Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2950-5704
  • E-ISSN: 2950-5712

Abstract

Introduction

Spiders are predators that use their venom to immobilize their prey. These spider toxins are able to affect the central nervous system of mammals.

Methods

We hypothesized that venom from the tarantula may induce behavioral changes in male Wistar rats. To test this hypothesis, the behavioral effects of venom were investigated after intracerebroventricular microinjection using the neuroethological method (behavioral sequences) associated with the program, evaluating frequency, duration, and strength of statistical association between pairs (dyads) of behaviors.

Results

The results obtained in this present study showed that the intracerebral administration of crude venom provoked a difference in the time of freezing of animals. In addition, animals showed after the freezing period changes in the exploratory and grooming clusters and additional complex sequences of behaviors such as wild running.

Conclusion

This study clearly demonstrated the appearance of seizure-like behaviors, similar to audiogenic brainstem-dependent seizures such as those observed in genetically-selected audiogenic strains.

Loading

Article metrics loading...

/content/journals/jctv/10.2174/0126661217263227231103050833
2024-01-01
2024-11-22
Loading full text...

Full text loading...

References

  1. JacksonH. UsherwoodP.N.R. Spider toxins as tools for dissecting elements of excitatory amino acid transmission.Trends Neurosci.198811627828310.1016/0166‑2236(88)90112‑9 2465627
    [Google Scholar]
  2. JohnsonJ.H. BloomquistJ.R. KrapchoK.J. Novel insecticidal peptides from Tegenaria agrestis spider venom may have a direct effect on the insect central nervous system.Arch. Insect Biochem. Physiol.1998381193110.1002/(SICI)1520‑6327(1998)38:1<19:AID‑ARCH3>3.0.CO;2‑Q 9589602
    [Google Scholar]
  3. LazaroviciP. Snake-and spider-venom-derived toxins as lead compounds for drug development.Snake and Spider Toxins: Methods Protocol202032610.1007/978‑1‑4939‑9845‑6_1
    [Google Scholar]
  4. EisnerT. MeinwaldJ. Chemical ecology.Proc. Natl. Acad. Sci.1995921110.1073/pnas.92.1.1 7816795
    [Google Scholar]
  5. MoeS.T. SmithD.L. ChienY.E. RaszkiewiczJ.L. ArtmanL.D. MuellerA.L. Design, synthesis, and biological evaluation of spider toxin (argiotoxin-636) analogs as NMDA receptor antagonists.Pharm. Res.1998151313810.1023/A:1011988317683 9487543
    [Google Scholar]
  6. RashL.D. HodgsonW.C. Pharmacology and biochemistry of spider venoms.Toxicon200240322525410.1016/S0041‑0101(01)00199‑4 11711120
    [Google Scholar]
  7. KingJ.B. GrossJ. LovlyC.M. Piwnica-WormsH. TownsendR.R. Identification of protein phosphorylation sites within Ser/Thr‐rich cluster domains using site‐directed mutagenesis and hybrid linear quadrupole ion trap Fourier transform ion cyclotron resonance mass spectrometry.Rapid Commun. Mass Spectrom.200721213443345110.1002/rcm.3223 17918214
    [Google Scholar]
  8. NicholsonG.M. Insect-selective spider toxins targeting voltage-gated sodium channels.Toxicon200749449051210.1016/j.toxicon.2006.11.027 17223149
    [Google Scholar]
  9. Del BruttoO.H. Neurological effects of venomous bites and stings.Handb. Clin. Neurol.201311434936810.1016/B978‑0‑444‑53490‑3.00028‑5 23829924
    [Google Scholar]
  10. Jiménez-VargasJ.M. PossaniL.D. Luna-RamírezK. Arthropod toxins acting on neuronal potassium channels.Neuropharmacology201712713916010.1016/j.neuropharm.2017.09.025 28941737
