Skip to content
2000
Volume 21, Issue 14
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Colorectal cancer is the third foremost cause of death in women and men. Globally, about 1.94 million colon cancer cases were diagnosed and around 0.93 million patients died in the previous year.

Introduction

Several drugs have been permitted by the Food And Drug Administration (FDA) for the treatment of colorectal cancer. The main difficulties of current drugs are the expansion of resistance issues, target selectivity issues and toxicity issues. The existing therapies, such as surgery and hormonal therapy, are in use but exhibit numerous adverse effects, such as pharmacokinetic issues and pharmacodynamic issues. Hence, hereby is a crucial requirement of novel moieties that are peaceable and efficient in the handling of colorectal cancer.

Methods

Phthalazine derivatives have expanded admiration over a few years due to their efficient anticancer significance. These Phthalazine derivatives exhibit anticancer activity by targeting various mechanisms such as apoptosis induction, tubulin polymerization inhibition, EGFR inhibition, and aurora kinase inhibition.

Results

In this study, we have focused on the Structural Activity relationship, numerous synthetic strategies and mechanism of action of phthalazine derivatives for potential treatment of cancer.

Conclusion

Among some of phthalazine derivative compounds not only induced antiproliferative activity even also improve bioavailability and reduce side effects, like 4-(phthalazine-1-yl) aniline with (IC = 0.22 ± 0.11 μM), and 4-phthalazin-1-yl-amino) benzonitrile (IC = 1.20 μM), 4-((5-methyl-pyrazole-3-yl) amino)-2-phenylphthalazin-1-one (IC = 0.031 μM) and 4-((5-methyl-pyrazole-3-yl) amino)-2-(p-tolyl)phthalazin-1-one (IC = 0.065 μM). Therefore, this study would be the inspiration for the betterment of human health.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808245049231019095755
2024-11-01
2025-01-24
Loading full text...

Full text loading...

