Skip to content
2000
Volume 21, Issue 14
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Cinnamic acid, derived from , is a natural compound known for its wide-ranging therapeutic properties and minimal toxicity. Extensive research has demonstrated the diverse biological activities displayed by cinnamic acid derivatives, encompassing their potential as agents against cancer, diabetes, microbial infections, tuberculosis, malaria, and more.

Objective

This review aims to provide an overview of the latest applications detailing the biological activity of cinnamic acid derivatives, as documented in patents.

Methods

The published patent data underwent a prior screening and selection process based on their relevance and primary focus: the biological activities of cinnamic acid derivatives as potential drugs. Espacenet, USPTO, and Google Patents were used for this selection.

Results

Cinnamic acid derivatives demonstrate a range of activities, including anticancer, antibacterial, anti-inflammatory, analgesic, anticholinesterase, and other properties. These biological activities were investigated across different derivatives, emphasizing their pharmacological potential when compared to reference compounds.

Conclusions

Despite several patents have explored the biological properties of cinnamic acid derivatives, there has been a lack of a comprehensive review dedicated to this subject. Accordingly, this review aims to facilitate the discovery of new and diverse potential drugs with various therapeutic profiles.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808273623231009074241
2024-11-01
2024-11-19
Loading full text...

Full text loading...

