Skip to content
2000
Volume 21, Issue 16
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Generally, heterocyclic compounds are included in a large class of pharmacologically active compounds. The indole scaffold in this category is widely distributed in nature and present in many active compounds, especially anti-cancer agents. Due to its unique physicochemical and biological properties, the indole platform has been considered a favorable scaffold in anti-cancer drug design and development. Various indole compounds (synthetic, semisynthetic, and natural) show remarkable anti-proliferative activity. According to the recent literature, this review describes the role of indole scaffolds as anti-cancer agents. Indole was reported to induce anti-tumor activity through multiple mechanisms, for example, Epidermal Growth Factor Receptors (EGFR), histone deacetylase (HDAC), kinase, DNA-topoisomerases, and tubulin inhibition. The current review focuses on some indole compounds with amazing effects against different types of cancers as there are too many FDA-approved drugs, for example, osimertinib, alectinib, and anlotinib in NSCLC treatment, panobinostat in multiple myeloma, midostaurin in acute myeloid leukemia treatment, . Moreover, several compounds are still in clinical trials to treat different cancer types. Additionally, there are some oxindole derivatives with potent inhibition against different types of tumors, such as ovarian cancer, colorectal cancer, and prostate cancer. Different series of oxindoles are promising and recommended for further studies due to their remarkable inhibition of tumor cells. Accordingly, the collection of data on a pharmacologically significant motif might aid researchers in further employing indoles in developing novel anti-cancer drugs with potentially fewer side effects and higher potency against this rapidly spreading disease.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808288928240226104445
2024-03-08
2024-12-23
Loading full text...

Full text loading...

References

  1. JemalA. BrayF. FerlayJ. Global cancer statistics.CA Cancer J. Clin.1999493364
    [Google Scholar]
  2. WanY. LiY. YanC. YanM. TangZ. Indole: A privileged scaffold for the design of anti-cancer agents.Eur. J. Med. Chem.201918311169110.1016/j.ejmech.2019.11169131536895
    [Google Scholar]
  3. GaoF. ZhangX. WangT. XiaoJ. Quinolone hybrids and their anti-cancer activities: An overview.Eur. J. Med. Chem.2019165597910.1016/j.ejmech.2019.01.01730660827
    [Google Scholar]
  4. RashidH. XuY. MuhammadY. WangL. JiangJ. Research advances on anticancer activities of matrine and its derivatives: An up-dated overview.Eur. J. Med. Chem.201916120523810.1016/j.ejmech.2018.10.037
    [Google Scholar]
  5. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  6. GholapS.S. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents.Eur. J. Med. Chem.2016110133110.1016/j.ejmech.2015.12.01726807541
    [Google Scholar]
  7. AhmadS. AlamO. NaimM.J. ShaquiquzzamanM. AlamM.M. IqbalM. Pyrrole: An insight into recent pharmacological advances with structure activity relationship.Elsevier Masson SAS2018157
    [Google Scholar]