    [Google Scholar]
  11. UsherwoodP.N.R. Insect glutamate receptors.In: In Advances in insect physiology.Academic Press19942430934110.1016/S0065‑2806(08)60086‑7
    [Google Scholar]
  12. EscoubasP. Molecular diversification in spider venoms: A web of combinatorial peptide libraries.Mol. Divers.200610454555410.1007/s11030‑006‑9050‑4 17096075
    [Google Scholar]
  13. SilvaJ. Monge-FuentesV. GomesF. Pharmacological alternatives for the treatment of neurodegenerative disorders: Wasp and bee venoms and their components as new neuroactive tools.Toxins2015783179320910.3390/toxins7083179 26295258
    [Google Scholar]
  14. de SouzaJ.M. GoncalvesB.D.C. GomezM.V. VieiraL.B. RibeiroF.M. Animal toxins as therapeutic tools to treat neurodegenerative diseases.Front. Pharmacol.2018914510.3389/fphar.2018.00145 29527170
    [Google Scholar]
  15. ChoiD. Glutamate neurotoxicity and diseases of the nervous system.Neuron19881862363410.1016/0896‑6273(88)90162‑6 2908446
    [Google Scholar]
  16. JavittDC Glutamate as a therapeutic target in psychiatric disorders.Mol Psychiatry2004911984997, 97910.1038/sj.mp.4001551 15278097
    [Google Scholar]
  17. MiladinovicT. NashedM. SinghG. Overview of glutamatergic dysregulation in central pathologies.Biomolecules2015543112314110.3390/biom5043112 26569330
    [Google Scholar]
  18. PálB. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability.Cell. Mol. Life Sci.201875162917294910.1007/s00018‑018‑2837‑5 29766217
    [Google Scholar]
  19. FoleyS. LüddeckeT. ChengD.Q. Tarantula phylogenomics: A robust phylogeny of deep theraphosid clades inferred from transcriptome data sheds light on the prickly issue of urticating setae evolution.Mol. Phylogenet. Evol.201914010657310.1016/j.ympev.2019.106573 31374259
    [Google Scholar]
  20. AraqueA. FerreiraW. LucasS. Bun˜oW. Glutamatergic postsynaptic block by Pamphobeteus spider venoms in crayfish.Brain Res.1992571110911410.1016/0006‑8993(92)90515‑B 1319261
    [Google Scholar]
  21. Rocha-e-SilvaT.A.A. Collares-BuzatoC.B. da Cruz-HöflingM.A. HyslopS. Venom apparatus of the brazilian tarantula vitalius dubius mello-Leitão 1923 (Theraphosidae).Cell Tissue Res.2009335361762910.1007/s00441‑008‑0738‑x 19132396
    [Google Scholar]
  22. Rocha-e-SilvaT.A.A. SuttiR. HyslopS. Milking and partial characterization of venom from the Brazilian spider Vitalius dubius (Theraphosidae).Toxicon200953115316110.1016/j.toxicon.2008.10.026 19032960
    [Google Scholar]
  23. Rocha-e-SilvaT.A.A. Rostelato-FerreiraS. LeiteG.B. da SilvaP.I.Jr HyslopS. Rodrigues-SimioniL. VdTX-1, a reversible nicotinic receptor antagonist isolated from venom of the spider Vitalius dubius (Theraphosidae).Toxicon20137013514110.1016/j.toxicon.2013.04.020 23668938
    [Google Scholar]
  24. SuttiR. TamasciaM. HyslopS. Rocha-e-SilvaT.A. Purification and characterization of a hyaluronidase from venom of the spider Vitalius dubius (Araneae, Theraphosidae).J. Venom. Anim. Toxins Incl. Trop. Dis.2014201210.1186/1678‑9199‑20‑2 24495716
    [Google Scholar]
  25. SuttiR. RosaB.B. WunderlichB. da SilvaJunior P.I. Rocha e SilvaT.A.A. Antimicrobial activity of the toxin VdTX-I from the spider Vitalius dubius (Araneae, Theraphosidae).Biochem. Biophys. Rep.2015432432810.1016/j.bbrep.2015.09.018 29124220
    [Google Scholar]
