Skip to content
2000
Volume 21, Issue 17
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Purpose

This study mainly made use of network pharmacology and molecular docking to analyze the therapeutic mechanism of pulmonary arterial hypertension (PAH) by the traditional medicinal food plant in Ningxia.

Methods

The related targets and active compounds in PAH and were analyzed through the Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform (TCMSP), GeneCards databases, Online Mendelian Inheritance in Man (OMIM) databases、Cytoscape (3.7.1) software、the STRING database、the Database for Annotation Visualization and Integrated Discovery (DAVID) database. In addition, the main active compounds were molecularly docked with key targets.

Results

The results showed that 35 active ingredients of were obtained. The protein-protein interaction (PPI) network includes 140 potential target proteins. Gene Ontology (GO) enrichment analysis yielded 34 entries from three parts: biological processes, cell composition, and molecular function. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis obtained 157 pathways, mainly involving Chemical carcinogenesis receptor activation, Lipid and atherosclerosis, Hepatitis B/C, Chemical carcinogenesis reactive oxygen species, as well as Signaling pathways such as HIF-1, TNF, PI3K-Akt, and MAPK. Molecular docking results showed that the affinity of the key targets to quercetin is less than -5 kcal/mol, and the affinity with betaine is less than 0.

Conclusion

In conclusion, it was preliminarily predicted that the active compounds of such as quercetin and betaine, acted on key targets such as AKT1, EGFR, MYC played an intervention role in PAH by regulating multiple signaling pathways, which provided a theoretical basis for the development and application of and the treatment of PAH.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808292132240909055906
2024-09-20
2025-06-27
Loading full text...

Full text loading...