  8. TantawyM.A. NafieM.S. ElmegeedG.A. AliI.A.I. Auspicious role of the steroidal heterocyclic derivatives as a platform for anti-cancer drugs.Bioorg. Chem.20177312814610.1016/j.bioorg.2017.06.00628668650
    [Google Scholar]
  9. de Sá AlvesF. BarreiroE. Manssour FragaC. From nature to drug discovery: The indole scaffold as a ‘privileged structure’.Mini Rev. Med. Chem.20099778279310.2174/13895570978845264919519503
    [Google Scholar]
  10. LakhdarS. WestermaierM. TerrierF. GoumontR. BoubakerT. OfialA.R. MayrH. Nucleophilic reactivities of indoles.J. Org. Chem.200671249088909510.1021/jo061433917109534
    [Google Scholar]
  11. SravanthiT.V. ManjuS.L. Indoles: A promising scaffold for drug development.Eur. J. Pharm. Sci.20169111010.1016/j.ejps.2016.05.02527237590
    [Google Scholar]
  12. de CandiaM. ZaettaG. DenoraN. TricaricoD. MajellaroM. CellamareS. AltomareC.D. New azepino[4,3-b]indole derivatives as nanomolar selective inhibitors of human butyrylcholinesterase showing protective effects against NMDA-induced neurotoxicity.Eur. J. Med. Chem.201712528829810.1016/j.ejmech.2016.09.03727688184
    [Google Scholar]
  13. PurgatorioR. de CandiaM. CattoM. CarrieriA. PisaniL. De PalmaA. TomaM. IvanovaO.A. VoskressenskyL.G. AltomareC.D. Investigating 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole as scaffold of butyrylcholinesterase-selective inhibitors with additional neuroprotective activities for Alzheimer’s disease.Eur. J. Med. Chem.201917741442410.1016/j.ejmech.2019.05.06231158754
    [Google Scholar]
  14. DadashpourS. EmamiS. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms.Eur. J. Med. Chem.201815092910.1016/j.ejmech.2018.02.06529505935
    [Google Scholar]
  15. JordanM.A. HimesR.H. Comparison of the effects of vinblastine, vincristine, vindesine, and vinepidine on microtubule dynamics and cell proliferation in vitro.Cancer Res.198545627412747
    [Google Scholar]
  16. KeglevichP. HazaiL. KalausG. SzántayC. Modifications on the basic skeletons of vinblastine and vincristine.Molecules20121755893591410.3390/molecules1705589322609781
    [Google Scholar]
  17. AlmagroL. Fernández-PérezF. PedreñoM. Indole alkaloids from Catharanthus roseus: Bioproduction and their effect on human health.Molecules20152022973300010.3390/molecules2002297325685907
    [Google Scholar]
  18. SidhuJ.S. SinglaR. Mayank; Jaitak, V. Indole derivatives as anticancer agents for breast cancer therapy: A review.Anticancer. Agents Med. Chem.201516216017310.2174/1871520615666150520144217
    [Google Scholar]
  19. ChadhaN. SilakariO. Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view.Eur. J. Med. Chem.201713415918410.1016/j.ejmech.2017.04.00328412530
    [Google Scholar]
  20. ShererC. SnapeT.J. Heterocyclic scaffolds as promising anticancer agents against tumours of the central nervous system: Exploring the scope of indole and carbazole derivatives.Eur. J. Med. Chem.201597155256010.1016/j.ejmech.2014.11.00725466446
    [Google Scholar]
  21. El-sayedM.T. HamdyN.A. OsmanD.A. AhmedK.M. Indoles as anticancer agents.Adv. Mod. Oncol. Res.201511203510.18282/amor.v1.i1.12
    [Google Scholar]
  22. RousselP.A. The Fischer indole synthesis.J. Chem. Educ.195330312212510.1021/ed030p122
    [Google Scholar]
