Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-2906
  • E-ISSN: 2666-2914

Abstract

The gut microbiota plays a key role in human health. Dominated by the phyla Firmicutes and Bacteroidetes, its composition is highly individualized and influenced by diet, age, genetics, and the environment. The gut-liver axis highlights the bidirectional relationship between the gut and the liver, impacting metabolic homeostasis and immune regulation. Gut dysbiosis, an imbalance in the gut microflora, contributes to liver diseases by disrupting gut barrier function and bile acid metabolism, leading to inflammation and fibrogenesis. Advancements in omics approaches, such as metagenomics, metatranscriptomics, metaproteomics, and metabolomics, have enhanced our understanding of the gut microbiota. These approaches offer insights into microbial composition and function, although they vary in cost, efficiency, and complexity. Metagenomics is widely used for its cost-effectiveness and rapid turnaround time despite limitations in taxonomic resolution, while metatranscriptomics, metaproteomics, and metabolomics offer functional and metabolic insights but require sophisticated techniques and expertise. The Firmicutes/Bacteroidetes (F/B) ratio is a potential biomarker of gut dysbiosis linked to obesity, type 2 diabetes mellitus, and liver diseases. However, its diagnostic reliability is debated due to variations in individual factors and a lack of data on its associations with several diseases. Future research should focus on integrating multi-omics approaches so as to provide a holistic view of the gut microbiota and its role in health and disease, aiming for applications in precision medicine. While promising, the F/B ratio should be used cautiously alongside other diagnostic measures. In addition, renewed efforts are needed to develop cost-effective and rapid analysis methods for clinical use.

Loading

Article metrics loading...

/content/journals/ijghd/10.2174/0126662906338438240920053601
2024-10-01
2025-01-19
Loading full text...

Full text loading...

