Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-2906
  • E-ISSN: 2666-2914

Abstract

Metabolic-dysfunction-associated steatotic liver disease (MASLD), previously referred to as nonalcoholic fatty liver disease (NAFLD), affecting approximately 30% of the global population. Projections suggest that MASLD incidence may rise by up to 56% over the next decade. MASLD has become the fastest-growing cause of hepatocellular carcinoma (HCC) in the USA, France, UK, and other regions worldwide. The prevalence of MASLD and MASLD-related liver damage is expected to parallel the increasing rates of obesity and type 2 Diabetes Mellitus (T2DM) globally. The factors contributing to MASLD development and its progression to metabolic-dysfunction-associated steatohepatitis (MASH), fibrosis, cirrhosis, and HCC remain poorly understood. Evidence from cell-based, animal-based, and human-subject studies suggests that insulin resistance, endoplasmic reticulum stress, oxidative stress, impaired autophagy, genetics, epigenetics, reduced immune surveillance, increased gut inflammation, and gut dysbiosis are crucial events in MASLD pathogenesis. In recent years, dysregulation of gut microbiota has emerged as a potential mechanism implicated in MASLD and MASLD-related hepatocarcinogenesis. This review briefly outlines the mechanistic events significant for MASLD pathogenesis. Additionally, it offers insight into dysregulated gut microbiota and its correlation with MASLD and MASLD-related liver damage. Furthermore, it highlights pertinent questions for cell and microbiologists in the MASLD research field. It underscores the necessity for identifying factors leading to gut microbiome dysregulation in MASLD and MASH pathogenesis. Identifying these factors could aid in the development of novel strategies for managing MASLD and MASLD-related liver damage.

Loading

Article metrics loading...

/content/journals/ijghd/10.2174/0126662906299478240614100954
2024-07-10
2025-01-19
Loading full text...

Full text loading...

References

  1. AshrafN.U. SheikhT.A. Endoplasmic reticulum stress and oxidative stress in the pathogenesis of non-alcoholic fatty liver disease.Free Radic. Res.201549121405141810.3109/10715762.2015.1078461 26223319
    [Google Scholar]
  2. AshrafN.U. AltafM. Epigenetics: An emerging field in the pathogenesis of nonalcoholic fatty liver disease.Mutat. Res. Rev. Mutat. Res.201877811210.1016/j.mrrev.2018.07.002 30454678
    [Google Scholar]
  3. DanfordC.J. LaiM. NAFLD: A multisystem disease that requires a multidisciplinary approach.Frontline Gastroenterol.201910432832910.1136/flgastro‑2019‑101235 31682642
    [Google Scholar]
  4. RiaziK. AzhariH. CharetteJ. UnderwoodF. KingJ. AfsharE. SwainM. ConglyS. KaplanG. ShaheenA. The prevalence and incidence of NAFLD worldwide: A systematic review and metaanalysis.J Gastroenterol Hepatol2022S2468-125300165
    [Google Scholar]
  5. TengM.L. NgC.H. HuangD.Q. ChanK.E. TanD.J. LimW.H. YangJ.D. TanE. MuthiahM.D. Global incidence and prevalence of non-alcoholic fatty liver disease.Clin. Mol. Hepatol.202229S32S42 36517002
    [Google Scholar]
  6. WongR.J. AguilarM. CheungR. PerumpailR.B. HarrisonS.A. YounossiZ.M. AhmedA. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States.Gastroenterology2015148354755510.1053/j.gastro.2014.11.039 25461851
    [Google Scholar]