  23. TaoL.L. JiangJ. PanY.C. YangX. LiB.L. SO3H-functionalized ionic liquids-catalyzed facile and efficient procedure for fischer indole synthesis under ultrasound irradiation.Adv. Mat. Res.201366115015310.4028/www.scientific.net/AMR.661.150
    [Google Scholar]
  24. TaylorP. Synthetic communications : An international journal for rapid communication of synthetic organic chemistry.Eff. Organ. Synthe20123741
    [Google Scholar]
  25. KumarS. Ritika, A brief review of the biological potential of indole derivatives.Future J. Pharma. Sci.20206112110.1186/s43094‑020‑00141‑y
    [Google Scholar]
  26. FerreiraS.H. MoncadaS. VaneJ.R. Indomethacin and aspirin abolish prostaglandin release from the spleen.Nat. New Biol.19712312523723910.1038/newbio231237a05284362
    [Google Scholar]
  27. JamesJ.S. Delavirdine (Rescriptor) approved.AIDS treatment News199726913
    [Google Scholar]
  28. LobayD. History and folk use.Integr. Med.2015143404626770146
    [Google Scholar]
  29. KellowayJ.S. Zafirlukast: The first leukotriene-receptor antagonist approved for the treatment of asthma.Ann. Pharmacother.19973191012102110.1177/1060028097031009129296243
    [Google Scholar]
  30. FrajeseG.V. PozziF. FrajeseG. Tadalafil in the treatment of erectile dysfunction; an overview of the clinical evidence.Clin. Interv. Aging20061443944910.2147/ciia.2006.1.4.43918046921
    [Google Scholar]
  31. SachsG.S. LaferB. StollA.L. BanovM. ThibaultA.B. TohenM. RosenbaumJ.F. A double-blind trial of bupropion versus desipramine for bipolar depression.J. Clin. Psychiatry199455939139310.1002/hup7929019
    [Google Scholar]
  32. BlierP. BergeronR. The use of pindolol to potentiate antidepressant medication.J. Clin. Psychiatry19985916239635544
    [Google Scholar]
  33. YeeA.J. RajeN.S. Panobinostat and multiple myeloma in 2018.Oncologist201823551651710.1634/theoncologist.2017‑064429445026
    [Google Scholar]
  34. RasmussenT.A. TolstrupM. BrinkmannC.R. OlesenR. ErikstrupC. SolomonA. WinckelmannA. PalmerS. DinarelloC. BuzonM. LichterfeldM. LewinS.R. ØstergaardL. SøgaardO.S. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial.Lancet HIV201411e13e2110.1016/S2352‑3018(14)70014‑126423811
    [Google Scholar]
  35. GreigS.L. Osimertinib: First global approval.Drugs201676226327310.1007/s40265‑015‑0533‑426729184
    [Google Scholar]
  36. FilletG. BonnetC. Sunitinib malate and multiplereceptor tyrosine kinases inhibitors:are they also novel drugs forchronic and neurophatic pain?J. Clin. Oncol.200725192857285810.1200/JCO.2007.11.600417602093
    [Google Scholar]
  37. KinoshitaK. AsohK. FuruichiN. ItoT. KawadaH. HaraS. OhwadaJ. MiyagiT. KobayashiT. TakanashiK. TsukaguchiT. SakamotoH. TsukudaT. OikawaN. Design and synthesis of a highly selective, orally active and potent anaplastic lymphoma kinase inhibitor (CH5424802).Bioorg. Med. Chem.20122031271128010.1016/j.bmc.2011.12.02122225917
    [Google Scholar]
  38. LinB. SongX. YangD. BaiD. YaoY. LuN. Anlotinib inhibits angiogenesis via suppressing the activation of VEGFR2, PDGFRβ and FGFR1.Gene2018654778610.1016/j.gene.2018.02.02629454091
    [Google Scholar]