References

  1. HoeperM.M. GhofraniH.A. GrünigE. KloseH. OlschewskiH. RosenkranzS. Pulmonary hypertension.Dtsch. Arztebl. Int.201711457384 28241922
    [Google Scholar]
  2. YamagataY. IkedaS. KojimaS. UenoY. NakataT. KogaS. OhnoC. YonekuraT. YoshimutaT. MinamiT. KawanoH. MaemuraK. Right ventricular dyssynchrony in patients with chronic thromboembolic pulmonary hypertension and pulmonary arterial hypertension.Circ. J.202286693694410.1253/circj.CJ‑21‑0849 35283366
    [Google Scholar]
  3. EvansC.E. CoberN.D. DaiZ. StewartD.J. ZhaoY.Y. Endothelial cells in the pathogenesis of pulmonary arterial hypertension.Eur. Respir. J.2021583200395710.1183/13993003.03957‑2020 33509961
    [Google Scholar]
  4. KozuK. SugimuraK. AokiT. TatebeS. YamamotoS. YaoitaN. ShimizuT. NochiokaK. SatoH. KonnoR. SatohK. MiyataS. ShimokawaH. Sex differences in hemodynamic responses and long-term survival to optimal medical therapy in patients with pulmonary arterial hypertension.Heart Vessels201833893994710.1007/s00380‑018‑1140‑6 29441403
    [Google Scholar]
  5. SimonneauG. MontaniD. CelermajerD.S. DentonC.P. GatzoulisM.A. KrowkaM. WilliamsP.G. SouzaR. Haemodynamic definitions and updated clinical classification of pulmonary hypertension.Eur. Respir. J.2019531180191310.1183/13993003.01913‑2018 30545968
    [Google Scholar]
  6. XiaoY. ChenP.P. ZhouR.L. ZhangY. TianZ. ZhangS.Y. Pathological mechanisms and potential therapeutic targets of pulmonary arterial hypertension: A review.Aging Dis.20201161623163910.14336/AD.2020.0111 33269111
    [Google Scholar]
  7. XueZ. LiY. ZhouM. LiuZ. FanG. WangX. ZhuY. YangJ. Traditional herbal medicine discovery for the treatment and prevention of pulmonary arterial hypertension.Front. Pharmacol.20211272087310.3389/fphar.2021.720873 34899290
    [Google Scholar]
  8. VoaidesC. RaduN. BirzaE. BabeanuN. Medlar—a comprehensive and integrative review.Plants20211011234410.3390/plants10112344 34834707
    [Google Scholar]
  9. ForteschiM. ZinelluA. AssarettiS. MangoniA.A. PintusG. CarruC. SotgiaS. An isotope dilution capillary electrophoresis/tandem mass spectrometry (CE-MS/MS) method for the simultaneous measurement of choline, betaine, and dimethylglycine concentrations in human plasma.Anal. Bioanal. Chem.2016408267505751210.1007/s00216‑016‑9848‑6 27503542
    [Google Scholar]
  10. ZhaoJ. LiH. XiW. AnW. NiuL. CaoY. WangH. WangY. YinY. Changes in sugars and organic acids in wolfberry (Lycium barbarum L.) fruit during development and maturation.Food Chem.201517371872410.1016/j.foodchem.2014.10.082 25466081
    [Google Scholar]
  11. LiuY. LiX. ChenC. DingN. ZhengP. ChenX. MaS. YangM. TCMNPAS: A comprehensive analysis platform integrating network formulaology and network pharmacology for exploring traditional Chinese medicine.Chin. Med.20241915010.1186/s13020‑024‑00924‑y 38519956
    [Google Scholar]
  12. YuanZ. PanY. LengT. ChuY. ZhangH. MaJ. MaX. Progress and prospects of research ideas and methods in the network pharmacology of traditional chinese medicine.J. Pharm. Pharm. Sci.20222521822610.18433/jpps32911 35760072
    [Google Scholar]
  13. LiuZ.H. SunX.B. Network pharmacology: New opportunity for the modernization of traditional Chinese medicine.Yao Xue Xue Bao2012476696703 22919715
    [Google Scholar]
  14. LvY. MaP. WangJ. XuQ. FanJ. YanL. MaP. ZhouR. Betaine alleviates right ventricular failure via regulation of Rho A/ROCK signaling pathway in rats with pulmonary arterial hypertension.Eur. J. Pharmacol.202191017431110.1016/j.ejphar.2021.174311 34245749
    [Google Scholar]
  15. ShenX. ZhaoZ. WangH. GuoZ. HuB. ZhangG. Elucidation of the anti-inflammatory mechanisms of bupleuri and scutellariae radix using system pharmacological analyses.Mediators Inflamm.2017201711010.1155/2017/3709874 28190938
    [Google Scholar]
  16. MaJ. MengX. KangS.Y. ZhangJ. JungH.W. ParkY.K. Regulatory effects of the fruit extract of Lycium chinense and its active compound, betaine, on muscle differentiation and mitochondrial biogenesis in C2C12 cells.Biomed. Pharmacother.201911810929710.1016/j.biopha.2019.109297 31404771
    [Google Scholar]
  17. DongJ.Z. YangJ.J. WangY. Resources of Lycium species and related research progress.Zhongguo Zhongyao Zazhi2008331820202027 19160775
    [Google Scholar]
  18. YapS. BoersG.H.J. WilckenB. WilckenD.E.L. BrentonD.P. LeeP.J. WalterJ.H. HowardP.M. NaughtenE.R. Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: A multicenter observational study.Arterioscler. Thromb. Vasc. Biol.200121122080208510.1161/hq1201.100225 11742888
    [Google Scholar]
  19. YangJ.Y. WangR. JinT. LiL. WangY.Q. XiaQ. DuD. Material basis and molecular mechanism of Dachengqi Decoction in treatment of acute pancreatitis based on network pharmacology.Zhongguo Zhongyao Zazhi202045614231432 32281357
    [Google Scholar]