  7. CharltonM. Evolving aspects of liver transplantation for nonalcoholic steatohepatitis.Curr. Opin. Organ Transplant.201318325125810.1097/MOT.0b013e3283615d30 23652610
    [Google Scholar]
  8. CharltonM.R. BurnsJ.M. PedersenR.A. WattK.D. HeimbachJ.K. DierkhisingR.A. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States.Gastroenterology201114141249125310.1053/j.gastro.2011.06.061 21726509
    [Google Scholar]
  9. YounossiZ. StepanovaM. OngJ. P. JacobsonI. M. BugianesiE. DusejaA. EguchiY. WongV. W. NegroF. YilmazY. Nonalcoholic steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates.Clin. Gastroenterol. Hepatol.201917748755e743.10.1016/j.cgh.2018.05.057
    [Google Scholar]
  10. YounossiZ. AnsteeQ.M. MariettiM. HardyT. HenryL. EslamM. GeorgeJ. BugianesiE. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention.Nat. Rev. Gastroenterol. Hepatol.2018151112010.1038/nrgastro.2017.109 28930295
    [Google Scholar]
  11. YounossiZ.M. KoenigA.B. AbdelatifD. FazelY. HenryL. WymerM. Global epidemiology of nonalcoholic fatty liver disease—Meta‐analytic assessment of prevalence, incidence, and outcomes.Hepatology2016641738410.1002/hep.28431 26707365
    [Google Scholar]
  12. WuY. ZhengQ. ZouB. YeoY.H. LiX. LiJ. XieX. FengY. StaveC.D. ZhuQ. CheungR. NguyenM.H. The epidemiology of NAFLD in mainland China with analysis by adjusted gross regional domestic product: A meta-analysis.Hepatol. Int.202014225926910.1007/s12072‑020‑10023‑3 32130675
    [Google Scholar]
  13. EguchiY. HyogoH. OnoM. MizutaT. OnoN. FujimotoK. ChayamaK. SaibaraT. Prevalence and associated metabolic factors of nonalcoholic fatty liver disease in the general population from 2009 to 2010 in Japan: A multicenter large retrospective study.J. Gastroenterol.201247558659510.1007/s00535‑012‑0533‑z 22328022
    [Google Scholar]
  14. DasK. DasK. MukherjeeP.S. GhoshA. GhoshS. MridhaA.R. DhibarT. BhattacharyaB. BhattacharyaD. MannaB. DhaliG.K. SantraA. ChowdhuryA. Nonobese population in a developing country has a high prevalence of nonalcoholic fatty liver and significant liver disease.Hepatology20105151593160210.1002/hep.23567 20222092
    [Google Scholar]
  15. AmarapurkarD. KamaniP. PatelN. GupteP. KumarP. AgalS. BaijalR. LalaS. ChaudharyD. DeshpandeA. Prevalence of non-alcoholic fatty liver disease: Population based study.Ann. Hepatol.20076316116310.1016/S1665‑2681(19)31922‑2 17786142
    [Google Scholar]
  16. SinghS.P. NayakS. SwainM. RoutN. MallikR. AgrawalO. MeherC. RaoM. Prevalence of nonalcoholic fatty liver disease in coastal eastern India: A preliminary ultrasonographic survey.Trop. Gastroenterol.2004257679
    [Google Scholar]
  17. NayakN.C. VasdevN. SaigalS. SoinA.S. End-stage nonalcoholic fatty liver disease: Evaluation of pathomorphologic features and relationship to cryptogenic cirrhosis from study of explant livers in a living donor liver transplant program.Hum. Pathol.201041342543010.1016/j.humpath.2009.06.021 19954815
    [Google Scholar]
  18. FanJ.G. KimS.U. WongV.W.S. New trends on obesity and NAFLD in Asia.J. Hepatol.201767486287310.1016/j.jhep.2017.06.003 28642059
    [Google Scholar]
  19. DassanayakeA.S. KasturiratneA. RajindrajithS. KalubowilaU. ChakrawarthiS. De SilvaA.P. MakayaM. MizoueT. KatoN. WickremasingheA.R. De SilvaH.J. Prevalence and risk factors for non‐alcoholic fatty liver disease among adults in an urban Sri Lankan population.J. Gastroenterol. Hepatol.20092471284128810.1111/j.1440‑1746.2009.05831.x 19476560