References

  1. AfzaalM. SaeedF. ShahY.A. HussainM. RabailR. SocolC.T. HassounA. PateiroM. LorenzoJ.M. RusuA.V. AadilR.M. Human gut microbiota in health and disease: Unveiling the relationship.Front. Microbiol.20221399900110.3389/fmicb.2022.99900136225386
    [Google Scholar]
  2. AbenavoliL. ScarlataG.G.M. ParavatiM.R. BoccutoL. LuzzaF. ScarpelliniE. Gut Microbiota and Liver Transplantation: Immune Mechanisms behind the Rejection.Biomedicines2023117179210.3390/biomedicines1107179237509432
    [Google Scholar]
  3. CampbellC. KandalgaonkarM.R. GolonkaR.M. YeohB.S. Vijay-KumarM. SahaP. Crosstalk between gut microbiota and host immunity: Impact on inflammation and immunotherapy.Biomedicines202311229410.3390/biomedicines1102029436830830
    [Google Scholar]
  4. HsuC.L. SchnablB. The gut–liver axis and gut microbiota in health and liver disease.Nat. Rev. Microbiol.2023211171973310.1038/s41579‑023‑00904‑337316582
    [Google Scholar]
  5. AbenavoliL. ScarlataG.G.M. ScarpelliniE. BoccutoL. SpagnuoloR. TiloccaB. RoncadaP. LuzzaF. Metabolic-dysfunction-associated fatty liver disease and gut microbiota: From fatty liver to dysmetabolic syndrome.Medicina.202359359410.3390/medicina5903059436984595
    [Google Scholar]
  6. MerraG. NoceA. MarroneG. CintoniM. TarsitanoM.G. CapacciA. De LorenzoA. Influence of Mediterranean diet on human gut microbiota.Nutrients2020131710.3390/nu1301000733375042
    [Google Scholar]
  7. WhonT.W. ShinN.R. KimJ.Y. RohS.W. Omics in gut microbiome analysis.J. Microbiol.202159329229710.1007/s12275‑021‑1004‑033624266
    [Google Scholar]
  8. MiyaueN. 16S rRNA gene amplicon analysis of human gut microbiota.Methods Mol. Biol.2024276634334910.1007/978‑1‑0716‑3682‑4_3538270894
    [Google Scholar]
  9. ByrdD.A. SinhaR. HoffmanK.L. ChenJ. HuaX. ShiJ. ChiaN. PetrosinoJ. VogtmannE. Comparison of methods to collect fecal samples for microbiome studies using whole-genome shotgun metagenomic sequencing.MSphere202051e00827-1910.1128/mSphere.00827‑1932250964
    [Google Scholar]
  10. ZampieriG. CampanaroS. AngioneC. TreuL. Metatranscriptomics-guided genome-scale metabolic modeling of microbial communities.Cell Rep. Methods20233110038310.1016/j.crmeth.2022.10038336814842
    [Google Scholar]
  11. LaiL.A. TongZ. ChenR. PanS. Metaproteomics study of the gut microbiome.Methods Mol. Biol.2019187112313210.1007/978‑1‑4939‑8814‑3_830276736
    [Google Scholar]
  12. SmirnovK.S. MaierT.V. WalkerA. HeinzmannS.S. ForcisiS. MartinezI. WalterJ. Schmitt-KopplinP. Challenges of metabolomics in human gut microbiota research.Int. J. Med. Microbiol.2016306526627910.1016/j.ijmm.2016.03.00627012595
    [Google Scholar]
  13. LiuL. KanwalA. SinghS.P. KumarA. Acetaldehyde and Butyrate: Their Biological Effects on the Liver and the Gut Axis.Int. J. Gastroenterol. Hepatol. Dis.20243e24012422605710.2174/0126662906273512231201050937
    [Google Scholar]
  14. GuirroM. CostaA. Gual-GrauA. Mayneris-PerxachsJ. TorrellH. HerreroP. CanelaN. ArolaL. Multi‐omics approach to elucidate the gut microbiota activity: Metaproteomics and metagenomics connection.Electrophoresis201839131692170110.1002/elps.20170047629427518
    [Google Scholar]
  15. MarchesiJ.R. AdamsD.H. FavaF. HermesG.D.A. HirschfieldG.M. HoldG. QuraishiM.N. KinrossJ. SmidtH. TuohyK.M. ThomasL.V. ZoetendalE.G. HartA. The gut microbiota and host health: A new clinical frontier.Gut201665233033910.1136/gutjnl‑2015‑30999026338727
    [Google Scholar]
  16. KasaiC. SugimotoK. MoritaniI. TanakaJ. OyaY. InoueH. TamedaM. ShirakiK. ItoM. TakeiY. TakaseK. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing.BMC Gastroenterol.201515110010.1186/s12876‑015‑0330‑226261039
    [Google Scholar]
  17. KoliadaA. SyzenkoG. MoseikoV. BudovskaL. PuchkovK. PerederiyV. GavalkoY. DorofeyevA. RomanenkoM. TkachS. SineokL. LushchakO. VaisermanA. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population.BMC Microbiol.201717112010.1186/s12866‑017‑1027‑128532414
    [Google Scholar]
  18. XuP. LiM. ZhangJ. ZhangT. Correlation of intestinal microbiota with overweight and obesity in Kazakh school children.BMC Microbiol.201212128310.1186/1471‑2180‑12‑28323190705
