Skip to content
2000
Volume 21, Issue 16
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

(HDW) is an herb that has been used empirically for treating cancer, and its antileukemic effect has been confirmed by laboratory evidence. This study aimed to explore the underlying mechanism by which HDW and its active compound exert effects on acute myeloid leukemia (AML) through analyses combined with experimental validation.

Methods

The targets of the compounds were collected from the database and intersected with AML targets. Based on these data, a protein-protein interaction (PPI) network and compound-target (C-T) network were constructed, and KEGG enrichment analysis was performed. Topological analysis of the C-T network and PPI network was performed to screen for hub compounds and targets. Molecular dynamics simulations were conducted to test the binding mode and strength between the targets and the compounds at the molecular level. Cell viability, flow cytometry, ELISA, and Q-PCR were further used to evaluate the results.

Results

A total of 86 targets of 12 screened active compounds of HDW against AML were identified. According to topological analysis, tumor protein p53 (TP53) and signal transducer and activator of transcription 3 (STAT3) exhibited the highest degree of centrality (DC) in the PPI networks of HDW targets. Quercetin had a higher affinity for TP53 than for STAT3. Molecular dynamics simulations confirmed that the TP53-quercetin docked complex was stable with respect to the original TP53-ligand complex. The targets of HDW and quercetin against AML were significantly enriched in multiple biological processes, including the p53 signaling pathway and apoptosis. The results from the experiment confirmed that quercetin triggers apoptosis in the human AML cell line KG-1 through the p53 pathway protein.

Conclusion

This study outlines the multi-compound, multi-target, and multi-pathway mechanism by which HDW affects AML based on an predictive model and further validates the antileukemic mechanism of the screened active compound in an model. This study provides a perspective for studying the antileukemic mechanism of HDW for further research.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808287616240321080922
2024-04-15
2024-12-23
Loading full text...

Full text loading...