  26. RibeiroA.M. dos SantosW.F. Garcia-CairascoN. Neuroethological analysis of the effects of spider venom from Scaptocosa raptoria (Lycosidae: Araneae) microinjected in the lateral ventricle of Wistar rats.Brain Res. Bull.200052658158810.1016/S0361‑9230(00)00300‑2 10974500
    [Google Scholar]
  27. RodriguesM.C.A. GuizzoR. dos SantosW.F. CairascoN.G. A comparative neuroethological study of limbic seizures induced by Parawixia bistriata venom and kainic acid injections in rats.Brain Res. Bull.2001551798610.1016/S0361‑9230(01)00495‑6 11427341
    [Google Scholar]
  28. TsutsuiJ. TerraV.C. OliveiraJ.A.C. Garcia-CairascoN. Neuroethological evaluation of audiogenic seizures and audiogenic-like seizures induced by microinjection of bicuculline into the inferior colliculus. I. Effects of midcollicular knife cuts.Behav. Brain Res.199252171710.1016/S0166‑4328(05)80320‑1 1335263
    [Google Scholar]
  29. TerraV.C. Garcia-CairascoN. Neuroethological evaluation of audiogenic seizures and audiogenic-like seizures induced by microinjection of bicuculline into the inferior colliculus. II. Effects of nigral clobazam microinjections.Behav. Brain Res.1992521192810.1016/S0166‑4328(05)80321‑3 1335262
    [Google Scholar]
  30. Garcia-CairascoN. A critical review on the participation of inferior colliculus in acoustic-motor and acoustic-limbic networks involved in the expression of acute and kindled audiogenic seizures.Hear. Res.20021681-220822210.1016/S0378‑5955(02)00371‑4 12117522
    [Google Scholar]
  31. Garcia-CairascoN UmeokaEHL Cortes de OliveiraJA The Wistar Audiogenic Rat (WAR) strain and its contributions to epileptology and related comorbidities: History and perspectives.Epilepsy Behav201771Pt B25027310.1016/j.yebeh.2017.04.001 28506440
    [Google Scholar]
  32. TerraV.C. Garcia-CairascoN. NMDA-dependent audiogenic seizures are differentially regulated by inferior colliculus subnuclei.Behav. Brain Res.1994621293910.1016/0166‑4328(94)90035‑3 7917031
    [Google Scholar]
  33. Garcia-CairascoN. SabbatiniR.M. Role of the substantia nigra in audiogenic seizures: A neuroethological analysis in the rat.Braz. J. Med. Biol. Res.1983162171183 6686072
    [Google Scholar]
  34. Garcia-CairascoN. DorettoM.C. PradoR.P. JorgeB.P.D. TerraV.C. OliveiraJ.A.C. New insights into behavioral evaluation of audiogenic seizures. A comparison of two ethological methods.Behav. Brain Res.1992481495610.1016/S0166‑4328(05)80138‑X 1622553
    [Google Scholar]
  35. Barrera-BailónB. OliveiraJ.A.C. LópezD.E. MuñozL.J. Garcia-CairascoN. SanchoC. Pharmacological and neuroethological studies of three antiepileptic drugs in the Genetic Audiogenic Seizure Hamster (GASH:Sal).Epilepsy Behav.201328341342510.1016/j.yebeh.2013.05.028 23872084
    [Google Scholar]
  36. Barrera-BailónB OliveiraJAC LópezDE MuñozLJ Garcia-CairascoN SanchoC Pharmacological and neuroethological study of the acute and chronic effects of lamotrigine in the genetic audiogenic seizure hamster (GASH:Sal).Epilepsy Behav201771Pt B20721710.1016/j.yebeh.2015.11.005 26876275
    [Google Scholar]
  37. PaxinosG. WatsonC. The rat brain in stereotaxic coordinates: hard cover edition.Elsevier2007
    [Google Scholar]
  38. HartreeE.F. Determination of protein: A modification of the lowry method that gives a linear photometric response.Anal. Biochem.197248242242710.1016/0003‑2697(72)90094‑2 4115981
    [Google Scholar]
  39. Garcia-CairascoN. WakamatsuH. OliveiraJ.A.C. GomesE.L.T. Del BelE.A. MelloL.E.A.M. Neuroethological and morphological (Neo-Timm staining) correlates of limbic recruitment during the development of audiogenic kindling in seizure susceptible Wistar rats.Epilepsy Res.199626117719210.1016/S0920‑1211(96)00050‑2 8985699
