoprotein in the clearance of the Alzheimer’s disease Aβ1–42 peptides.Cell Stress Chaperones201520342143010.1007/s12192‑014‑0566‑825591827
    [Google Scholar]
  217. NazerB. HongS. SelkoeD.J. LRP promotes endocytosis and degradation, but not transcytosis, of the amyloid-β peptide in a blood–brain barrier in vitro model.Neurobiol. Dis.20083019410210.1016/j.nbd.2007.12.00518289866
    [Google Scholar]
  218. TaiL.M. LoughlinA.J. MaleD.K. RomeroI.A. P-glycoprotein and breast cancer resistance protein restrict apical-to-basolateral permeability of human brain endothelium to amyloid-beta.J. Cereb. Blood Flow Metab.20092961079108310.1038/jcbfm.2009.4219367293
    [Google Scholar]
  219. ArduinoI. IacobazziR.M. RigantiC. LopedotaA.A. PerroneM.G. LopalcoA. CutrignelliA. CantoreM. LaquintanaV. FrancoM. ColabufoN.A. LuurtsemaG. ContinoM. DenoraN. Induced expression of P-gp and BCRP transporters on brain endothelial cells using transferrin functionalized nanostructured lipid carriers: A first step of a potential strategy for the treatment of Alzheimer’s disease.Int. J. Pharm.202059112001110.1016/j.ijpharm.2020.12001133115695
    [Google Scholar]
  220. ChaiA.B. CallaghanR. GelissenI.C. The ubiquitin E3 ligase Nedd4 regulates the expression and amyloid-β Peptide export activity of p-glycoprotein.Int. J. Mol. Sci.2022233101910.3390/ijms2303101935162941
    [Google Scholar]
  221. AquinoG.V. DabiA. OdomG.J. LavadoR. NunnK. ThomasK. BruceE.D. Evaluating the effect of acute diesel exhaust particle exposure on p-glycoprotein efflux transporter in the blood-brain barrier co-cultured with microglia.Curr. Res. Toxicol.20234100107
    [Google Scholar]
  222. AlkhalifaA.E. Al-GhraiybahN.F. OdumJ. ShunnarahJ.G. AustinN. KaddoumiA. Blood–brain barrier breakdown in Alzheimer’s disease: Mechanisms and targeted strategies.Int. J. Mol. Sci.202324221628810.3390/ijms24221628838003477
    [Google Scholar]
  223. BartelsA.L. KortekaasR. BartJ. WillemsenA.T.M. de KlerkO.L. de VriesJ.J. van OostromJ.C.H. LeendersK.L. Blood–brain barrier P-glycoprotein function decreases in specific brain regions with aging: A possible role in progressive neurodegeneration.Neurobiol. Aging200930111818182410.1016/j.neurobiolaging.2008.02.00218358568
    [Google Scholar]
  224. WijesuriyaH.C. BullockJ.Y. FaullR.L.M. HladkyS.B. BarrandM.A. ABC efflux transporters in brain vasculature of Alzheimer’s subjects.Brain Res.2010135822823810.1016/j.brainres.2010.08.03420727860
    [Google Scholar]
  225. JeynesB. ProviasJ. An investigation into the role of P-glycoprotein in Alzheimer’s disease lesion pathogenesis.Neurosci. Lett.2011487338939310.1016/j.neulet.2010.10.06321047545
    [Google Scholar]
  226. van AssemaD.M.E. LubberinkM. BauerM. van der FlierW.M. SchuitR.C. WindhorstA.D. ComansE.F.I. HoetjesN.J. TolboomN. LangerO. MüllerM. ScheltensP. LammertsmaA.A. van BerckelB.N.M. Blood–brain barrier P-glycoprotein function in Alzheimer’s disease.Brain2012135118118910.1093/brain/awr29822120145
    [Google Scholar]
  227. JeynesB. ProviasJ. P-glycoprotein altered expression in Alzheimer’s disease: Regional anatomic variability.J. Neurodegener. Dis.201320131710.1155/2013/25795326316985
    [Google Scholar]
  228. ChiuC. MillerM.C. MonahanR. OsgoodD.P. StopaE.G. SilverbergG.D. P-glycoprotein expression and amyloid accumulation in human aging and Alzheimer’s disease: Preliminary observations.Neurobiol. Aging20153692475248210.1016/j.neurobiolaging.2015.05.02026159621
    [Google Scholar]
