Skip to content
2000
Volume 21, Issue 16
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

is the yeast that causes the fungal infection known as candidiasis. One of the standard methods for treating candida is the application of fluconazole. The low solubility of fluconazole in aqueous media is a big problem in the use of this agent. Novel drug delivery systems, such as microemulsions, could be applied to solve this problem. The main aim of this study was to perform statistical optimization of the formulation and physicochemical characterization of fluconazole microemulsion.

Methods

Optimization of the microemulsion formulation was done by using experimental design software, and then fluconazole was loaded onto the best formulation at a concentration of 1 % w/w. The physiochemistry of the microemulsion formulation was assessed by pH measurement, rheology measurement, simultaneous thermal analysis, and Scanning Electron Microscopy (SEM).

Results

The two-level fractional factorial design application demonstrated the optimum formulation to consist of surfactant, co-surfactant, oil content, and water, comprising 58%, 27%, 10%, and 5% of the formulation, respectively. Desirable thermal mass was observed up to 150°C. The formulation was a non-Newtonian shear-thinning liquid in terms of viscosity, with a reported pH between 6.5-7.

Conclusion

Considerably stable, high-quality microemulsion formulations containing fluconazole are presented, which are applicable for antifungal skin candidiasis treatment in clinical trials.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808287346240228120148
2024-03-11
2025-01-24
Loading full text...

Full text loading...