References

  1. LuM. YuanB. ZengM. ChenJ. Antioxidant capacity and major phenolic compounds of spices commonly consumed in China.Food Res. Int.201144253053610.1016/j.foodres.2010.10.055
    [Google Scholar]
  2. GruenwaldJ. FrederJ. ArmbruesterN. Cinnamon and Health.Crit. Rev. Food Sci. Nutr.201050982283410.1080/10408390902773052 20924865
    [Google Scholar]
  3. JakhetiaV. PatelR. KhatriP. PahujaN. GargS. PandeyA. SharmaS. Cinnamon: A pharmacological review.Int. J. Adv. Sci. Res.20101021923
    [Google Scholar]
  4. BadnaleA.B. SarukhV.S. NikamY.P. SupekarA.V. KhandagaleS.S. A review on potential medicinal herbs as health promoters.J. Drug Deliv. Ther.2022123-S22522910.22270/jddt.v12i3‑S.5496
    [Google Scholar]
  5. RaoP.V. GanS.H. Cinnamon: A multifaceted medicinal plant.Evid. Based Complement. Alternat. Med.2014201411210.1155/2014/642942 24817901
    [Google Scholar]
  6. ZhaoM. QiZ. ChenF. YueX. Kinetics of non-isothermal decomposition of cinnamic acid.Russ. J. Phys. Chem. A. Focus Chem.20148871081108410.1134/S0036024414070231
    [Google Scholar]
  7. StanisgawJ. RosochackiZ. In vitro evaluation of biological activity of cinnamic, caffeic, ferulic and chlorogenic acids with use of Escherichia coli K-12 RECA: GFP biosensor strain.Drug Res.201724613
    [Google Scholar]
  8. AsamiT. NakagawaY. Preface to the Special Issue: Brief review of plant hormones and their utilization in agriculture.J. Pestic. Sci.201843315415810.1584/jpestics.M18‑02 30369825
    [Google Scholar]
  9. RollerS. SeedharP. Carvacrol and cinnamic acid inhibit microbial growth in fresh-cut melon and kiwifruit at 4o and 8oC.Lett. Appl. Microbiol.200235539039410.1046/j.1472‑765X.2002.01209.x 12390487
    [Google Scholar]
  10. SongF. LiH. SunJ. WangS. Protective effects of cinnamic acid and cinnamic aldehyde on isoproterenol-induced acute myocardial ischemia in rats.J. Ethnopharmacol.2013150112513010.1016/j.jep.2013.08.019 24001892
    [Google Scholar]
  11. YeH. ZouT. JiangX. LinX. CaiW. Cinnamic acid reduces inflammation and apoptosis in necrotizing enterocolitis.Curr. Top. Nutraceutical Res.2021201707510.37290/ctnr2641‑452X.20:70‑75
    [Google Scholar]
  12. HongS. ChaK.H. ParkJ. JungD.S. ChoiJ.H. YooG. NhoC.W. Cinnamic acid suppresses bone loss via induction of osteoblast differentiation with alteration of gut microbiota.J. Nutr. Biochem.202210110890010.1016/j.jnutbio.2021.108900 34748919
    [Google Scholar]
  13. HafizurR.M. HameedA. ShukranaM. RazaS.A. ChishtiS. KabirN. SiddiquiR.A. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro.Phytomedicine201522229730010.1016/j.phymed.2015.01.003 25765836
    [Google Scholar]
  14. LeeA.G. KangS. ImS. PakY.K. Cinnamic acid attenuates peripheral and hypothalamic inflammation in high-fat diet-induced obese mice.Pharmaceutics2022148167510.3390/pharmaceutics14081675 36015301
    [Google Scholar]
  15. GuoY. LvJ. ZhaoQ. DongY. DongK. Cinnamic acid increased the incidence of Fusarium wilt by increasing the pathogenicity of Fusarium oxysporum and reducing the physiological and biochemical resistance of faba bean, which was alleviated by intercropping with wheat.Front. Plant Sci.20201160838910.3389/fpls.2020.608389 33381139
    [Google Scholar]
  16. SteenackersW. El HouariI. BaekelandtA. WitvrouwK. DhondtS. LerouxO. GonzalezN. CorneillieS. CesarinoI. InzéD. BoerjanW. VanholmeB. cis-Cinnamic acid is a natural plant growth-promoting compound.J. Exp. Bot.201970216293630410.1093/jxb/erz392 31504728
    [Google Scholar]