References

  1. SiderisM. PapagrigoriadisS. Molecular biomarkers and classification models in the evaluation of the prognosis of colorectal cancer.Anticancer Res.201434520612068 24778007
    [Google Scholar]
  2. BudinskaE. PopoviciV. TejparS. D’ArioG. LapiqueN. SikoraK.O. Di NarzoA.F. YanP. HodgsonJ.G. WeinrichS. BosmanF. RothA. DelorenziM. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer.J. Pathol.20132311637610.1002/path.4212 23836465
    [Google Scholar]
  3. SiegelR. DeSantisC. JemalA. Colorectal cancer statistics, 2014.CA Cancer J. Clin.201464210411710.3322/caac.21220 24639052
    [Google Scholar]
  4. PeiferM. Colon construction.Nature20024206913274275, 27710.1038/420274a 12447423
    [Google Scholar]
  5. XiY. XuP. Global colorectal cancer burden in 2020 and projections to 2040.Transl. Oncol.2021141010117410.1016/j.tranon.2021.101174 34243011
    [Google Scholar]
  6. BensonA. III Epidemiology, disease progression, and economic burden of colorectal cancer.J. Manag. Care Pharm.2007136 Supp C)(C51810.18553/jmcp.2007.13.s6‑c.5 17713990
    [Google Scholar]
  7. MinicozziA. MosconiE. CordianoC. RubelloD. MarzolaP. FerrettiA. MaffioneA.M. SboarinaA. BencivengaM. BoschiF. ContiG. SbarbatiA. Proton magnetic resonance spectroscopy: Ex vivo study to investigate its prognostic role in colorectal cancer.Biomed. Pharmacother.201367759359710.1016/j.biopha.2013.05.002 23830479
    [Google Scholar]
  8. GohV. ShastryM. EngledowA. KozarskiR. PeckJ. EndozoR. Rodriguez-JustoM. TaylorS.A. HalliganS. GrovesA.M. Integrated (18)F-FDG PET/CT and perfusion CT of primary colorectal cancer: effect of inter- and intraobserver agreement on metabolic-vascular parameters.AJR Am. J. Roentgenol.201219951003100910.2214/AJR.11.7823 23096172
    [Google Scholar]
  9. KeumN. GiovannucciE. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies.Nat. Rev. Gastroenterol. Hepatol.2019161271373210.1038/s41575‑019‑0189‑8 31455888
    [Google Scholar]
  10. AlterP. Cardiotoxicity of 5-fluorouracil.Cardiovascs. Hematolog. Agent Med. Chem.20064115
    [Google Scholar]
  11. van EssenM. KrenningE.P. KamB.L. de HerderW.W. van AkenM.O. KwekkeboomD.J. Report on short-term side effects of treatments with 177Lu-octreotate in combination with capecitabine in seven patients with gastroenteropancreatic neuroendocrine tumours.Eur. J. Nucl. Med. Mol. Imaging200835474374810.1007/s00259‑007‑0688‑7 18188559
    [Google Scholar]
  12. KweekelD. GuchelaarH.J. GelderblomH. Clinical and pharmacogenetic factors associated with irinotecan toxicity.Cancer Treat. Rev.200834765666910.1016/j.ctrv.2008.05.002 18558463
    [Google Scholar]
  13. JamesE. PodoltsevN. SalehiE. CurtisB.R. SaifM.W. Oxaliplatin-induced immune thrombocytopenia: Another cumulative dose-dependent side effect?Clin. Colorectal Cancer20098422022410.3816/CCC.2009.n.037 19822513
    [Google Scholar]
  14. DesrameJ. BroustetH. de TaillyP.D. GirardD. SaissyJ.M. Oxaliplatin-induced haemolytic anaemia.Lancet199935491851179118010.1016/S0140‑6736(99)03827‑1 10513718
    [Google Scholar]
  15. WhiteT. Metastatic colorectal cancer: Management with trifluridine/tipiracil.Clin. J. Oncol. Nurs.2017212E30E37
    [Google Scholar]
  16. SangshettiJ. PathanS.K. PatilR. Akber AnsariS. ChhajedS. AroteR. ShindeD.B. Synthesis and biological activity of structurally diverse phthalazine derivatives: A systematic review.Bioorg. Med. Chem.201927183979399710.1016/j.bmc.2019.07.050 31401008
    [Google Scholar]
  17. AbulkhairH. Triazolophthalazine incorporating piperazine derivatives: Synthesis and in vitro anticancer evaluation study. Al-Azhar J.Pharm. Sci.202061110411610.21608/ajps.2020.86020
    [Google Scholar]
  18. JangirN. Poonam; Dhadda, S.; Jangid, D.K. Recent advances in the synthesis of five- and six-membered heterocycles as bioactive skeleton: A concise overview.ChemistrySelect202276e20210313910.1002/slct.202103139
    [Google Scholar]