  39. StoneR.M. MandrekarS.J. SanfordB.L. LaumannK. GeyerS. BloomfieldC.D. ThiedeC. PriorT.W. DöhnerK. MarcucciG. Lo-CocoF. KlisovicR.B. WeiA. SierraJ. SanzM.A. BrandweinJ.M. de WitteT. NiederwieserD. AppelbaumF.R. MedeirosB.C. TallmanM.S. KrauterJ. SchlenkR.F. GanserA. ServeH. EhningerG. AmadoriS. LarsonR.A. DöhnerH. Midostaurin plus chemotherapy for acute myeloid leukemia with a flt3 mutation.N. Engl. J. Med.2017377545446410.1056/NEJMoa161435928644114
    [Google Scholar]
  40. HerbstR.S. OhY. WagleA. LahnM. Enzastaurin, a protein kinase Cbeta- selective inhibitor, and its potential application as an anti-cancer agent in lung cancer.Clin. Cancer Res.200713154641s4646s10.1158/1078‑0432.CCR‑07‑053817671157
    [Google Scholar]
  41. Yuan; Liang; Yi; Chen; Li; Wu; Sun, Koumine promotes ROS production to suppress hepatocellular carcinoma cell proliferation via NF-κB and ERK/p38 MAPK signaling.Biomolecules201991055910.3390/biom9100559
    [Google Scholar]
  42. GuinchardX. ValleY. FourierJ. CedexG. Total synthesis of marine sponge bis(indole) alkaloids of the topsentin class.J. Org. Chem.2007721039723975
    [Google Scholar]
  43. GreenwellM. RahmanP.K.S.M. Medicinal plants: Their use in anticancer treatment.Int. J. Pharm. Sci. Res.20156114103411210.13040/IJPSR.0975‑8232.6(10).4103‑1226594645
    [Google Scholar]
  44. AshrafM.A. Phytochemicals as potential anticancer drugs: Time to ponder nature’s bounty.BioMed Res. Int.202020201710.1155/2020/860287932076618
    [Google Scholar]
  45. Li PetriG. CascioferroS. El HassouniB. CarboneD. ParrinoB. CirrincioneG. PetersG.J. DianaP. GiovannettiE. Biological evaluation of the antiproliferative and anti-migratory activity of a series of 3-(6-Phenylimidazo[2,1- b][1,3,4]thiadiazol-2-yl)-1 H -indole derivatives against pancreatic cancer cells.Anticancer Res.20193973615362010.21873/anticanres.1350931262887
    [Google Scholar]
  46. LeeC.T. HuangY.W. YangC.H. HuangK.S. Drug delivery systems and combination therapy by using vinca alkaloids.Curr. Top. Med. Chem.201515151491150010.2174/156802661566615041412054725877096
    [Google Scholar]
  47. DhuguruJ. SkoutaR. Role of indole scaffolds as pharmacophores in the development of anti-lung cancer agents.Molecules2020257161510.3390/molecules2507161532244744
    [Google Scholar]
  48. DuZ. LovlyC.M. Mechanisms of receptor tyrosine kinase activation in cancer.Mole. Can.201858113
    [Google Scholar]
  49. NicholsonR.I. GeeJ.M.W. HarperM.E. EGFR and cancer prognosis.Eur. J. Cancer200137910.1016/S0959‑8049(01)00231‑3
    [Google Scholar]
  50. EngelmanJ.A. The role of phosphoinositide 3-kinase pathway inhibitors in the treatment of lung cancer.Clin. Cancer Res.200713154637s4640s10.1158/1078‑0432.CCR‑07‑065317671156
    [Google Scholar]
  51. BrognardJ. ClarkA.S. NiY. DennisP.A. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation.Cancer Res.200161103986399711358816
    [Google Scholar]
  52. ZhaoW.Z.B. XiaoZ. QiJ. LuoR. LanZ. ZhangY. HuX. TangQ. ZhengP. XuS. Design, synthesis and biological evaluation of AZD9291 derivatives as selective and potent EGFRL858R/T790M inhibitors.Eur. J. Med. Chem.201916336738010.1016/j.ejmech.2018.11.069
    [Google Scholar]
  53. WangY. Novel ALK inhibitor AZD3463 inhibits neuroblastoma growth by overcoming crizotinib resistance and inducing apoptosis.Eur. J. Med. Chem.201611010.1038/srep19423
    [Google Scholar]