  17. CaiR. MiaoM. YueT. ZhangY. CuiL. WangZ. YuanY. Antibacterial activity and mechanism of cinnamic acid and chlorogenic acid against Alicyclobacillus acidoterrestris vegetative cells in apple juice.Int. J. Food Sci. Technol.20195451697170510.1111/ijfs.14051
    [Google Scholar]
  18. AnlarH.G. BacanliM. ÇalT. AydinS. AriN. Ündeğer BucurgatÜ. BaşaranA.A. BaşaranA.N. Effects of cinnamic acid on complications of diabetes.Turk. J. Med. Sci.201848116817710.3906/sag‑1708‑8 29479980
    [Google Scholar]
  19. KumarN. ParleA. Cinnamic acid derivatives: An ERA.J. Pharm. Innov.201985580595
    [Google Scholar]
  20. RuwizhiN. AderibigbeB.A. Cinnamic acid derivatives and their biological efficacy.Int. J. Mol. Sci.20202116571210.3390/ijms21165712 32784935
    [Google Scholar]
  21. FrançaS.B. CorreiaP.R.S. CastroI.B.D. Silva JúniorE.F. BarrosM.E.S.B. LimaD.J.P. Synthesis, applications and structure-activity relationship (SAR) of cinnamic acid derivatives: A review. Research.Soc. Dev.2021101e28010111691e2801011169110.33448/rsd‑v10i1.11691
    [Google Scholar]
  22. DeP. BaltasM. Bedos-BelvalF. Cinnamic acid derivatives as anticancer agents-a review.Curr. Med. Chem.201118111672170310.2174/092986711795471347 21434850
    [Google Scholar]
  23. FengL.S. ChengJ.B. SuW.Q. LiH.Z. XiaoT. ChenD.A. ZhangZ.L. Cinnamic acid hybrids as anticancer agents: A mini‐review.Arch. Pharm.20223557220005210.1002/ardp.202200052 35419808
    [Google Scholar]
  24. AdisakwattanaS. Cinnamic acid and its derivatives: Mechanisms for prevention and management of diabetes and its complications.Nutrients20179216310.3390/nu9020163 28230764
    [Google Scholar]
  25. GuzmanJ. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity.Molecules20141912192921934910.3390/molecules191219292 25429559
    [Google Scholar]
  26. DeP. DeK. VeauD. Bedos-BelvalF. ChassaingS. BaltasM. Recent advances in the development of cinnamic-like derivatives as antituberculosis agents.Expert Opin Ther Pat.2012222155168
    [Google Scholar]
  27. PrithwirajD. Bedos-BelvalF. Vanucci-BacqueC. MichelB. Cinnamic acid derivatives in tuberculosis, malaria and cardiovascular diseases-a review.Curr. Org. Chem.201216674776810.2174/138527212799958020
    [Google Scholar]
  28. DyG.K. AdjeiA.A. Understanding, recognizing, and managing toxicities of targeted anticancer therapies.CA Cancer J. Clin.201363424927910.3322/caac.21184 23716430
    [Google Scholar]
  29. DonnenbergV.S. DonnenbergA.D. Multiple drug resistance in cancer revisited: The cancer stem cell hypothesis.J. Clin. Pharmacol.200545887287710.1177/0091270005276905 16027397
    [Google Scholar]
  30. CapdevilleR. BuchdungerE. ZimmermannJ. MatterA. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug.Nat. Rev. Drug Discov.20021749350210.1038/nrd839 12120256
    [Google Scholar]
  31. AnX. TiwariA.K. SunY. DingP.R. AshbyC.R.Jr ChenZ.S. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: A review.Leuk. Res.201034101255126810.1016/j.leukres.2010.04.016 20537386
    [Google Scholar]
  32. YaoR LuX RuanB DengS RenJ ZhangY Cinnamyl amide imatinib ramification as well as preparation method and application thereof.CN Patent 103121990A2013
  33. LiangC. TianL. TangY. ChangM. ShiK. JuX. LiuY. WenL. LiH. WangX. 13-hydroxysparteine cinnamic acid derivatives with anti-tumor activities and a method of preparing the same.US Patent 10233183B12019
  34. MichaelJ.P. Indolizidine and quinolizidine alkaloids.Nat. Prod. Rep.200219671974110.1039/b104969k 12521266
    [Google Scholar]
  35. LiangC JuW JiaM TianD LiuK WangW HuiN SunH. A kind of Bergenin azepine cinnamate derivative compound and its synthetic method having anti-tumor activity.CN Patent 106632379B2019