  19. VilaN. BesadaP. CostasT. Costas-LagoM.C. TeránC. Phthalazin-1(2H)-one as a remarkable scaffold in drug discovery.Eur. J. Med. Chem.20159746248210.1016/j.ejmech.2014.11.043 25482553
    [Google Scholar]
  20. WasfyA.F. Synthesis of novel series of phthalazine derivatives as potential antitumor agents.Synth2013102032
    [Google Scholar]
  21. HanY.T. JungJ.W. KimN.J. Recent advances in the synthesis of biologically active cinnoline, phthalazine and quinoxaline derivatives.Curr. Org. Chem.201721141265129110.2174/1385272821666170221150901
    [Google Scholar]
  22. ChakrabortyM. SenguptaD. SahaT. GoswamiS. Ligand redox-controlled tandem synthesis of azines from aromatic alcohols and hydrazine in air: One-pot synthesis of phthalazine.J. Org. Chem.201883157771777810.1021/acs.joc.8b00661 29869492
    [Google Scholar]
  23. KesslerS.N. WegnerH.A. One-pot synthesis of phthalazines and pyridazino-aromatics: A novel strategy for substituted naphthalenes.Org. Lett.201214133268327110.1021/ol301167q 22686471
    [Google Scholar]
  24. SuchandB. SatyanarayanaG. Palladium-catalyzed acylation reactions: A one-pot diversified synthesis of phthalazines, phthalazinones and benzoxazinones.Eur. J. Org. Chem.20182018192233224610.1002/ejoc.201800159
    [Google Scholar]
  25. TeránC. BesadaP. VilaN. Costas-LagoM.C. Recent advances in the synthesis of phthalazin-1(2H)-one core as a relevant pharmacophore in medicinal chemistry.Eur. J. Med. Chem.201916146847810.1016/j.ejmech.2018.10.047 30388463
    [Google Scholar]
  26. WheelerD.L. DunnE.F. HarariP.M. Understanding resistance to EGFR inhibitors—impact on future treatment strategies.Nat. Rev. Clin. Oncol.20107949350710.1038/nrclinonc.2010.97 20551942
    [Google Scholar]
  27. LynchT.J. BellD.W. SordellaR. GurubhagavatulaS. OkimotoR.A. BranniganB.W. HarrisP.L. HaserlatS.M. SupkoJ.G. HaluskaF.G. LouisD.N. ChristianiD.C. SettlemanJ. HaberD.A. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib.N. Engl. J. Med.2004350212129213910.1056/NEJMoa040938 15118073
    [Google Scholar]
  28. ChinnaiyanP. HuangS. VallabhaneniG. ArmstrongE. VaramballyS. TomlinsS.A. ChinnaiyanA.M. HarariP.M. Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva).Cancer Res.20056583328333510.1158/0008‑5472.CAN‑04‑3547 15833866
    [Google Scholar]
  29. SeshacharyuluP. PonnusamyM.P. HaridasD. JainM. GantiA.K. BatraS.K. Targeting the EGFR signaling pathway in cancer therapy.Expert Opin. Ther. Targets2012161153110.1517/14728222.2011.648617 22239438
    [Google Scholar]
  30. DoebeleR.C. OtonA.B. PeledN. CamidgeD.R. BunnP.A. Jr New strategies to overcome limitations of reversible EGFR tyrosine kinase inhibitor therapy in non-small cell lung cancer.Lung Cancer201069111210.1016/j.lungcan.2009.12.009 20092908
    [Google Scholar]
  31. MartinP. KellyC.M.A. CarneyD. Epidermal growth factor receptor-targeted agents for lung cancer.Cancer Contr.200613212914010.1177/107327480601300207 16735987
    [Google Scholar]
  32. Oliveira-CunhaM. NewmanW.G. SiriwardenaA.K. Epidermal growth factor receptor in pancreatic cancer.Cancers2011321513152610.3390/cancers3021513 24212772
    [Google Scholar]
  33. PatelR. EGFR Signaling and its inhibition by EGFR inhibitors in NSCLC.Int. J. Appl. Sci. Biotechnol.20142437538810.3126/ijasbt.v2i4.11263
    [Google Scholar]
  34. KöhlerJ. SchulerM. Afatinib, erlotinib and gefitinib in the first-line therapy of EGFR mutation-positive lung adenocarcinoma: A review.Onkologie2013369510518 24051929
    [Google Scholar]
  35. NairP. Epidermal growth factor receptor family and its role in cancer progression.Curr. Sci.2005890898
    [Google Scholar]
  36. BoraeiA.T.A. AshourH.K. El TamanyE.S.H. AbdelmoatyN. El-FaloujiA.I. GomaaM.S. Design and synthesis of new phthalazine-based derivatives as potential EGFR inhibitors for the treatment of hepatocellular carcinoma.Bioorg. Chem.20198529330710.1016/j.bioorg.2018.12.039 30654221
    [Google Scholar]
  37. AminK.M. BarsoumF.F. AwadallahF.M. MohamedN.E. Identification of new potent phthalazine derivatives with VEGFR-2 and EGFR kinase inhibitory activity.Eur. J. Med. Chem.201612319120110.1016/j.ejmech.2016.07.049 27484508