    [Google Scholar]
  20. GohS.C. HoE.L.M. GohK.L. Prevalence and risk factors of non-alcoholic fatty liver disease in a multiracial suburban Asian population in Malaysia.Hepatol. Int.20137254855410.1007/s12072‑012‑9359‑2 26201786
    [Google Scholar]
  21. ChowW. TaiE. LianS. TanC. SngI. NgH. Significant non-alcoholic fatty liver disease is found in non-diabetic, pre-obese Chinese in Singapore.Singapore. Med. J.2007488752757
    [Google Scholar]
  22. KrugerF.C. DanielsC. KiddM. SwartG. BrundynK. Van RensburgC. KotzeM.J. Non-alcoholic fatty liver disease (NAFLD) in the Western Cape: A descriptive anaylsis.S. Afr. Med. J.2010100316817110.7196/SAMJ.1422 20459941
    [Google Scholar]
  23. AlmobarakA.O. BarakatS. KhalifaM.H. ElhowerisM.H. ElhassanT.M. AhmedM.H. Non alcoholic fatty liver disease (NAFLD) in a Sudanese population: What is the prevalence and risk factors?Arab J. Gastroenterol.2014151121510.1016/j.ajg.2014.01.008 24630507
    [Google Scholar]
  24. OlusanyaT.O. LesiO.A. AdeyomoyeA.A. FasanmadeO.A. Non alcoholic fatty liver disease in Nigerian population with type II diabetes mellitus.Pan Afr. Med. J.2016242010.11604/pamj.2016.24.20.8181 27583084
    [Google Scholar]
  25. BrowningJ.D. HortonJ.D. Molecular mediators of hepatic steatosis and liver injury.J. Clin. Invest.2004114214715210.1172/JCI200422422 15254578
    [Google Scholar]
  26. AndersonN. BorlakJ. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis.Pharmacol. Rev.200860331135710.1124/pr.108.00001 18922966
    [Google Scholar]
  27. ByrneC.D. TargherG. NAFLD: A multisystem disease.J. Hepatol.201562S1S47S6410.1016/j.jhep.2014.12.012 25920090
    [Google Scholar]
  28. DayC.P. JamesO.F.W. Steatohepatitis: A tale of two “hits”?Gastroenterology1998114484284510.1016/S0016‑5085(98)70599‑2 9547102
    [Google Scholar]
  29. BuzzettiE. PinzaniM. TsochatzisE.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD).Metabolism20166581038104810.1016/j.metabol.2015.12.012 26823198
    [Google Scholar]
  30. MarchesiniG. BriziM. LabateM.A.M. BianchiG. BugianesiE. McCulloughA.J. ForlaniG. MelchiondaN. Association of nonalcoholic fatty liver disease with insulin resistance.Am. J. Med.1999107545045510.1016/S0002‑9343(99)00271‑5 10569299
    [Google Scholar]
  31. SchwimmerJ.B. DeutschR. RauchJ.B. BehlingC. NewburyR. LavineJ.E. Obesity, insulin resistance, and other clinicopathological correlates of pediatric nonalcoholic fatty liver disease.J. Pediatr.2003143450050510.1067/S0022‑3476(03)00325‑1 14571229
    [Google Scholar]
  32. MancoM. Insulin resistance and NAFLD: A dangerous liaison beyond the genetics.Children2017487410.3390/children4080074 28805745
    [Google Scholar]
  33. UtzschneiderK.M. KahnS.E. Review: The role of insulin resistance in nonalcoholic fatty liver disease.J. Clin. Endocrinol. Metab.200691124753476110.1210/jc.2006‑0587 16968800
    [Google Scholar]
  34. KooS.H. DutcherA.K. TowleH.C. Glucose and insulin function through two distinct transcription factors to stimulate expression of lipogenic enzyme genes in liver.J. Biol. Chem.2001276129437944510.1074/jbc.M010029200 11112788
    [Google Scholar]
  35. ShimomuraI. BashmakovY. HortonJ.D. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus.J. Biol. Chem.199927442300283003210.1074/jbc.274.42.30028 10514488
    [Google Scholar]