  54. SodaM. Identification of the transforming EML4: ALK fusion gene in non-small-cell lung cancer.Nature2007448715356156610.1038/nature05945
    [Google Scholar]
  55. SakamotoH. TsukaguchiT. HiroshimaS. KodamaT. KobayashiT. FukamiT.A. OikawaN. TsukudaT. IshiiN. AokiY. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant.Cancer Cell201119567969010.1016/j.ccr.2011.04.00421575866
    [Google Scholar]
  56. McKeageK. Alectinib: A review of its use in advanced ALK-rearranged non-small cell lung cancer.Drugs2015751758210.1007/s40265‑014‑0329‑y25428710
    [Google Scholar]
  57. NewtonA.C. NewtonA.C. Protein kinase C: Structure, function, and regulation.J. Biol. Chem.199527048284952849810.1074/jbc.270.48.28495
    [Google Scholar]
  58. ChengY. WangQ. LiK. ShiJ. LiuY. WuL. HanB. ChenG. HeJ. WangJ. LouD. YuH. QinH. LiX-L. Overall survival (OS) update in ALTER 1202: Anlotinib as third-line or further-line treatment in relapsed Small-Cell Lung Cancer (SCLC).Ann. Oncol.201930171110.1093/annonc/mdz264.002
    [Google Scholar]
  59. NitissJ.L. Targeting DNA topoisomerase II in cancer chemotherapy.Nat. Rev. Cancer20099533835010.1038/nrc2607
    [Google Scholar]
  60. ChampouxJ.J. DNA topoisomerases: Structure, function, and mechanism.Annu. Rev. Biochem.200170369413
    [Google Scholar]
  61. ParkerM.W. BotchanM.R. BergerJ.M. ParkerM.W. BotchanM.R. BergerJ.M. Mechanisms and regulation of DNA replication initiation in eukaryotes.Crit. Rev. Biochem. Mol. Biol.201752210714410.1080/10409238.2016.1274717
    [Google Scholar]
  62. ZidarN. SecciD. TomašičT. Dalla via l. synthesis, antiproliferative effect, and topoisomerase ii inhibitory activity of 3-methyl-2-phenyl-1h-indoles.ACS Med. Chem. Lett.202011569169710.1021/acsmedchemlett.9b00557
    [Google Scholar]
  63. CeaM. SonciniD. FruscioneF. RaffaghelloL. GarutiA. EmioniteL. MoranE. MagnoneM. ZoppoliG. ReverberiD. CaffaI. SalisA. CagnettaA. BergamaschiM. CasciaroS. PierriI. DamonteG. AnsaldiF. GobbiM. PistoiaV. BallestreroA. PatroneF. BruzzoneS. NencioniA. Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells.PLoS One201167e2273910.1371/journal.pone.002273921818379
    [Google Scholar]
  64. GregorettiI. LeeY.M. GoodsonH.V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis.J. Mol. Biol.20043381173110.1016/j.jmb.2004.02.00615050820
    [Google Scholar]
  65. FouladiM. Histone deacetylase inhibitors in cancer therapy.Cancer Invest.200624552152710.1080/0735790060081497916939962
    [Google Scholar]
  66. JohnstoneR.W. Histone-deacetylase inhibitors: Novel drugs for the treatment of cancer.Nat. Rev. Drug Discov.20021428729910.1038/nrd77212120280
    [Google Scholar]
  67. GrantS. EasleyC. KirkpatrickP. Vorinostat.Nat. Rev. Drug Discov.200761212210.1038/nrd222717269160
    [Google Scholar]
  68. PooleR.M. Belinostat: First global approval.Drugs201474131543155410.1007/s40265‑014‑0275‑825134672
    [Google Scholar]
  69. ShumJ. LeungP.K. LoK.K. Luminescent ruthenium(ii) polypyridine complexes for a wide variety of biomolecular and cellular applications.Inorg. Chem.20195842231224710.1021/acs.inorgchem.8b02979
    [Google Scholar]
  70. TzoganiK. van HennikP. WalshI. De GraeffP. FolinA. SjöbergJ. SalmonsonT. BerghJ. LaaneE. LudwigH. GisselbrechtC. PignattiF. EMA Review of Panobinostat (FarydakM) for the treatment of adult patients with relapsed and/or refractory multiple myeloma.Oncologist201823563163610.1634/theoncologist.2017‑030129192015