  36. LiangC. PeiS. JuW. JiaM. TianD. TangY. MaoG. Synthesis and in vitro and in vivo antitumour activity study of 11-hydroxyl esterified bergenin/cinnamic acid hybrids.Eur. J. Med. Chem.201713331932810.1016/j.ejmech.2017.03.053 28395218
    [Google Scholar]
  37. Venkateswara RaoB. Pavan KumarP. RamalingamV. KarthikG. AndugulapatiS.B. Suresh BabuK. Piperazine tethered bergenin heterocyclic hybrids: design, synthesis, anticancer activity, and molecular docking studies.RSC Medicinal Chemistry202213897898510.1039/D2MD00116K 36092140
    [Google Scholar]
  38. ZhangF. Tris(o-bromobenzyl)tin phenyl acrylate and preparation method and application.CN Patent 109134528A2019
  39. OkoroH.K. FatokiO.S. AdekolaF.A. XimbaB.J. SnymanR.G. Sources, Environmental levels and toxicity of organotin in marine environment–a review.Asian J. Chem.2011232473482
    [Google Scholar]
  40. NiuL. LiY. LiQ. Medicinal properties of organotin compounds and their limitations caused by toxicity.Inorg. Chim. Acta201442321310.1016/j.ica.2014.05.007
    [Google Scholar]
  41. ArjmandF. ParveenS. TabassumS. PettinariC. Organo-tin antitumor compounds: Their present status in drug development and future perspectives.Inorg. Chim. Acta2014423263710.1016/j.ica.2014.07.066
    [Google Scholar]
  42. SerwecińskaL. Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health.Water20201212331310.3390/w12123313
    [Google Scholar]
  43. ZhangG.F. LiuX. ZhangS. PanB. LiuM.L. Ciprofloxacin derivatives and their antibacterial activities.Eur. J. Med. Chem.201814659961210.1016/j.ejmech.2018.01.078 29407984
    [Google Scholar]
  44. PortoV.A. dos Santos CorreiaP.R. PortoR.S. Synthesis and antibacterial activity of 2-mercaptobenzimidazole derivatives: A literature review.Rev. Virtual Quim.20211361457146610.21577/1984‑6835.20210081
    [Google Scholar]
  45. FarhadiF. KhamenehB. IranshahiM. IranshahyM. Antibacterial activity of flavonoids and their structure–activity relationship: An update review.Phytother. Res.2019331134010.1002/ptr.6208 30346068
    [Google Scholar]
  46. Reboredo-RodríguezP. González-BarreiroC. Martínez-CarballoE. Cambeiro-PérezN. Rial-OteroR. Figueiredo-GonzálezM. Cancho-GrandeB. Applicability of an in-vitro digestion model to assess the bioaccessibility of phenolic compounds from olive-related products.Molecules20212621666710.3390/molecules26216667 34771074
    [Google Scholar]
  47. BertelliM. KianiA.K. PaolacciS. ManaraE. KurtiD. DhuliK. BushatiV. MiertusJ. PangalloD. BaglivoM. BeccariT. MicheliniS. Hydroxytyrosol: A natural compound with promising pharmacological activities.J. Biotechnol.2020309293310.1016/j.jbiotec.2019.12.016 31884046
    [Google Scholar]
  48. WanJ. ZhangJ. KongC. JinY. FanM. LiH. ZhaoQ. YangD. Method of preparing hydroxytyrosol cinnamic acid ester with antioxidant and antibacterial activities.US Patent 11427526B22022
  49. LiangC. YangW. ZhaoQ. XinL. LiJ. YangD. BianR. ZhangJ. ZhaoY. LiH. TianB. WangY. QiL. MaoG. Pleuromutilin (E)-4-(1-imidazoylmethyl)cinnamic acid ester with antidrug resistant bacteria activity and a method of preparing the same. US Patent 11510905B12022
  50. StojkovićD. PetrovićJ. CarevićT. SokovićM. LiarasK. Synthetic and semisynthetic compounds as antibacterials targeting virulence traits in resistant strains: A narrative updated review.Antibiotics 202312696310.3390/antibiotics12060963 37370282
    [Google Scholar]
  51. MuthusamyS. UdhayabaskarS. UdayakumarG.P. KirthikaaG.B. SivarajasekarN. Properties and applications of natural pigments produced from different biological sources—a concise review.Sustainable Development in Energy and Environment202010511910.1007/978‑981‑15‑4638‑9_9