    [Google Scholar]
  38. KroemerG. GalluzziL. VandenabeeleP. AbramsJ. AlnemriE.S. BaehreckeE.H. BlagosklonnyM.V. El-DeiryW.S. GolsteinP. GreenD.R. HengartnerM. KnightR.A. KumarS. LiptonS.A. MalorniW. NuñezG. PeterM.E. TschoppJ. YuanJ. PiacentiniM. ZhivotovskyB. MelinoG. Classification of cell death: Recommendations of the Nomenclature Committee on Cell Death 2009.Cell Death Differ.200916131110.1038/cdd.2008.150 18846107
    [Google Scholar]
  39. HassanM. WatariH. AbuAlmaatyA. OhbaY. SakuragiN. Apoptosis and molecular targeting therapy in cancer.BioMed Res. Int.2014201412310.1155/2014/150845 25013758
    [Google Scholar]
  40. LopezJ. TaitS.W.G. Mitochondrial apoptosis: Killing cancer using the enemy within.Br. J. Cancer2015112695796210.1038/bjc.2015.85 25742467
    [Google Scholar]
  41. GreenD.R. LlambiF. Cell death signaling.Cold Spring Harb. Perspect. Biol.2015712a00608010.1101/cshperspect.a006080 26626938
    [Google Scholar]
  42. LomonosovaE. ChinnaduraiG. BH3-only proteins in apoptosis and beyond: an overview.Oncogene200827S1)(1S2S1910.1038/onc.2009.39 19641503
    [Google Scholar]
  43. PfefferC. SinghA. Apoptosis: A target for anticancer therapy.Int. J. Mol. Sci.201819244810.3390/ijms19020448 29393886
    [Google Scholar]
  44. ZamanS. WangR. GandhiV. Targeting the apoptosis pathway in hematologic malignancies.Leuk. Lymphoma20145591980199210.3109/10428194.2013.855307 24295132
    [Google Scholar]
  45. XuG. ShiY. Apoptosis signaling pathways and lymphocyte homeostasis.Cell Res.200717975977110.1038/cr.2007.52 17576411
    [Google Scholar]
  46. EldehnaW.M. IbrahimH.S. Abdel-AzizH.A. FarragN.N. YoussefM.M. Design, synthesis and in vitro antitumor activity of novel N-substituted-4-phenyl/benzylphthalazin-1-ones.Eur. J. Med. Chem.20158954956010.1016/j.ejmech.2014.10.064 25462265
    [Google Scholar]
  47. ParidaP.K. MahataB. SantraA. ChakrabortyS. GhoshZ. RahaS. MisraA.K. BiswasK. JanaK. Inhibition of cancer progression by a novel trans-stilbene derivative through disruption of microtubule dynamics, driving G2/M arrest, and p53-dependent apoptosis.Cell Death Dis.20189544810.1038/s41419‑018‑0476‑2 29670107
    [Google Scholar]
  48. AbulkhairH.S. TurkyA. GhiatyA. AhmedH.E.A. BayoumiA.H. Novel triazolophthalazine-hydrazone hybrids as potential PCAF inhibitors: Design, synthesis, in vitro anticancer evaluation, apoptosis, and molecular docking studies.Bioorg. Chem.202010010389910.1016/j.bioorg.2020.103899 32454390
    [Google Scholar]
  49. WangG. PengZ. ZhangJ. QiuJ. XieZ. GongZ. Synthesis, biological evaluation and molecular docking studies of aminochalcone derivatives as potential anticancer agents by targeting tubulin colchicine binding site.Bioorg. Chem.20187833234010.1016/j.bioorg.2018.03.028 29627654
    [Google Scholar]
  50. YanJ. HuJ. AnB. HuangL. LiX. Design, synthesis, and biological evaluation of cyclic-indole derivatives as anti-tumor agents via the inhibition of tubulin polymerization.Eur. J. Med. Chem.201712566367510.1016/j.ejmech.2016.09.056 27721152
    [Google Scholar]
  51. KaurR. KaurG. GillR.K. SoniR. BariwalJ. Recent developments in tubulin polymerization inhibitors: An overview.Eur. J. Med. Chem.2014878912410.1016/j.ejmech.2014.09.051 25240869
    [Google Scholar]
  52. LuY. ChenJ. XiaoM. LiW. MillerD.D. An overview of tubulin inhibitors that interact with the colchicine binding site.Pharm. Res.201229112943297110.1007/s11095‑012‑0828‑z 22814904
    [Google Scholar]
  53. ZhouJ. GiannakakouP. Targeting microtubules for cancer chemotherapy.Curr. Med. Chem. Anticancer Agents200551657110.2174/1568011053352569 15720262
    [Google Scholar]
  54. HuM.J. ZhangB. YangH.K. LiuY. ChenY.R. MaT.Z. LuL. YouW.W. ZhaoP.L. Design, synthesis and molecular docking studies of novel indole–pyrimidine hybrids as tubulin polymerization inhibitors.Chem. Biol. Drug Des.20158661491150010.1111/cbdd.12616 26177395