    [Google Scholar]
  19. SohailM.U. ElrayessM.A. Al ThaniA.A. Al-AsmakhM. YassineH.M. Profiling the oral microbiome and plasma biochemistry of obese hyperglycemic subjects in Qatar.Microorganisms201971264510.3390/microorganisms712064531816998
    [Google Scholar]
  20. StojanovS. BerlecA. ŠtrukeljB. The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease.Microorganisms2020811171510.3390/microorganisms811171533139627
    [Google Scholar]
  21. HungW.C. HungW.W. TsaiH.J. ChangC.C. ChiuY.W. HwangS.J. KuoM.C. ChenS.C. DaiC.Y. TsaiY.C. The association of targeted gut microbiota with body composition in Type 2 diabetes mellitus.Int. J. Med. Sci.202118251151910.7150/ijms.5116433390820
    [Google Scholar]
  22. TsaiH.J. TsaiW.C. HungW.C. HungW.W. ChangC.C. DaiC.Y. TsaiY.C. Gut microbiota and subclinical cardiovascular disease in patients with Type 2 diabetes mellitus.Nutrients2021138267910.3390/nu1308267934444839
    [Google Scholar]
  23. PetakhP. OksenychV. KamyshnyiA. The F/B ratio as a biomarker for inflammation in COVID-19 and T2D: Impact of metformin.Biomed. Pharmacother.202316311489210.1016/j.biopha.2023.11489237196542
    [Google Scholar]
  24. Rajilić-StojanovićM. BiagiE. HeiligH.G.H.J. KajanderK. KekkonenR.A. TimsS. de VosW.M. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome.Gastroenterology201114151792180110.1053/j.gastro.2011.07.04321820992
    [Google Scholar]
  25. NagelR. TraubR.J. AllcockR.J.N. KwanM.M.S. Bielefeldt-OhmannH. Comparison of faecal microbiota in Blastocystis-positive and Blastocystis-negative irritable bowel syndrome patients.Microbiome2016414710.1186/s40168‑016‑0191‑027580855
    [Google Scholar]
  26. Monga KravetzA. TestermanT. GaluppoB. GrafJ. PierpontB. SiebelS. FeinnR. SantoroN. Effect of gut microbiota and PNPLA3 rs738409 variant on nonalcoholic fatty liver disease (NAFLD) in obese youth.J. Clin. Endocrinol. Metab.202010510e3575e358510.1210/clinem/dgaa38232561908
    [Google Scholar]
  27. JasirwanC.O.M. MuradiA. HasanI. SimadibrataM. RinaldiI. Correlation of gut Firmicutes/Bacteroidetes ratio with fibrosis and steatosis stratified by body mass index in patients with non-alcoholic fatty liver disease.Biosci. Microbiota Food Health2021401505810.12938/bmfh.2020‑04633520569
    [Google Scholar]
  28. WuZ. ZhouH. LiuD. DengF. Alterations in the gut microbiota and the efficacy of adjuvant probiotic therapy in liver cirrhosis.Front. Cell. Infect. Microbiol.202313121855210.3389/fcimb.2023.121855237483387
    [Google Scholar]
  29. WangB. JiangX. CaoM. GeJ. BaoQ. TangL. ChenY. LiL. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease.Sci. Rep.2016613200210.1038/srep3200227550547
    [Google Scholar]
  30. AnJ. KwonH. KimY.J. The Firmicutes/Bacteroidetes ratio as a risk factor of breast cancer.J. Clin. Med.2023126221610.3390/jcm1206221636983217
    [Google Scholar]
  31. KnightR. VrbanacA. TaylorB.C. AksenovA. CallewaertC. DebeliusJ. GonzalezA. KosciolekT. McCallL.I. McDonaldD. MelnikA.V. MortonJ.T. NavasJ. QuinnR.A. SandersJ.G. SwaffordA.D. ThompsonL.R. TripathiA. XuZ.Z. ZaneveldJ.R. ZhuQ. CaporasoJ.G. DorresteinP.C. Best practices for analysing microbiomes.Nat. Rev. Microbiol.201816741042210.1038/s41579‑018‑0029‑929795328
    [Google Scholar]
  32. OhH.S. MinU. JangH. KimN. LimJ. ChalitaM. ChunJ. Proposal of a health gut microbiome index based on a meta-analysis of Korean and global population datasets.J. Microbiol.202260553354910.1007/s12275‑022‑1526‑035362897
    [Google Scholar]
  33. GuoX. HuangC. XuJ. XuH. LiuL. ZhaoH. WangJ. HuangW. PengW. ChenY. NieY. ZhouY. ZhouY. Gut microbiota is a potential biomarker in inflammatory bowel disease.Front. Nutr.2022881890210.3389/fnut.2021.81890235127797
    [Google Scholar]
  34. VermaA. AwasthiA. Precision medicine in gastroenterology: A paradigm shift towards personalized therapies.Int. J. Gastroenterol. Hepatol. Dis.20243e08032422780010.2174/0126662906299171240220073258
    [Google Scholar]
/content/journals/ijghd/10.2174/0126662906338438240920053601
Loading
/content/journals/ijghd/10.2174/0126662906338438240920053601
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test