References

  1. SaadA. FadliM. BouazizM. BenharrefA. MezriouiN.E. HassaniL. Anticandidal activity of the essential oils of Thymus maroccanus and Thymus broussonetii and their synergism with amphotericin B and fluconazol.Phytomedicine201017131057106010.1016/j.phymed.2010.03.020 20554185
    [Google Scholar]
  2. FoyeW.O. Foye’s principles of medicinal chemistry.Lippincott Williams & Wilkins2008
    [Google Scholar]
  3. RichardsonM. Lass-FlörlC. Changing epidemiology of systemic fungal infections.Clin. Microbiol. Infect.200814Suppl. 452410.1111/j.1469‑0691.2008.01978.x 18430126
    [Google Scholar]
  4. ChowdharyA. VossA. MeisJ.F. Multidrug-resistant Candida auris: ‘New kid on the block’ in hospital-associated infections?J. Hosp. Infect.201694320921210.1016/j.jhin.2016.08.004 27634564
    [Google Scholar]
  5. ChapmanS.W. SullivanD.C. ClearyJ.D. In search of the holy grail of antifungal therapy.Trans. Am. Clin. Climatol. Assoc.2008119197215 18596853
    [Google Scholar]
  6. SaagM.S. DismukesW.E. Azole antifungal agents: Emphasis on new triazoles.Antimicrob. Agents Chemother.19883211810.1128/AAC.32.1.1 2831809
    [Google Scholar]
  7. GuptaA.K. DaigleD. FoleyK.A. Drug safety assessment of oral formulations of ketoconazole.Expert Opin. Drug Saf.201514232533410.1517/14740338.2015.983071 25409549
    [Google Scholar]
  8. LoriM.S. OhadiM. EstabraghM.A.R. AfsharipourS. BanatI.M. DehghannoudehG. pH-Sensitive polymer-based carriers as a useful approach for oral delivery of therapeutic protein: A review.Protein Pept. Lett.202128111230123710.2174/0929866528666210720142841 34303327
    [Google Scholar]
  9. Raeisi EstabraghM.A. PardakhtyA. AhmadzadehS. DabiriS. AfsharM.R. AbbasiF.M. Successful application of alpha lipoic acid niosomal formulation in cerebral ischemic reperfusion injury in rat model.Adv. Pharm. Bull.202212354154910.34172/apb.2022.058 35935040
    [Google Scholar]
  10. EstabraghR.M.A. BamiS.M. DehghannoudehG. NoudehY.D. MoghimipourE. Cellulose derivatives and natural gums as gelling agents for preparation of emulgel-based dosage forms: A brief review.Int. J. Biol. Macromol.202324112453810.1016/j.ijbiomac.2023.124538 37085064
    [Google Scholar]
  11. MacwanM. PrajapatiB. Development, optimization and characterization of ocular nanoemulsion of an antifungal agent using design of experiments.Res J Pharm Technol20221552273227810.52711/0974‑360X.2022.00378
    [Google Scholar]
  12. RuizS.J.L. CapmanyC.A.C. EnrichC.C. FebrerN.B. CarbóS.J. SoutoE.B. NaverosC.B. Biopharmaceutical profile of a clotrimazole nanoemulsion: Evaluation on skin and mucosae as anticandidal agent.Int. J. Pharm.201955410511510.1016/j.ijpharm.2018.11.002 30395953
    [Google Scholar]
  13. KaleS.N. DeoreS.L. Emulsion micro emulsion and nano emulsion: A review.Syst. Rev. Pharm.201681394710.5530/srp.2017.1.8
    [Google Scholar]
  14. SalehiT. EstabraghR.M.A. SalarpourS. OhadiM. DehghannoudehG. Absorption enhancer approach for protein delivery by various routes of administration: a rapid review.J. Drug Target.202331995096110.1080/1061186X.2023.2271680 37842966
    [Google Scholar]
  15. PrajapatiB.G. JivaniM. PaliwalH. Formulation and optimization of topical nanoemulsion based gel of mometasone furoate using 32 full factorial design.Indian Drugs20215861929
    [Google Scholar]
  16. SunazukaY. UedaK. HigashiK. TanakaY. MoribeK. Combined effects of the drug distribution and mucus diffusion properties of self-microemulsifying drug delivery systems on the oral absorption of fenofibrate.Int. J. Pharm.20185461-226327110.1016/j.ijpharm.2018.05.031 29763688
    [Google Scholar]
  17. ShakerD.S. IshakR.A.H. GhoneimA. ElhuoniM.A. Nanoemulsion: A review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs.Sci. Pharm.20198731710.3390/scipharm87030017
    [Google Scholar]
  18. SabjanK.B. MunawarS.M. RajendiranD. VinojiS.K. KasinathanK. Nanoemulsion as oral drug delivery - A review.Curr. Drug Res. Rev.202012141510.2174/2589977511666191024173508 31774040
    [Google Scholar]