    [Google Scholar]
  71. ZhaoB. HeT. Chidamide, a histone deacetylase inhibitor, functions as a tumor inhibitor by modulating the ratio of Bax/Bcl-2 and P21 in pancreatic cancer.Oncol. Rep.201533130431010.3892/or.2014.359525384499
    [Google Scholar]
  72. ShelkeJ.J. Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis.Bone20082311710.1016/j.phrs.2007.01.009.Cruciferous
    [Google Scholar]
  73. DaiY. GuoY. GuoJ. PeaseL.J. LiJ. MarcotteP.A. GlaserK.B. TapangP. AlbertD.H. RichardsonP.L. DavidsenS.K. MichaelidesM.R. Indole amide hydroxamic acids as potent inhibitors of histone deacetylases.Bioorg. Med. Chem. Lett.200313111897190110.1016/S0960‑894X(03)00301‑912749893
    [Google Scholar]
  74. GianniniG. MarziM. MarzoM.D. BattistuzziG. PezziR. BrunettiT. CabriW. VesciL. PisanoC. Exploring bis-(indolyl)methane moiety as an alternative and innovative CAP group in the design of histone deacetylase (HDAC) inhibitors.Bioorg. Med. Chem. Lett.200919102840284310.1016/j.bmcl.2009.03.10119359173
    [Google Scholar]
  75. NaazF. HaiderM.R. ShafiS. YarM.S. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains.Eur. J. Med. Chem.201917131033110.1016/j.ejmech.2019.03.02530953881
    [Google Scholar]
  76. KaurR. KaurG. GillR.K. SoniR. BariwalJ. Recent developments in tubulin polymerization inhibitors: An overview.Eur. J. Med. Chem.2014878912410.1016/j.ejmech.2014.09.05125240869
    [Google Scholar]
  77. LiL. JiangS. LiX. LiuY. SuJ. ChenJ. Recent advances in trimethoxyphenyl (TMP) based tubulin inhibitors targeting the colchicine binding site.Eur. J. Med. Chem.201815148249410.1016/j.ejmech.2018.04.01129649743
    [Google Scholar]
  78. HuM. Synthesis and molecular docking studies of novel indole: Pyrimidine hybrids as tubulin polymerization inhibitors.Design20151491150010.1111/cbdd.12616
    [Google Scholar]
  79. WieneckeA. BacherG. Indibulin, a novel microtubule inhibitor, discriminates between mature neuronal and nonneuronal tubulin.Cancer Res.200969117117710.1158/0008‑5472.CAN‑08‑134219118000
    [Google Scholar]
  80. ColleyH.E. An orally bioavailable, indole-3-glyoxylamide based series of tubulin polymerization inhibitors showing tumor growth inhi-bition in a mouse xenograft model of head and neck cancer.J. Med. Chem.201558239309933310.1021/acs.jmedchem.5b01312
    [Google Scholar]
  81. CerchiaroG. FerreiraA.M.C. Oxindoles and copper complexes with oxindole-derivatives as potential pharmacological agents.J. Braz. Chem. Soc.20061781473148510.1590/S0103‑50532006000800003
    [Google Scholar]
  82. KaurM. SinghM. ChadhaN. SilakariO. Oxindole: A chemical prism carrying plethora of therapeutic benefits.Elsevier Ltd2016123
    [Google Scholar]
  83. DreifussA.A. Bastos-PereiraA.L. ÁvilaT.V. SoleyB.S. RiveroA.J. AguilarJ.L. AccoA. Antitumoral and antioxidant effects of a hydroalcoholic extract of cat’s claw (Uncaria tomentosa) (Willd. Ex Roem. & Schult) in an in vivo carcinosarcoma model.J. Ethnopharmacol.2010130112713310.1016/j.jep.2010.04.02920435132
    [Google Scholar]