  36. YahagiN. ShimanoH. HastyA.H. MatsuzakaT. IdeT. YoshikawaT. KudoA.M. TomitaS. OkazakiH. TamuraY. IizukaY. OhashiK. OsugaJ. HaradaK. GotodaT. NagaiR. IshibashiS. YamadaN. Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lep(ob)/Lep(ob) mice.J. Biol. Chem.200227722193531935710.1074/jbc.M201584200 11923308
    [Google Scholar]
  37. IizukaK. BruickR.K. LiangG. HortonJ.D. UyedaK. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis.Proc. Natl. Acad. Sci.2004101197281728610.1073/pnas.0401516101 15118080
    [Google Scholar]
  38. EdvardssonU. BergströmM. AlexanderssonM. BambergK. LjungB. DahllöfB. Rosiglitazone (BRL49653), a PPARγ-selective agonist, causes peroxisome proliferator-like liver effects in obese mice.J. Lipid Res.19994071177118410.1016/S0022‑2275(20)33479‑9 10393202
    [Google Scholar]
  39. MatsusueK. HaluzikM. LambertG. YimS.H. GavrilovaO. WardJ.M. BrewerB.Jr ReitmanM.L. GonzalezF.J. Liver-specific disruption of PPARγ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes.J. Clin. Invest.2003111573774710.1172/JCI200317223 12618528
    [Google Scholar]
  40. GavrilovaO. HaluzikM. MatsusueK. CutsonJ.J. JohnsonL. DietzK.R. NicolC.J. VinsonC. GonzalezF.J. ReitmanM.L. Liver peroxisome proliferator-activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass.J. Biol. Chem.200327836342683427610.1074/jbc.M300043200 12805374
    [Google Scholar]
  41. Ben-MosheS. ItzkovitzS. Spatial heterogeneity in the mammalian liver.Nat. Rev. Gastroenterol. Hepatol.201916739541010.1038/s41575‑019‑0134‑x 30936469
    [Google Scholar]
  42. SchulzeR.J. SchottM.B. CaseyC.A. TumaP.L. McNivenM.A. The cell biology of the hepatocyte: A membrane trafficking machine.J. Cell Biol.201921872096211210.1083/jcb.201903090 31201265
    [Google Scholar]
  43. LebeaupinC. ValléeD. HazariY. HetzC. ChevetE. MaitreB.B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease.J. Hepatol.201869492794710.1016/j.jhep.2018.06.008 29940269
    [Google Scholar]
  44. ChenZ. TianR. SheZ. CaiJ. LiH. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease.Free Radic. Biol. Med.202015211614110.1016/j.freeradbiomed.2020.02.025 32156524
    [Google Scholar]
  45. LiuG.Y. SabatiniD.M. mTOR at the nexus of nutrition, growth, ageing and disease.Nat. Rev. Mol. Cell Biol.202021418320310.1038/s41580‑019‑0199‑y 31937935
    [Google Scholar]
  46. FengJ. QiuS. ZhouS. TanY. BaiY. CaoH. GuoJ. SuZ. mTOR: A potential new target in nonalcoholic fatty liver disease.Int. J. Mol. Sci.20222316919610.3390/ijms23169196 36012464
    [Google Scholar]
  47. CzajaM.J. Function of autophagy in nonalcoholic fatty liver disease.Dig. Dis. Sci.20166151304131310.1007/s10620‑015‑4025‑x 26725058
    [Google Scholar]
  48. ChoC.S. ParkH.W. HoA. SempleI.A. KimB. JangI. ParkH. ReillyS. SaltielA.R. LeeJ.H. Lipotoxicity induces hepatic protein inclusions through TANK binding kinase 1–mediated p62/sequestosome 1 phosphorylation.Hepatology20186841331134610.1002/hep.29742 29251796
    [Google Scholar]
  49. MushtaqA. AshrafN.U. AltafM. The mTORC1–G9a–H3K9me2 axis negatively regulates autophagy in fatty acid–induced hepatocellular lipotoxicity.J. Biol. Chem.2023299310293710.1016/j.jbc.2023.102937 36690274
    [Google Scholar]
  50. MikolasevicI. MilicS. WensveenT.T. GrgicI. JakopcicI. StimacD. WensveenF. OrlicL. Nonalcoholic fatty liver disease - A multisystem disease?World J. Gastroenterol.201622439488950510.3748/wjg.v22.i43.9488 27920470
    [Google Scholar]