  229. BruckmannS. BrennA. GrubeM. NiedrigK. HoltfreterS. von Bohlen und Halbach, O.; Groschup, M.; Keller, M.; Vogelgesang, S. Lack of P-glycoprotein results in impairment of removal of beta-amyloid and increased intraparenchymal cerebral amyloid angiopathy after active immunization in a transgenic mouse model of Alzheimer’s disease.Curr. Alzheimer Res.201714665666710.2174/156720501366616120120122727915995
    [Google Scholar]
  230. KannanP. SchainM. KretzschmarW.W. WeidnerL. MitsiosN. GulyásB. BlomH. GottesmanM.M. InnisR.B. HallM.D. MulderJ. An automated method measures variability in P-glycoprotein and ABCG2 densities across brain regions and brain matter.J. Cereb. Blood Flow Metab.20173762062207510.1177/0271678X1666098427488911
    [Google Scholar]
  231. StorelliF. BillingtonS. KumarA.R. UnadkatJ.D. Abundance of P‐glycoprotein and other drug transporters at the human blood‐brain barrier in alzheimer’s disease: A quantitative targeted proteomic study.Clin. Pharmacol. Ther.2021109366767510.1002/cpt.203532885413
    [Google Scholar]
  232. van AssemaD.M.E. LubberinkM. RizzuP. van SwietenJ.C. SchuitR.C. ErikssonJ. ScheltensP. KoeppM. LammertsmaA.A. van BerckelB.N.M. Blood–brain barrier P-glycoprotein function in healthy subjects and Alzheimer’s disease patients: Effect of polymorphisms in the ABCB1 gene.EJNMMI Res.2012215710.1186/2191‑219X‑2‑5723067778
    [Google Scholar]
  233. ZhongX. LiuM.Y. SunX.H. WeiM.J. Association between ABCB1 polymorphisms and haplotypes and Alzheimer’s disease: A meta-analysis.Sci. Rep.201661327083270810.1038/srep3270827600024
    [Google Scholar]
  234. FehérÁ. JuhászA. PákáskiM. KálmánJ. JankaZ. ABCB1 C3435T polymorphism influences the risk for Alzheimer’s disease.J. Mol. Neurosci.201454482682910.1007/s12031‑014‑0427‑z25273678
    [Google Scholar]
  235. GuinchatV. AnsermotN. Ing LorenziniK. PolitisD. DaaliY. EapC.B. CrettolS. Case report: Opioid use disorder associated with low/moderate dose of loperamide in an intellectual disability patient with CYP3A and P-Glycoprotein reduced activity.Front. Psychiatry20221391068410.3389/fpsyt.2022.91068435815036
    [Google Scholar]
  236. P-glycoprotein function in brain diseases, Identifier NCT00677885. Sponsor national institute of mental health (NIMH), information provided by national institutes of health clinical center. 2014Available from: https://clinicaltrials.gov/study/NCT00677885(Accessed 2019-11-22).
  237. MosselP. Garcia VarelaL. ArifW.M. van der WeijdenC.W.J. BoersmaH.H. WillemsenA.T.M. BoellaardR. ElsingaP.H. BorraR.J.H. ColabufoN.A. ToyoharaJ. de DeynP.P. DierckxR.A.J.O. LammertsmaA.A. BartelsA.L. LuurtsemaG. Evaluation of P-glycoprotein function at the blood–brain barrier using [18F]MC225-PET.Eur. J. Nucl. Med. Mol. Imaging202148124105410610.1007/s00259‑021‑05419‑834089347
    [Google Scholar]
  238. García-VarelaL. Rodríguez-PérezM. CustodiaA. Moraga-AmaroR. ColabufoN.A. AguiarP. SobrinoT. DierckxR.A.J.O. van WaardeA. ElsingaP.H. LuurtsemaG. In vivo induction of P-glycoprotein function can be measured with [18F] MC225 and PET.Mol. Pharm.20211883073308510.1021/acs.molpharmaceut.1c0030234228458
    [Google Scholar]
  239. MC225-PET in neurodegenerative disease, identifier NCT05853471. Sponsor national institute of mental health (nimh), information provided by national institutes of health clinical center.2022Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05853471(Accessed 2023-5-10).
  240. BorsL. ErdőF. Overcoming the blood–brain barrier. Challenges and tricks for CNS drug delivery.Sci. Pharm.2019871610.3390/scipharm87010006
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808293022240216070603
Loading
/content/journals/lddd/10.2174/0115701808293022240216070603
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test