  84. MillemaggiA. TaylorR.J.K. 3-Alkenyl-oxindoles : Natural products, pharmaceuticals, and recent synthetic advances in tandem / telescoped approaches. Euro. J. Org. Chem20102010244527454710.1002/ejoc.201000643
    [Google Scholar]
  85. BernardW. YulinJ. RobertA. JaumeB. TeresaV. Oxindole alkaloids from neolaugeria resinosa.Phytochemistry199332615871590
    [Google Scholar]
  86. tamio, U.; Masafumi, I. Self-germination inhibitors fromColletotrichum fragariae.J. Chem. Ecol.19962221112122
    [Google Scholar]
  87. ChenY. FanC.L. WangY. ZhangX.Q. Chemical constituents from roots of Isatis indigotica.Zhongguo Zhong Yao Za Zhi.2018431020912096
    [Google Scholar]
  88. SongZ. ChenC. LiuJ. WenX. SunH. European journal of medicinal chemistry dihydro-3 h -indol-3-ylidene) acetate derivatives as anti-proliferative agents through ros-induced cell apoptosis.Eur. J. Med. Chem.201612480981910.1016/j.ejmech.2016.09.00527643639
    [Google Scholar]
  89. YagnamS. ReddyE.R. TrivediR. GiribabuL. RathodB. ShettyR. Synthesis, characterization, electrochemical and antimicrobial evaluation.Appl. Org. Chem.2019334481710.1002/aoc.4817
    [Google Scholar]
  90. SunH. ZhangY. DingW. ZhaoX. SongX. WangD. LiY. HanK. YangY. MaY. WangR. WangD. YuP. Inhibitory ac-tivity evaluation and mechanistic studies of tetracyclic oxindole derivatives as α-glucosidase inhibitors.Eur. J. Med. Chem.201612336537810.1016/j.ejmech.2016.07.04427487567
    [Google Scholar]
  91. KaurM. SinghM. SilakariO. Oxindole-based SYK and JAK3 dual inhibitors for rheumatoid arthritis: designing, synthesis and biologi-cal.Future Med. Chem.2017911931211
    [Google Scholar]
  92. ZaryanovaE.V. LozinskayaN.A. BeznosO.V. VolkovaM.S. ChesnokovaN.B. ZefirovN.S. Oxindole-based intraocular pressure reducing agents.Bioorg. Med. Chem. Lett.201727163787379310.1016/j.bmcl.2017.06.06528687205
    [Google Scholar]
  93. SutharS.K. BansalS. NarkhedeN. GuleriaM. AlexA.T. JosephA. Design.Chem. Pharm. Bull.201765983383910.1248/cpb.c17‑0030128867710
    [Google Scholar]
  94. GuoJ. ZhaoF. YinW. ZhuM. HaoC. PangY. WuT. WangJ. ZhaoD. LiH. ChengM. Design, synthesis, structure-activity relationships study and X-ray crystallography of 3-substituted-indolin-2-one-5-carboxamide derivatives as PAK4 inhibitors.Eur. J. Med. Chem.201815519720910.1016/j.ejmech.2018.05.05129886323
    [Google Scholar]
  95. YousufM. MukherjeeD. DeyS. ChatterjeeS. PalA. SarkarB. PalC. AdhikariS. Synthesis and biological evaluation of polyhy-droxylated oxindole derivatives as potential antileishmanial agent.Bioorg. Med. Chem. Lett.20182861056106210.1016/j.bmcl.2018.02.02329478704
    [Google Scholar]
  96. YurttaşL. ErtaşM. CankılıçM.Y. DemirayakŞ. Synthesis and antimycobacterial activity evaluation of isatin-derived 3-[(4-aryl-2-thiazolyl])hydrazone]-1h-indol-2,3-diones.ACTA Pharma. Sci.20175515110.23893/1307‑2080.APS.0554
    [Google Scholar]
  97. HirataY. Novel oxindole: Curcumin hybrid compound for antioxidative stress and neuroprotection.ACS Chem. Neurosci.2020111768510.1021/acschemneuro.9b00619
    [Google Scholar]
  98. ChanderS. TangC. PentaA. WangP. BhagwatD.P. Bioorganic chemistry hit optimization studies of 3-hydroxy-indolin-2-one ana-logs as potential anti-HIV-1 agents.Bioorg. Chem.20187921222210.1016/j.bioorg.2018.04.027
    [Google Scholar]