References

  1. NiuY. MengQ.X. Chemical and preclinical studies on Hedyotis diffusa with anticancer potential.J. Asian Nat. Prod. Res.201315555056510.1080/10286020.2013.781589 23600735
    [Google Scholar]
  2. WangC.Y. WangT.C. LiangW.M. HungC.H. ChiouJ.S. ChenC.J. TsaiF.J. HuangS.T. ChangT.Y. LinT.H. LiaoC.C. HuangS.M. LiT.M. LinY.J. Effect of chinese herbal medicine therapy on overall and cancer related mortality in patients with advanced nasopharyngeal carcinoma in Taiwan.Front. Pharmacol.20211160741310.3389/fphar.2020.607413 33708119
    [Google Scholar]
  3. YehY.C. ChenH.Y. YangS.H. LinY.H. ChiuJ.H. LinY.H. ChenJ.L. Hedyotis diffusa Combined with Scutellaria barbata are the core treatment of chinese herbal medicine used for breast cancer patients: A population-based study.Evid. Based Complement. Alternat. Med.201420141910.1155/2014/202378 24734104
    [Google Scholar]
  4. ChaoT.H. FuP.K. ChangC.H. ChangS.N. Chiahung MaoF. LinC.H. Prescription patterns of Chinese herbal products for post-surgery colon cancer patients in Taiwan.J. Ethnopharmacol.2014155170270810.1016/j.jep.2014.06.012 24945402
    [Google Scholar]
  5. HanX. ZhangX. WangQ. WangL. YuS. Antitumor potential of Hedyotis diffusa Willd: A systematic review of bioactive constituents and underlying molecular mechanisms.Biomed. Pharmacother.202013011073510.1016/j.biopha.2020.110735 34321173
    [Google Scholar]
  6. PanL. FengF. WuJ. FanS. HanJ. WangS. YangL. LiuW. WangC. XuK. Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells.Pharmacol. Res.202218110627010.1016/j.phrs.2022.106270 35605812
    [Google Scholar]
  7. WeiS. SunT. DuJ. ZhangB. XiangD. LiW. Xanthohumol, a prenylated flavonoid from Hops, exerts anticancer effects against gastric cancer in-vitro. Oncol. Rep.20184063213322210.3892/or.2018.6723 30272303
    [Google Scholar]
  8. GaoT.H. LiaoW. LinL.T. ZhuZ.P. LuM.G. FuC.M. XieT. Curcumae rhizoma and its major constituents against hepatobiliary disease: Pharmacotherapeutic properties and potential clinical applications.Phytomedicine202210215409010.1016/j.phymed.2022.154090 35580439
    [Google Scholar]
  9. LinC.C. KuoC.L. LeeM.H. HsuS.C. HuangA.C. TangN.Y. LinJ.P. YangJ.S. LuC.C. ChiangJ.H. ChuehF.S. ChungJ.G. Extract of Hedyotis diffusa Willd influences murine leukemia WEHI-3 cells in vivo as well as promoting T- and B-cell proliferation in leukemic mice.In Vivo2011254633640 21709007
    [Google Scholar]
  10. KuoY.J. YangJ.S. LuC.C. ChiangS. LinJ.G. ChungJ.G. Ethanol extract of Hedyotis diffusa willd upregulates G0/G1 phase arrest and induces apoptosis in human leukemia cells by modulating caspase cascade signaling and altering associated genes expression was assayed by cDNA microarray.Environ. Toxicol.201530101162117710.1002/tox.21989 24677778
    [Google Scholar]
  11. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  12. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  13. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac956 36305812
    [Google Scholar]
  14. GfellerD. GrosdidierA. WirthM. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: A web server for target prediction of bioactive small molecules.Nucleic Acids Res.201442W32W3810.1093/nar/gku293 24792161
    [Google Scholar]
  15. XuH.Y. ZhangY.Q. LiuZ.M. ChenT. LvC.Y. TangS.H. ZhangX.B. ZhangW. LiZ.Y. ZhouR.R. YangH.J. WangX.J. HuangL.Q. ETCM: An encyclopaedia of traditional Chinese medicine.Nucleic Acids Res.201947D1D976D98210.1093/nar/gky987 30365030
    [Google Scholar]
  16. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx1037 29126136
    [Google Scholar]
  17. WangX. ShenY. WangS. LiS. ZhangW. LiuX. LaiL. PeiJ. LiH. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database.Nucleic Acids Res.201745W1W356W36010.1093/nar/gkx374 28472422
    [Google Scholar]
  18. ZhouY. ZhangY. LianX. LiF. WangC. ZhuF. QiuY. ChenY. Therapeutic target database update 2022: Facilitating drug discovery with enriched comparative data of targeted agents.Nucleic Acids Res.202250D1D1398D140710.1093/nar/gkab953 34718717
    [Google Scholar]
  19. DavisA.P. GrondinC.J. JohnsonR.J. SciakyD. WiegersJ. WiegersT.C. MattinglyC.J. Comparative Toxicogenomics Database (CTD): Update 2021.Nucleic Acids Res.202149D1D1138D114310.1093/nar/gkaa891 33068428
    [Google Scholar]
  20. UniProt: A worldwide hub of protein knowledge.Nucleic Acids Res.201947D1D506D51510.1093/nar/gky1049 30395287
    [Google Scholar]