    [Google Scholar]
  40. KatzP.S. The golden age of comparative neuroethology on display in Japan.Brain Behav Evol201484424324510.1159/000367885 25341457
    [Google Scholar]
  41. Dal-CólM.L.C. Terra-BustamanteV.C. VelascoT.R. OliveiraJ.A.C. SakamotoA.C. Garcia-CairascoN. Neuroethology application for the study of human temporal lobe epilepsy: From basic to applied sciences.Epilepsy Behav.20068114916010.1016/j.yebeh.2005.08.010 16246630
    [Google Scholar]
  42. BerttiP. Dal-CólM.L.C. Wichert-AnaL. The neurobiological substrates of behavioral manifestations during temporal lobe seizures: A neuroethological and ictal SPECT correlation study.Epilepsy Behav.201017334435310.1016/j.yebeh.2009.12.030 20153261
    [Google Scholar]
  43. TejadaJ. CostaK.M. BerttiP. Garcia-CairascoN. The epilepsies: Complex challenges needing complex solutions.Epilepsy Behav.201326321222810.1016/j.yebeh.2012.09.029 23146364
    [Google Scholar]
  44. McCownT.J. GreenwoodR.S. FryeG.D. BreeseG.R. Electrically elicited seizures from the inferior colliculus: A potential site for the genesis of epilepsy?Exp. Neurol.198486352754210.1016/0014‑4886(84)90087‑6 6437856
    [Google Scholar]
  45. BagriA. SandnerG. Di ScalaG. Wild running and switch-off behavior elicited by electrical stimulation of the inferior colliculus: Effect of anticonvulsant drugs.Pharmacol. Biochem. Behav.199139368368810.1016/0091‑3057(91)90147‑T 1784596
    [Google Scholar]
  46. BagriA. Di ScalaG. SandnerG. Wild running elicited by microinjections of bicuculline or morphine into the inferior colliculus of rats: Lack of effect of periaqueductal gray lesions.Pharmacol. Biochem. Behav.199241472773210.1016/0091‑3057(92)90219‑6 1594640
    [Google Scholar]
  47. McCownT.J. DuncanG.E. JohnsonK.B. BreeseG.R. Metabolic and functional mapping of the neural network subserving inferior collicular seizure generalization.Brain Res.19957011-211712810.1016/0006‑8993(95)00970‑X 8925273
    [Google Scholar]
  48. SandovalM.R.L. DorceV.A.C. Behavioural and electroencephalographic effects of Tityus serrulatus scorpion venom in rats.Toxicon199331220521210.1016/0041‑0101(93)90287‑S 8456448
    [Google Scholar]
  49. NencioniA.L.A. CarvalhoF.F. LebrunI. DorceV.A.C. SandovalM.R.L. Neurotoxic effects of three fractions isolated from Tityus serrulatus scorpion venom.Pharmacol. Toxicol.200086414915510.1034/j.1600‑0773.2000.d01‑28.x 10815747
    [Google Scholar]
  50. Romcy-PereiraR.N. Garcia-CairascoN. Hippocampal cell proliferation and epileptogenesis after audiogenic kindling are not accompanied by mossy fiber sprouting or fluoro-jade staining.Neuroscience2003119253354610.1016/S0306‑4522(03)00191‑X 12770566
    [Google Scholar]
  51. Dutra MoraesM.F. Galvis-AlonsoO.Y. Garcia-CairascoN. Audiogenic kindling in the Wistar rat: a potential model for recruitment of limbic structures.Epilepsy Res.200039325125910.1016/S0920‑1211(00)00107‑8 10771251
    [Google Scholar]
  52. JobeP.C. LairdH.E. Neurotransmitter abnormalities as determinants of seizure susceptibility and intensity in the genetic models of epilepsy.Biochem. Pharmacol.198130233137314410.1016/0006‑2952(81)90510‑4 6119088
    [Google Scholar]
  53. SchmittP. SandnerG. KarliP. Escape and approach induced by brain stimulation:A parametric analysis.Behav. Brain Res.198121497910.1016/0166‑4328(81)90038‑3 7225219