    [Google Scholar]
  52. LiH HuiN LiangC JuX QiaoG LiJ HeY TianB WangY XuJ QiL YangD ZhaoQ LiY ZengQ MaoG WangL Cinnamyl alcohol cassic acid ester with antibacterial activity and a method of preparing the same.Patent US10947182B12021
  53. NelsonC. ButtrickB. IsoherranenN. Therapeutic potential of the inhibition of the retinoic acid hydroxylases CYP26A1 and CYP26B1 by xenobiotics.Curr. Top. Med. Chem.201313121402142810.2174/1568026611313120004 23688132
    [Google Scholar]
  54. BushueN. WanY.J.Y. Retinoid pathway and cancer therapeutics.Adv. Drug Deliv. Rev.201062131285129810.1016/j.addr.2010.07.003 20654663
    [Google Scholar]
  55. TangY. ChangM. QiH. ZhouP. YuanZ. YaoW. QiaoG. TianB. LiJ. Method of preparing a cinnamyl alcohol retinoic acid ester with antioxidant and antibacterial activities.US Patent 11072575B12021
  56. de Cássia da Silveira e Sá R.; Andrade, L.; de Sousa, D. A review on anti-inflammatory activity of monoterpenes.Molecules20131811227125410.3390/molecules18011227 23334570
    [Google Scholar]
  57. PortoR.S. Computational investigation of Schiff bases from tryptamine as COX-2 inhibitors with potential anti-inflammatory activity.I. Inf. Knowl. Manag202231e13081e1308110.20952/jrks3113081
    [Google Scholar]
  58. CumpsteyA. FeelischM. Free radicals in inflammation.Inflammation: from molecular and cellular mechanisms to the clinic201769572610.1002/9783527692156.ch27
    [Google Scholar]
  59. JeonJK SeoY Pipelongumine and its derivatives and producing method thereof. KR Patent 101633655B12016
  60. SalehiB. ZakariaZ.A. GyawaliR. IbrahimS.A. RajkovicJ. ShinwariZ.K. KhanT. Sharifi-RadJ. OzleyenA. TurkdonmezE. ValussiM. TumerT.B. Monzote FidalgoL. MartorellM. SetzerW.N. Piper species: A comprehensive review on their phytochemistry, biological activities and applications.Molecules2019247136410.3390/molecules24071364 30959974
    [Google Scholar]
  61. ZhangX. XiaoZ. XuH. A review of the total syntheses of triptolide.Beilstein J. Org. Chem.20191511984199510.3762/bjoc.15.194 31501665
    [Google Scholar]
  62. GaoJ. ZhangY. LiuX. WuX. HuangL. GaoW. Triptolide: Pharmacological spectrum, biosynthesis, chemical synthesis and derivatives.Theranostics202111157199722110.7150/thno.57745 34158845
    [Google Scholar]
  63. ZhangD HouQ WeiB WangC YuanS LiC BaiJ Triptolide derivatives, and preparation methods, medicinal composition and uses thereof.CN Patent 102786576B2015
  64. GatchelR.J. PengY.B. PetersM.L. FuchsP.N. TurkD.C. The biopsychosocial approach to chronic pain: Scientific advances and future directions.Psychol. Bull.2007133458162410.1037/0033‑2909.133.4.581 17592957
    [Google Scholar]
  65. PenpraseB. BrunettoE. DahmaniE. ForthofferJ.J. KapoorS. The efficacy of preemptive analgesia for postoperative pain control: A systematic review of the literature.AORN J.2015101194105.e810.1016/j.aorn.2014.01.030 25537330
    [Google Scholar]
  66. OokuboT NakamuraK NakazawaY NanbaH YoshidaH Cinnamic acid amide derivative. CN Patent 104884426A2015
  67. AgostinhoP. CunhaR.A. OliveiraC. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease.Curr. Pharm. Des.201016252766277810.2174/138161210793176572 20698820
    [Google Scholar]
  68. Agatonovic-KustrinS. KettleC. MortonD.W. A molecular approach in drug development for Alzheimer’s disease.Biomed. Pharmacother.201810655356510.1016/j.biopha.2018.06.147 29990843
    [Google Scholar]