  21. RappaportN. TwikM. PlaschkesI. NudelR. Iny SteinT. LevittJ. GershoniM. MorreyC.P. SafranM. LancetD. MalaCards: An amalgamated human disease compendium with diverse clinical and genetic annotation and structured search.Nucleic Acids Res.201745D1D877D88710.1093/nar/gkw1012 27899610
    [Google Scholar]
  22. TangZ. LiC. KangB. GaoG. LiC. ZhangZ. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses.Nucleic Acids Res.201745W1W98W10210.1093/nar/gkx247 28407145
    [Google Scholar]
  23. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa1074 33237311
    [Google Scholar]
  24. FranzM. RodriguezH. LopesC. ZuberiK. MontojoJ. BaderG.D. MorrisQ. GeneMANIA update 2018.Nucleic Acids Res.201846W1W60W6410.1093/nar/gky311 29912392
    [Google Scholar]
  25. XuX. ZhuC. WangQ. ZhuX. ZhouY. Identifying vital nodes in complex networks by adjacency information entropy.Sci. Rep.2020101269110.1038/s41598‑020‑59616‑w 32060330
    [Google Scholar]
  26. GhoshS. MukherjeeS. SenguptaN. RoyA. DeyD. ChakrabortyS. ChattopadhyayD. BanerjeeA. BasuA. Network analysis reveals common host protein/s modulating pathogenesis of neurotropic viruses.Sci. Rep.2016613259310.1038/srep32593 27581498
    [Google Scholar]
  27. TangY. LiM. WangJ. PanY. WuF.X. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks.Biosystems2015127677210.1016/j.biosystems.2014.11.005 25451770
    [Google Scholar]
  28. JinZ. SatoY. KawashimaM. KanehisaM. KEGG tools for classification and analysis of viral proteins.Protein Sci.20233212e482010.1002/pro.4820 37881892
    [Google Scholar]
  29. BuD. LuoH. HuoP. WangZ. ZhangS. HeZ. WuY. ZhaoL. LiuJ. GuoJ. FangS. CaoW. YiL. ZhaoY. KongL. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis.Nucleic Acids Res.202149W1W317W32510.1093/nar/gkab447 34086934
    [Google Scholar]
  30. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  31. LaskowskiR.A. SwindellsM.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery.J. Chem. Inf. Model.201151102778278610.1021/ci200227u 21919503
    [Google Scholar]
  32. GanboldM. BarkerJ. MaR. JonesL. CarewM. Cytotoxicity and bioavailability studies on a decoction of Oldenlandia diffusa and its fractions separated by HPLC.J. Ethnopharmacol.2010131239640310.1016/j.jep.2010.07.014 20633624
    [Google Scholar]
  33. AliR. TabrezS. RahmanF. AlouffiA.S. AlshehriB.M. AlshammariF.A. AlaidarousM.A. BanawasS. DukhyilA.A.B. RubA. Antileishmanial evaluation of bark methanolic extract of Acacia nilotica: In vitro and in silico studies.ACS Omega20216128548856010.1021/acsomega.1c00366 33817515
    [Google Scholar]
  34. ZhuD.C. PanR.B. WangQ. Research on the mechanisms of inhibiting effects of the Aqueous Extract of Hedyotis diffusa Willd on CEM cells.LISHIZHEN MEDICINE AND MATERIA MEDICA RESEARCH.2014254827829
    [Google Scholar]
  35. IvanovaL. Tammiku-TaulJ. García-SosaA.T. SidorovaY. SaarmaM. KarelsonM. Molecular dynamics simulations of the interactions between glial cell line-derived neurotrophic factor family receptor GFRα1 and small-molecule ligands.ACS Omega201839114071141410.1021/acsomega.8b01524 30320260
    [Google Scholar]
  36. CheungH.Y. CheungS.H. LawM.L. LaiW.P. Simultaneous determination of key bioactive components in Hedyotis diffusa by capillary electrophoresis.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20068341-219519810.1016/j.jchromb.2006.02.007 16516568
    [Google Scholar]
  37. KirazY. AdanA. Kartal YandimM. BaranY. Major apoptotic mechanisms and genes involved in apoptosis.Tumour Biol.20163778471848610.1007/s13277‑016‑5035‑9 27059734
    [Google Scholar]
  38. ProkocimerM. MolchadskyA. RotterV. Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: Projections on diagnostic workup and therapy.Blood2017130669971210.1182/blood‑2017‑02‑763086 28607134
    [Google Scholar]
  39. FleischmannM. SchnetzkeU. HochhausA. SchollS. Management of acute myeloid leukemia: Current treatment options and future perspectives.Cancers (Basel)20211322572210.3390/cancers13225722 34830877
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808287616240321080922
Loading
/content/journals/lddd/10.2174/0115701808287616240321080922
Loading

Data & Media loading...

Supplements

Supplementary Material 1. Details of oral bioavailability and drug-likeness parameters as well as Lipinski’s properties. Supplementary Material 2. Degree centrality of targets in protein-protein interaction networks. Supplementary Material 3. Compounds and corresponding targets. Supplementary Material 4. The docking patterns of TP53-original ligand complex, TP53-beta-sitosterol complex, and STAT3-darutoside complex. Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test