  99. MashhoonN. DeMaggioA.J. TereshkoV. BergmeierS.C. EgliM. HoekstraM.F. KuretJ. Crystal structure of a conformation-selective casein kinase-1 inhibitor.J. Biol. Chem.200027526200522006010.1074/jbc.M00171320010749871
    [Google Scholar]
  100. FöhK.J. State-dependent block of voltage-gated sodium channels by the casein-kinase 1 inhibitor IC261.Invest. New Drugs201735327728910.1007/s10637‑017‑0429‑0
    [Google Scholar]
  101. VaR.T. Casein kinase 1 epsilon regulates glioblastoma cell survival.Sci. Rep.2018811362110.1038/s41598‑018‑31864‑x
    [Google Scholar]
  102. CheongJ.K. IC261 induces cell cycle arrest and apoptosis of human cancer cells via CK1 d/e and Wnt/b -catenin independent inhibi-tion of mitotic spindle formation.Oncogene201130222558256910.1038/onc.2010.627
    [Google Scholar]
  103. BrockschmidtC. Anti-apoptotic and growth-stimulatory functions of CK1 delta and epsilon in ductal adenocarcinoma of the pancreas are inhibited by IC261 in vitro and in vivo.Gut200857679980610.1136/gut.2007.123695
    [Google Scholar]
  104. YangW.S. StockwellB.R. Inhibition of casein kinase 1-epsilon induces cancer-cell-selective, PERIOD2-dependent growth arrest.Genome Biol.2008969210.1186/gb‑2008‑9‑6‑r92
    [Google Scholar]
  105. KumarG.B. NayakV.L. SayeedI.B. ReddyV.S. ShaikA.B. MaheshR. BaigM.F. ShareefM.A. RavikumarA. KamalA. De-sign, synthesis of phenstatin/isocombretastatin-oxindole conjugates as antimitotic agents.Bioorg. Med. Chem.20162481729174010.1016/j.bmc.2016.02.04726970659
    [Google Scholar]
  106. SharmaP. ThummuriD. ReddyT.S. SenwarK.R. NaiduV.G.M. SrinivasuluG. BharghavaS.K. ShankaraiahN. New (E)-1-alkyl-1H-benzo[d]imidazol-2-yl)methylene)indolin-2-ones: Synthesis, in vitro cytotoxicity evaluation and apoptosis inducing studies.Eur. J. Med. Chem.201612258460010.1016/j.ejmech.2016.07.019
    [Google Scholar]
  107. PrajaptiS.K. NagarsenkarA. GuggilapuS.D. GuptaK.K. AllakondaL. JeengarM.K. NaiduV.G.M. BabuB.N. Synthesis and biological evaluation of oxindole linked indolyl-pyrimidine derivatives as potential cytotoxic agents.Bioorg. Med. Chem. Lett.201626133024302810.1016/j.bmcl.2016.05.01927210438
    [Google Scholar]
  108. AdigaS.K. European journal of medicinal chemistry synthesis, anti-proliferative and genotoxicity studies of 6-chloro-5- (2-.Eur. J. Med. Chem.201612122123110.1016/j.ejmech.2016.05.028
    [Google Scholar]
  109. JiaK. LvX. XingD. CheJ. LiuD. ThumarN.J. DongS. HuW. Synthesis and biological evaluation of 3-amino-3-hydroxymethyloxindoles as potential anti-cancer agents.RSC Advances2017738232652327110.1039/C6RA27536B
    [Google Scholar]
  110. TokalaR. ThatikondaS. SanaS. VantedduU.S. GoduguC. Design and synthesis of DNA-interactive β-carboline-oxindole hybrids as cytotoxic and apoptosis inducing agents.ChemMedChem201813181909192210.1002/cmdc.201800402
    [Google Scholar]
  111. FareedM.R. New multi-targeted antiproliferative agents: Design and synthesis of ic261-based oxindoles as potential tubulin, CK1 and EGFR inhibitors.Pharmaceuticals202114111114
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808288928240226104445
Loading
/content/journals/lddd/10.2174/0115701808288928240226104445
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test