  20. AtuchaN.M. RomecínP. VargasF. García-EstañJ. Effects of flavonoids in experimental models of arterial hypertension.Curr. Top. Med. Chem.202222973574510.2174/1568026621666211105100800 34749613
    [Google Scholar]
  21. HeY. CaoX. LiuX. LiX. XuY. LiuJ. ShiJ. Quercetin reverses experimental pulmonary arterial hypertension by modulating the TrkA pathway.Exp. Cell Res.2015339112213410.1016/j.yexcr.2015.10.013 26476374
    [Google Scholar]
  22. Morales-CanoD. MenendezC. MorenoE. Moral-SanzJ. BarreiraB. GalindoP. PandolfiR. JimenezR. MorenoL. CogolludoA. DuarteJ. Perez-VizcainoF. The flavonoid quercetin reverses pulmonary hypertension in rats.PLoS One2014912e11449210.1371/journal.pone.0114492 25460361
    [Google Scholar]
  23. D’AlessandroA. El KasmiK.C. Plecitá-HlavatáL. JežekP. LiM. ZhangH. GupteS.A. StenmarkK.R. Hallmarks of pulmonary hypertension: Mesenchymal and inflammatory cell metabolic reprogramming.Antioxid. Redox Signal.201828323025010.1089/ars.2017.7217 28637353
    [Google Scholar]
  24. PrinsK.W. ArcherS.L. PritzkerM. RoseL. WeirE.K. SharmaA. ThenappanT. Interleukin-6 is independently associated with right ventricular function in pulmonary arterial hypertension.J. Heart Lung Transplant.201837337638410.1016/j.healun.2017.08.011 28893516
    [Google Scholar]
  25. LiaoP.C. LaiM.H. HsuK.P. KuoY.H. ChenJ. TsaiM.C. LiC.X. YinX.J. JeyashokeN. ChaoL.K.P. Identification of β-sitosterol as in vitro anti-inflammatory constituent in Moringa oleifera.J. Agric. Food Chem.20186641107481075910.1021/acs.jafc.8b04555 30280897
    [Google Scholar]
  26. TangX. ZhaoH. JiangW. ZhangS. GuoS. GaoX. YangP. ShiL. LiuL. Pharmacokinetics and pharmacodynamics of citrus peel extract in lipopolysaccharide-induced acute lung injury combined with Pinelliae Rhizoma Praeparatum.Food Funct.20189115880589010.1039/C8FO01337C 30374490
    [Google Scholar]
  27. YangJ. ZhouR. ZhangM. TanH. YuJ. Betaine attenuates monocrotaline-induced pulmonary arterial hypertension in rats via inhibiting inflammatory response.Molecules2018236127410.3390/molecules23061274 29861433
    [Google Scholar]
  28. WangY. HanD.D. WangH.M. LiuM. ZhangX.H. WangH.L. Downregulation of osteopontin is associated with fluoxetine amelioration of monocrotaline-induced pulmonary inflammation and vascular remodelling.Clin. Exp. Pharmacol. Physiol.201138636537210.1111/j.1440‑1681.2011.05516.x 21418086
    [Google Scholar]
  29. GaoH. ChenJ. ChenT. WangY. SongY. DongY. ZhaoS. MachadoR.F. MicroRNA410 inhibits pulmonary vascular remodeling via regulation of nicotinamide phosphoribosyltransferase.Sci. Rep.201991994910.1038/s41598‑019‑46352‑z 31289307
    [Google Scholar]
  30. YamamuraA. NayeemM.J. MamunA.A. TakahashiR. HayashiH. SatoM. Platelet‐derived growth factor up‐regulates Ca 2+ ‐sensing receptors in idiopathic pulmonary arterial hypertension.FASEB J.20193367363737410.1096/fj.201802620R 30865840
    [Google Scholar]
  31. JiaH. LiuY. GuoD. HeW. ZhaoL. XiaS. PM2. 5‐induced pulmonary inflammation via activating of the NLRP3/caspase‐1 signaling pathway.Environ. Toxicol.202136329830710.1002/tox.23035 32996690
    [Google Scholar]
  32. AlzahraniA.S. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside.Semin. Cancer Biol.20195912513210.1016/j.semcancer.2019.07.009 31323288
    [Google Scholar]
  33. GaratC.V. CrossnoJ.T.Jr SullivanT.M. ReuschJ.E.B. KlemmD.J. Inhibition of phosphatidylinositol 3-kinase/Akt signaling attenuates hypoxia-induced pulmonary artery remodeling and suppresses CREB depletion in arterial smooth muscle cells.J. Cardiovasc. Pharmacol.201362653954810.1097/FJC.0000000000000014 24084215
    [Google Scholar]
  34. WuJ. YuZ. SuD. BMP4 protects rat pulmonary arterial smooth muscle cells from apoptosis by PI3K/AKT/Smad1/5/8 signaling.Int. J. Mol. Sci.2014158137381375410.3390/ijms150813738 25110865
    [Google Scholar]
  35. NieX. ChenY. TanJ. DaiY. MaoW. QinG. YeS. SunJ. YangZ. ChenJ. MicroRNA-221-3p promotes pulmonary artery smooth muscle cells proliferation by targeting AXIN2 during pulmonary arterial hypertension.Vascul. Pharmacol.2019116243510.1016/j.vph.2017.07.002 28694128
    [Google Scholar]
  36. GaoP. ChangK. YuanS. WangY. ZengK. JiangY. TuP. LuY. GuoX. Exploring the mechanism of hepatotoxicity induced by dictamnus dasycarpus based on network pharmacology, molecular docking and experimental pharmacology.Molecules20232813504510.3390/molecules28135045 37446707
    [Google Scholar]
  37. RajabiS. NajafipourH. SheikholeslamiM. Jafarinejad-FarsangiS. BeikA. AskaripourM. KaramZ.M. Perillyl alcohol and quercetin modulate the expression of non-coding RNAs MIAT, H19, miR-29a, and miR-33a in pulmonary artery hypertension in rats.Noncoding RNA Res.202271273310.1016/j.ncrna.2022.01.005 35155877
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808292132240909055906
Loading
/content/journals/lddd/10.2174/0115701808292132240909055906
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test