    [Google Scholar]
  54. SandnerG. SchmittP. KarliP. Mapping of jumping, rearing, squealing and switch-off behaviors elicited by periaqueductal gray stimulation in the rat.Physiol. Behav.198739333333910.1016/0031‑9384(87)90231‑9 3575473
    [Google Scholar]
  55. DepoortereR. SandnerG. Di ScalaG. Aversion induced by electrical stimulation of the mesencephalic locomotor region in the intact and freely moving rat.Physiol. Behav.199047356156710.1016/0031‑9384(90)90127‑P 2359770
    [Google Scholar]
  56. CastilhoV. AvanziV. BrandãoM.L. Antinociception elicited by aversive stimulation of the inferior colliculus.Pharmacol. Biochem. Behav.199962342543110.1016/S0091‑3057(98)00197‑X 10080233
    [Google Scholar]
  57. CastilhoV.M. BrandãoM.L. Conditioned antinociception and freezing using electrical stimulation of the dorsal periaqueductal gray or inferior colliculus as unconditioned stimulus are differentially regulated by 5-HT2A receptors in rats.Psychopharmacology (Berl.)2001155215416210.1007/s002130100697 11401004
    [Google Scholar]
  58. GarbuzD.G. DavletshinA.A. LitvinovaS.A. FedotovaI.B. SurinaN.M. PoletaevaI.I. Rodent models of audiogenic epilepsy: Genetic aspects, advantages, current problems and perspectives.Biomedicines20221011293410.3390/biomedicines10112934 36428502
    [Google Scholar]
  59. RossettiF. RodriguesM.C.A. de OliveiraJ.A.C. Garcia-CairascoN. Behavioral and EEG effects of GABAergic manipulation of the nigrotectal pathway in the Wistar audiogenic rat strain.Epilepsy Behav.201122219119910.1016/j.yebeh.2011.06.033 21820967
    [Google Scholar]
  60. RossettiF. RodriguesM.C.A. MarroniS.S. Behavioral and EEG effects of GABAergic manipulation of the nigro-tectal pathway in the Wistar audiogenic rat (WAR) strain II: An EEG wavelet analysis and retrograde neuronal tracer approach.Epilepsy Behav.201224439139810.1016/j.yebeh.2012.04.133 22704998
    [Google Scholar]
  61. SeymourP.A. MenaE.E. In vivo NMDA antagonist activity of the polyamine spider venom component, argiotoxin-636.Proc. Natl. Acad. Sci.198946324
    [Google Scholar]
  62. JacksonH. ParksT.N. Anticonvulsant action of an arylamine-containing fraction from Agelenopsis spider venom.Brain Res.1990526233834110.1016/0006‑8993(90)91243‑A 2257489
    [Google Scholar]
  63. TakazawaA. YamazakiO. KanaiH. IshidaN. KatoN. YamauchiT. Potent and long-lasting anticonvulsant effects of 1-naphthylacetyl spermine, an analogue of Joro spider toxin, against amygdaloid kindled seizures in rats.Brain Res.1996706117317610.1016/0006‑8993(95)01334‑2 8720508
    [Google Scholar]
  64. TwedeV.D. MiljanichG. OliveraB.M. BulajG. Neuroprotective and cardioprotective conopeptides: An emerging class of drug leads.Curr. Opin. Drug Discov. Devel.2009122231239 19333868
    [Google Scholar]
  65. JacksonH.C. ScheidelerM.A. Behavioural and anticonvulsant effects of Ca2+ channel toxins in DBA/2 mice.Psychopharmacology19961261859010.1007/BF02246415 8853221
    [Google Scholar]
  66. KrystalJ.H. Neuroethology as a translational neuroscience strategy in the era of the NIMH Research Domain Criteria.Psychophysiology201653336436610.1111/psyp.12465 26877127
    [Google Scholar]
/content/journals/jctv/10.2174/0126661217263227231103050833
Loading
/content/journals/jctv/10.2174/0126661217263227231103050833
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): convulsions; epilepsy; freezing; seizures; Spider toxin; wild running
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test