  19. Raeisi EstabraghM.A. BamiM.S. OhadiM. BanatI.M. DehghannoudehG. Carrier‐based systems as strategies for oral delivery of therapeutic peptides and proteins: A mini‐review.Int. J. Pept. Res. Ther.20212721589159610.1007/s10989‑021‑10193‑0
    [Google Scholar]
  20. ShethT. SeshadriS. PrileszkyT. HelgesonM.E. Multiple nanoemulsions.Nat. Rev. Mater.20205321422810.1038/s41578‑019‑0161‑9
    [Google Scholar]
  21. JaiswalM. DudheR. SharmaP.K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech201552123127
    [Google Scholar]
  22. PrajapatiB.G. PatelA.G. PaliwalH. Fabrication of nanoemulsion-based in situ gel using moxifloxacin hydrochloride as model drug for the treatment of conjunctivitis.Food Hydrocoll. Health2021110004510.1016/j.fhfh.2021.100045
    [Google Scholar]
  23. PrajapatiB.G. BarotT. Formulation & optimization of microemulsion based transdermal gel of atomoxetine hydrochloride.Int. Res. J. Pharm.2019113
    [Google Scholar]
  24. Ahmadi BorhanabadiM. Raeisi EstabraghM.A. DehghannoudehG. BanatI.M. OhadiM. MoshafiM.H. Optimization of calcium alginate hydrogel bioencapsulation of Acinetobacter junii B6, a lipopeptide biosurfactant producer.Jundishapur J. Nat. Pharm. Prod.2023182e13432510.5812/jjnpp‑134325
    [Google Scholar]
  25. PariharA. PrajapatiB.G. Response surface methodology for an improved nanoemulsion of ivacaftor & its optimisation for solubility and stability.Pharmacophore202314518
    [Google Scholar]
  26. Al-mahallawiA.M. AhmedD. HassanM. El-SetouhyD.A. Enhanced ocular delivery of clotrimazole via loading into mucoadhesive microemulsion system: In vitro characterization and in vivo assessment.J. Drug Deliv. Sci. Technol.20216410256110.1016/j.jddst.2021.102561
    [Google Scholar]
  27. DiniA. KhazaeliP. RoohbakhshA. MadadlouA. PourenamdariM. SetoodehL. AskarianA. DorakiN. FarrokhiH. MoradiH. KhodadadiE. Aflatoxin contamination level in Iran’s pistachio nut during years 2009–2011.Food Control201330254054410.1016/j.foodcont.2012.08.012
    [Google Scholar]
  28. MoghimipourE. SalimiA. LeisF. Preparation and evaluation of tretinoin microemulsion based on pseudo-ternary phase diagram.Adv. Pharm. Bull.201222141147 24312785
    [Google Scholar]
  29. KumarN. Shishu, D-optimal experimental approach for designing topical microemulsion of itraconazole: Characterization and evaluation of antifungal efficacy against a standardized Tinea pedis infection model in Wistar rats.Eur. J. Pharm. Sci.2015679711210.1016/j.ejps.2014.10.014 25445834
    [Google Scholar]
  30. N, P.; Chakraborty, I.; Mal, S.S.; Bharath Prasad, A.S.; Mahato, K.K.; Mazumder, N. Evaluation of physicochemical properties of citric acid crosslinked starch elastomers reinforced with silicon dioxide.RSC Advances202414113914610.1039/D3RA07868J 38173576
    [Google Scholar]
  31. NirmalaM.J. MukherjeeA. ChandrasekaranN. Enhanced solubilization of aqueous insoluble anti-hypertensive drug.Int. J. Pharm. Pharm. Sci.201245366368
    [Google Scholar]
  32. OhadiM. DehghannoudehG. ForootanfarH. ShakibaieM. RajaeeM. Investigation of the structural, physicochemical properties, and aggregation behavior of lipopeptide biosurfactant produced by Acinetobacter junii B6.Int. J. Biol. Macromol.201811271271910.1016/j.ijbiomac.2018.01.209 29425877
    [Google Scholar]
  33. HasssanzadehH. AlizadehM. Rezazad BariM. Formulation of garlic oil‐in‐water nanoemulsion: Antimicrobial and physicochemical aspects.IET Nanobiotechnol.201812564765210.1049/iet‑nbt.2017.0104 30095427
    [Google Scholar]
  34. Pascual-VillalobosM.J. GuiraoP. Díaz-BañosF.G. Cantó-TejeroM. VilloraG. Oil in water nanoemulsion formulations of botanical active substances.Nano-Biopesticides Today and Future Perspectives.Elsevier201922324710.1016/B978‑0‑12‑815829‑6.00009‑7
    [Google Scholar]
  35. MalakarJ. NayakA.K. Formulation and statistical optimization of multiple-unit ibuprofen-loaded buoyant system using 23-factorial design.Chem. Eng. Res. Des.201290111834184610.1016/j.cherd.2012.02.010
    [Google Scholar]
  36. NaveedS. NafeesM. UV spectrophotometric assay method for the determination of fluconazole capsules.Open Access Lib. J.20152045
    [Google Scholar]