    [Google Scholar]
  55. KamathP.R. SunilD. AjeesA.A. Synthesis of indole–quinoline–oxadiazoles: Their anticancer potential and computational tubulin binding studies.Res. Chem. Intermed.20164265899591410.1007/s11164‑015‑2412‑8
    [Google Scholar]
  56. ZabalaJ.C. CowanN.J. Tubulin dimer formation via the release of? - and? -tubulin monomers from multimolecular complexes.Cell Motil. Cytoskeleton199223322223010.1002/cm.970230306 1292878
    [Google Scholar]
  57. DowningK.H. NogalesE. Tubulin structure: Insights into microtubule properties and functions.Curr. Opin. Struct. Biol.19988678579110.1016/S0959‑440X(98)80099‑7 9914260
    [Google Scholar]
  58. AryaG.C. KaurK. JaitakV. Isoxazole derivatives as anticancer agent: A review on synthetic strategies, mechanism of action and SAR studies.Eur. J. Med. Chem.202122111351110.1016/j.ejmech.2021.113511 34000484
    [Google Scholar]
  59. PopoviciL. AmarandiR.M. MangalagiuI.I. MangalagiuV. DanacR. Synthesis, molecular modelling and anticancer evaluation of new pyrrolo[1,2- b]pyridazine and pyrrolo[2,1- a]phthalazine derivatives.J. Enzyme Inhib. Med. Chem.201934123024310.1080/14756366.2018.1550085 30734610
    [Google Scholar]
  60. El-FekyS.A. Design, synthesis and in vitro antitumor activity of novel phthalazin-1, 4-dione/chalcone hybrids and phthalazin-1, 4-dione/pyrazoline hybrids.J. Chem. Pharm. Res.20157711541166
    [Google Scholar]
  61. BorahN.A. ReddyM.M. Aurora kinase B inhibition: A potential therapeutic strategy for cancer.Molecules2021267198110.3390/molecules26071981 33915740
    [Google Scholar]
  62. NiggE.A. Mitotic kinases as regulators of cell division and its checkpoints.Nat. Rev. Mol. Cell Biol.200121213210.1038/35048096 11413462
    [Google Scholar]
  63. DieterichK. Soto RifoR. FaureA.K. HennebicqS. Ben AmarB. ZahiM. PerrinJ. MartinezD. SèleB. JoukP.S. OhlmannT. RousseauxS. LunardiJ. RayP.F. Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility.Nat. Genet.200739566166510.1038/ng2027 17435757
    [Google Scholar]
  64. SharifB. NaJ. Lykke-HartmannK. McLaughlinS.H. LaueE. GloverD.M. Zernicka-GoetzM. The chromosome passenger complex is required for fidelity of chromosome transmission and cytokinesis in meiosis of mouse oocytes.J. Cell Sci.2010123244292430010.1242/jcs.067447 21123620
    [Google Scholar]
  65. CarmenaM. EarnshawW.C. The cellular geography of Aurora kinases.Nat. Rev. Mol. Cell Biol.200341184285410.1038/nrm1245 14625535
    [Google Scholar]
  66. LiS. DengZ. FuJ. XuC. XinG. WuZ. LuoJ. WangG. ZhangS. ZhangB. ZouF. JiangQ. ZhangC. Spatial compartmentalization specializes the function of Aurora A and Aurora B.J. Biol. Chem.201529028175461755810.1074/jbc.M115.652453 25987563
    [Google Scholar]
  67. NguyenH.G. ChinnappanD. UranoT. RavidK. Mechanism of Aurora-B degradation and its dependency on intact KEN and A-boxes: Identification of an aneuploidy-promoting property.Mol. Cell. Biol.200525124977499210.1128/MCB.25.12.4977‑4992.2005 15923616
    [Google Scholar]
  68. MarumotoT. ZhangD. SayaH. Aurora:A: A guardian of poles.Nat. Rev. Cancer200551425010.1038/nrc1526 15630414
    [Google Scholar]
  69. GalettaD. Cortes-DericksL. Promising therapy in lung cancer: Spotlight on aurora kinases.Cancers20201211337110.3390/cancers12113371 33202573
    [Google Scholar]
  70. TangA. GaoK. ChuL. ZhangR. YangJ. ZhengJ. Aurora kinases: Novel therapy targets in cancers.Oncotarget2017814239372395410.18632/oncotarget.14893 28147341
    [Google Scholar]
  71. PrimeM.E. CourtneyS.M. BrookfieldF.A. MarstonR.W. WalkerV. WarneJ. BoydA.E. KairiesN.A. von der SaalW. LimbergA. GeorgesG. EnghR.A. GollerB. RuegerP. RuethM. Phthalazinone pyrazoles as potent, selective, and orally bioavailable inhibitors of Aurora: A kinase.J. Med. Chem.201154131231910.1021/jm101346r 21128645
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808245049231019095755
Loading
/content/journals/lddd/10.2174/0115701808245049231019095755
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test