Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2950-5704
  • E-ISSN: 2950-5712

Abstract

Introduction

Venom allergens have been identified in the venom of scorpion, snake, bee, wasp, . Some allergy reactions in humans may refer to the venom allergens.

Aim

Phylogenetic analysis of venom allergens from the transcriptome of scorpion was the main aim of the study.

Methods

Seven venom allergens: HLAllergen1, HLAllergen2, HLAllergen3, HLAllergen4, HLAllergen5, HLAllergen6, and HLAllergen7 have been identified in the venom of scorpion using venom gland transcriptome analysis. Primary, secondary and tertiary structures of the identified venom allergens were predicted using ExPASy ProtParam, PSIPRED, and SWISS MODEL servers. Phylogenetic tree was constructed using MEGA 11 software through neighbor-joining method with 1000 bootstraps.

Results

Structure analysis of identified venom allergens showed a molecular weight of between 46 to 52 kDa. Tertiary structure results showed that all predicted 3-D structures were in a normal range. Phylogenetic tree analysis showed that HLAllergen 3, 4 and 5 were formed single clades and HLAllergen 1, 2, 7, and 6 other clades.

Conclusion

However, further studies using proteomic analysis of are needed to confirm and compare with transcriptome data.

Loading

Article metrics loading...

/content/journals/jctv/10.2174/0126661217183829231108105708
2024-01-01
2024-11-26
Loading full text...

Full text loading...