  37. VuQ.L. FangC.W. SuhailM. WuP.C. Enhancement of the topical bioavailability and skin whitening effect of genistein by using microemulsions as drug delivery carriers.Pharmaceuticals20211412123310.3390/ph14121233 34959634
    [Google Scholar]
  38. PayyalS.P. RompicherlaN.C. SathyanarayanaS.D. ShriramR.G. VadakkepushpakathA.N. Microemulsion based gel of sulconazole nitrate for topical application.Turk. J. Pharm. Sci.2020173259
    [Google Scholar]
  39. MoreS.K. PawarA.P. Preparation, optimization and preliminary pharmacokinetic study of curcumin encapsulated turmeric oil micro-emulsion in zebra fish.Eur. J. Pharm. Sci.202015510553910.1016/j.ejps.2020.105539 32898637
    [Google Scholar]
  40. ShahB. KhuntD. MisraM. Comparative evaluation of intranasally delivered quetiapine loaded mucoadhesive microemulsion and polymeric nanoparticles for brain targeting: Pharmacokinetic and gamma scintigraphy studies.Future J. Pharm. Sci.202171610.1186/s43094‑020‑00156‑5
    [Google Scholar]
  41. SinghS. VardhanH. KotlaN.G. MaddiboyinaB. SharmaD. WebsterT.J. The role of surfactants in the formulation of elastic liposomal gels containing a synthetic opioid analgesic.Int. J. Nanomedicine20161114751482 27114707
    [Google Scholar]
  42. MoghddamS.R.M. AhadA. AqilM. ImamS.S. SultanaY. Formulation and optimization of niosomes for topical diacerein delivery using 3-factor, 3-level Box-Behnken design for the management of psoriasis.Mater. Sci. Eng. C20166978979710.1016/j.msec.2016.07.043 27612773
    [Google Scholar]
  43. AgrawalV. PatelR. PatelM. ThankiK. MishraS. Design and evaluation of microemulsion-based efinaconazole formulations for targeted treatment of onychomycosis through transungual route: Ex vivo and nail clipping studies.Colloids Surf. B Biointerfaces202120111165210.1016/j.colsurfb.2021.111652 33740733
    [Google Scholar]
  44. VolpeV. GiacomodonatoM.N. SordelliD.O. InsaustiM. BuzzolaF.R. GrünhutM. Ciprofloxacin loaded o/w microemulsion against Staphylococcus aureus. Analytical and biological studies for topical and intranasal administration.J. Drug Deliv. Sci. Technol.20205710170510.1016/j.jddst.2020.101705
    [Google Scholar]
  45. ChomchalaoP. SaelimN. TiyaboonchaiW. Preparation and characterization of amphotericin B-loaded silk fibroin nanoparticles-in situ hydrogel composites for topical ophthalmic application.J. Mater. Sci.20225726125221253910.1007/s10853‑022‑07413‑3
    [Google Scholar]
  46. MoghimipourE. SalimiA. EftekhariS. Design and characterization of microemulsion systems for naproxen.Adv. Pharm. Bull.2013316371 24312814
    [Google Scholar]
  47. MorenoM.A. BallesterosM.P. FrutosP. Lecithin-based oil-in-water microemulsions for parenteral use: Pseudoternary phase diagrams, characterization and toxicity studies.J. Pharm. Sci.20039271428143710.1002/jps.10412 12820147
    [Google Scholar]
  48. FroelichA. OsmałekT. KunstmanP. RoszakR. BiałasW. Rheological and textural properties of microemulsion-based polymer gels with indomethacin.Drug Dev. Ind. Pharm.201642685486110.3109/03639045.2015.1066799 26204348
    [Google Scholar]
  49. NikumbhK.V. SevankarS.G. PatilM.P. Formulation development, in vitro and in vivo evaluation of microemulsion-based gel loaded with ketoprofen.Drug Deliv.201522450951510.3109/10717544.2013.859186 24266589
    [Google Scholar]
  50. Fonseca-SantosB. AraujoG.A. FerreiraP.S. VictorelliF.D. PironiA.M. AraújoV.H.S. CarvalhoS.G. ChorilliM. Design and characterization of lipid-surfactant-based systems for enhancing topical anti-inflammatory activity of ursolic acid.Pharmaceutics202315236610.3390/pharmaceutics15020366 36839688
    [Google Scholar]
  51. MahboobianM.M. MohammadiM. MansouriZ. Development of thermosensitive in situ gel nanoemulsions for ocular delivery of acyclovir.J. Drug Deliv. Sci. Technol.201955101400
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808287346240228120148
Loading
/content/journals/lddd/10.2174/0115701808287346240228120148
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Antifungal; experimental design; formulation; optimal; SEM; semisolid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test