  69. SangZ LiuW YuL MaQ ChenC PanW LiT GaoL. 4- cyclamine alkoxy-3-methoxyl cinnamic acid benzamide compound, preparation method and application of compound.CN Patent 105732479B2018
  70. ShupingD.S.S. EloffJ.N. The use of plants to protect plants and food against fungal pathogens: A review.Afr. J. Tradit. Complement. Altern. Med.201714412012710.21010/ajtcam.v14i4.14 28638874
    [Google Scholar]
  71. OddsF.C. BrownA.J.P. GowN.A.R. Antifungal agents: Mechanisms of action.Trends Microbiol.200311627227910.1016/S0966‑842X(03)00117‑3 12823944
    [Google Scholar]
  72. PagniezF. LebouvierN. NaY.M. Ourliac-GarnierI. PicotC. Le BorgneM. Le PapeP. Biological exploration of a novel 1,2,4-triazole-indole hybrid molecule as antifungal agent.J. Enzyme Inhib. Med. Chem.202035139840310.1080/14756366.2019.1705292 31899979
    [Google Scholar]
  73. LiA ShiY Application of cinnamic acid derivative in prevention and treatment of agricultural pathogenic fungi.CN Patent 115413658A2022
  74. BañulsA.L. HideM. PrugnolleF. Leishmania and the leishmaniases: A parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans.Adv. Parasitol.200764145810.1016/S0065‑308X(06)64001‑3 17499100
    [Google Scholar]
  75. PostigoJ.A.R. Leishmaniasis in the world health organization eastern mediterranean region.Int. J. Antimicrob. Agents201036Suppl. 1S62S6510.1016/j.ijantimicag.2010.06.023 20728317
    [Google Scholar]
  76. SinghS. SivakumarR. Challenges and new discoveries in the treatment of leishmaniasis.J. Infect. Chemother.200410630731510.1007/s10156‑004‑0348‑9 15614453
    [Google Scholar]
  77. AguiarAR TomazDC BressanGC FiettoJLR De SouzaLA Dos SantosMAV RodriguesMP TeixeiraRR OnofreTS MenezesWA Compositions based on cinnamic acid derivative with leishmanicidal activity and use.BR Patent 102019019344A22021
  78. SolanoF. Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources.Molecules2020257153710.3390/molecules25071537 32230973
    [Google Scholar]
  79. BadejoO. SkaldinaO. GilevA. SorvariJ. Benefits of insect colours: A review from social insect studies.Oecologia20201941-2274010.1007/s00442‑020‑04738‑1 32876763
    [Google Scholar]
  80. WangR.F. KoD. FriedmanB.J. LimH.W. MohammadT.F. Disorders of hyperpigmentation. Part I. Pathogenesis and clinical features of common pigmentary disorders.J. Am. Acad. Dermatol.202388227128810.1016/j.jaad.2022.01.051 36933930
    [Google Scholar]
  81. PillaiyarT. ManickamM. NamasivayamV. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors.J. Enzyme Inhib. Med. Chem.201732140342510.1080/14756366.2016.1256882 28097901
    [Google Scholar]
  82. GillbroJ.M. OlssonM.J. The melanogenesis and mechanisms of skin-lightening agents - existing and new approaches.Int. J. Cosmet. Sci.201133321022110.1111/j.1468‑2494.2010.00616.x 21265866
    [Google Scholar]
  83. XuQ TanJ ZengL ChenY WangS Application of diterpene compound in preparation of tyrosinase inhibitor.CN Patent 111135159B2021
  84. GubarevaL.V. KaiserL. HaydenF.G. Influenza virus neuraminidase inhibitors.Lancet2000355920682783510.1016/S0140‑6736(99)11433‑8 10711940
    [Google Scholar]
  85. KerryR.G. MalikS. ReddaY.T. SahooS. PatraJ.K. MajhiS. Nano-based approach to combat emerging viral (NIPAH virus) infection.Nanomedicine 20191819622010.1016/j.nano.2019.03.004 30904587
    [Google Scholar]
  86. YinY LuC ZhangH MengF PanJ SunY DuanY SunY ZhaoL WangY ZhyD Aminoalcohol neuraminidase inhibitors, and preparation method thereof. CN Patent 106946725A2019
/content/journals/lddd/10.2174/0115701808273623231009074241
Loading
/content/journals/lddd/10.2174/0115701808273623231009074241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test