References

  1. ChippauxJ.P. GoyffonM. Epidemiology of scorpionism: A global appraisal.Acta Trop.20081072717910.1016/j.actatropica.2008.05.021 18579104
    [Google Scholar]
  2. JalaliA. PipelzadehM.H. SayedianR. RowanE.G. A review of epidemiological, clinical and in vitro physiological studies of envenomation by the scorpion Hemiscorpius lepturus (Hemiscorpiidae) in Iran.Toxicon2010552-317317910.1016/j.toxicon.2009.09.012 19799924
    [Google Scholar]
  3. PipelzadehM.H. JalaliA. TarazM. PourabbasR. ZaremirakabadiA. An epidemiological and a clinical study on scorpionism by the Iranian scorpion Hemiscorpius lepturus.Toxicon200750798499210.1016/j.toxicon.2007.07.018 17854855
    [Google Scholar]
  4. SeyedianR. PipelzadehM.H. JalaliA. Enzymatic analysis of Hemiscorpius lepturus scorpion venom using zymography and venom-specific antivenin.Toxicon201056452152510.1016/j.toxicon.2010.05.008 20493200
    [Google Scholar]
  5. Hanafi-BojdA.A. SharififardM. JahanifardE. NavidpourS. VazirianzadehB. Presence probability of Hemiscorpius lepturus Peters, 1861 using maximum entropy approach in the western areas of Zagros Mountains, Iran.Vet. World202013229630310.14202/vetworld.2020.296‑303 32255972
    [Google Scholar]
  6. Rodríguez de la Vega RCSchwartz EF, Possani LD. Mining on scorpion venom biodiversity.Toxicon20105671155116110.1016/j.toxicon.2009.11.010 19931296
    [Google Scholar]
  7. DizajiR. SharafiA. PourahmadJ. VatanpourS. HosseiniM.J. VatanpourH. The effects of Hemiscorpius lepturus induced-acute kidney injury on PGC-1α gene expression: From induction to suppression in mice.Toxicon2020174576310.1016/j.toxicon.2019.12.154 31887316
    [Google Scholar]
  8. ShahbazzadehD. Srairi-AbidN. FengW. Hemicalcin, a new toxin from the Iranian scorpion Hemiscorpius lepturus which is active on ryanodine-sensitive Ca2+ channels.Biochem. J.20074041899610.1042/BJ20061404 17291197
    [Google Scholar]
  9. Srairi-AbidN. ShahbazzadehD. ChattiI. Hemitoxin, the first potassium channel toxin from the venom of the Iranian scorpion Hemiscorpius lepturus.FEBS J.2008275184641465010.1111/j.1742‑4658.2008.06607.x 18699777
    [Google Scholar]
  10. BorchaniL. SassiA. Ben YekhlefR. SafraI. El AyebM. Heminecrolysin, a potential immunogen for monospecific antivenom production against Hemiscorpius lepturus scorpion.Toxicon201158868168810.1016/j.toxicon.2011.09.010 21967811
    [Google Scholar]
  11. Kazemi-LomedashtF. KhalajV. BagheriK.P. BehdaniM. ShahbazzadehD. The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus.Toxicon201712512313010.1016/j.toxicon.2016.11.261 27914888
    [Google Scholar]
  12. JahdasaniR. JamnaniF.R. BehdaniM. Identification of the immunogenic epitopes of the whole venom component of the Hemiscorpius lepturus scorpion using the phage display peptide library.Toxicon2016124839310.1016/j.toxicon.2016.11.247 27845058
    [Google Scholar]
  13. KingT.P. SpangfortM.D. Structure and biology of stinging insect venom allergens.Int. Arch. Allergy Immunol.200012329910610.1159/000024440 11060481
    [Google Scholar]
  14. HoffmanD.R. Hymenoptera venom allergens.Clin. Rev. Allergy Immunol.200630210912810.1385/CRIAI:30:2:109 16645223
    [Google Scholar]
  15. PondehnezhadanE. ChamaniA. SalabiF. SoleimaniR. Identification, characterization, and molecular phylogeny of scorpion enolase (Androctonus crassicauda and Hemiscorpius lepturus).Toxin Rev.202342122824110.1080/15569543.2022.2080223
    [Google Scholar]
  16. AlmaaytahA. AlbalasQ. Scorpion venom peptides with no disulfide bridges: A review.Peptides201451354510.1016/j.peptides.2013.10.021 24184590
    [Google Scholar]
  17. GaoB. HarveyP.J. CraikD.J. RonjatM. De WaardM. ZhuS. Functional evolution of scorpion venom peptides with an inhibitor cystine knot fold.Biosci. Rep.2013333e0004710.1042/BSR20130052 23721518
    [Google Scholar]
  18. Luna-RamírezK Quintero-HernándezV Juárez-GonzálezVR PossaniLD Whole transcriptome of the venom gland from Urodacus yaschenkoi scorpion.PLoS One2015105e012788310.1371/journal.pone.0127883 26020943
    [Google Scholar]
  19. Santibáñez-LópezC Cid-UribeJ BatistaC OrtizE PossaniL. Venom gland transcriptomic and proteomic analyses of the enigmatic scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with insights on the evolution of its venom components.Toxins201681236710.3390/toxins8120367 27941686
    [Google Scholar]
  20. Cid UribeJ.I. Jiménez VargasJ.M. Ferreira BatistaC.V. Zamudio Zuñiga F, Possani LD. Comparative proteomic analysis of female and male venoms from the Mexican scorpion Centruroides limpidus: Novel components found.Toxicon2017125919810.1016/j.toxicon.2016.11.256 27889600
    [Google Scholar]
  21. HuY. YangL. YangH. HeS. WeiJ.F. Identification of snake venom allergens by two-dimensional electrophoresis followed by immunoblotting.Toxicon2017125131810.1016/j.toxicon.2016.11.251 27867095
    [Google Scholar]
  22. MurrayJ. GregoryW.F. Gomez-EscobarN. AtmadjaA.K. MaizelsR.M. Expression and immune recognition of Brugia malayi VAL-1, a homologue of vespid venom allergens and Ancylostoma secreted proteins.Mol. Biochem. Parasitol.20011181899610.1016/S0166‑6851(01)00374‑7 11704277
    [Google Scholar]
  23. YangH. XuX. MaD. ZhangK. LaiR. A phospholipase A1 platelet activator from the wasp venom of Vespa magnifica (Smith).Toxicon200851228929610.1016/j.toxicon.2007.10.003 18023835
    [Google Scholar]
  24. TsaiM. StarklP. MarichalT. GalliS.J. Testing the ‘toxin hypothesis of allergy’: Mast cells, IgE, and innate and acquired immune responses to venoms.Curr. Opin. Immunol.201536808710.1016/j.coi.2015.07.001 26210895
    [Google Scholar]
/content/journals/jctv/10.2174/0126661217183829231108105708
Loading
/content/journals/jctv/10.2174/0126661217183829231108105708
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): allergen; Hemiscorpius lepturus; phylogeny; scorpion; transcriptome; Venom
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test