  51. ChouH.H. ChienW.H. WuL.L. ChengC.H. ChungC.H. HorngJ.H. NiY.H. TsengH.T. WuD. LuX. WangH.Y. ChenP.J. ChenD.S. Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota.Proc. Natl. Acad. Sci.201511272175218010.1073/pnas.1424775112 25646429
    [Google Scholar]
  52. WangJ. WangY. ZhangX. LiuJ. ZhangQ. ZhaoY. PengJ. FengQ. DaiJ. SunS. ZhaoY. ZhaoL. ZhangY. HuY. ZhangM. Gut microbial dysbiosis is associated with altered hepatic functions and serum metabolites in chronic hepatitis B patients.Front. Microbiol.20178222210.3389/fmicb.2017.02222 29180991
    [Google Scholar]
  53. ChiericoD.F. NobiliV. VernocchiP. RussoA. De StefanisC. GnaniD. FurlanelloC. ZandonàA. PaciP. CapuaniG. DallapiccolaB. MiccheliA. AlisiA. PutignaniL. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta‐omics‐based approach.Hepatology201765245146410.1002/hep.28572 27028797
    [Google Scholar]
  54. YunY. KimH.N. LeeE. RyuS. ChangY. ShinH. KimH.L. KimT.H. YooK. KimH.Y. Fecal and blood microbiota profiles and presence of nonalcoholic fatty liver disease in obese versus lean subjects.PLoS One2019143e021369210.1371/journal.pone.0213692 30870486
    [Google Scholar]
  55. TchkoniaT. PalmerA.K. KirklandJ.L. New horizons: Novel approaches to enhance healthspan through targeting cellular senescence and related aging mechanisms.J. Clin. Endocrinol. Metab.20211063e1481e148710.1210/clinem/dgaa728 33155651
    [Google Scholar]
  56. SchwimmerJ.B. JohnsonJ.S. AngelesJ.E. BehlingC. BeltP.H. BoreckiI. BrossC. DurelleJ. GoyalN.P. HamiltonG. HoltzM.L. LavineJ.E. MitrevaM. NewtonK.P. PanA. SimpsonP.M. SirlinC.B. SodergrenE. TyagiR. YatesK.P. WeinstockG.M. SalzmanN.H. Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease.Gastroenterology201915741109112210.1053/j.gastro.2019.06.028 31255652
    [Google Scholar]
  57. GlubaA. BanachM. HannamS. MikhailidisD.P. SakowiczA. RyszJ. The role of toll-like receptors in renal diseases.Nat. Rev. Nephrol.20106422423510.1038/nrneph.2010.16 20177402
    [Google Scholar]
  58. ZhuoL. XuJ. YouN. WangL. SongY. LuoY. ShiJ. Study on the new strategy and key techniques for accurate prevention and treatment of nonalcoholic steatohepatitis based on intestinal target bacteria.Medicine20209950e2286710.1097/MD.0000000000022867 33327227
    [Google Scholar]
  59. CaoS. MengX. LiY. SunL. JiangL. XuanH. ChenX. Bile acids elevated in chronic periaortitis could activate farnesoid-X-receptor to suppress IL-6 production by macrophages.Front. Immunol.20211263286410.3389/fimmu.2021.632864 33968024
    [Google Scholar]
  60. Di VincenzoF. PucaP. LopetusoL.R. PetitoV. MasiL. BartocciB. MurgianoM. De FeliceM. PetronioL. GasbarriniA. ScaldaferriF. Bile acid-related regulation of mucosal inflammation and intestinal motility: From pathogenesis to therapeutic application in IBD and microscopic colitis.Nutrients20221413266410.3390/nu14132664 35807844
    [Google Scholar]
  61. UsamiM. MiyoshiM. YamashitaH. Gut microbiota and host metabolism in liver cirrhosis.World J. Gastroenterol.20152141115971160810.3748/wjg.v21.i41.11597 26556989
    [Google Scholar]
  62. SperandeoP. MartoranaA.M. PolissiA. Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20171862111451146010.1016/j.bbalip.2016.10.006 27760389
    [Google Scholar]
  63. SteimleA. AutenriethI.B. FrickJ.S. Structure and function: Lipid A modifications in commensals and pathogens.Int. J. Med. Microbiol.2016306529030110.1016/j.ijmm.2016.03.001 27009633
    [Google Scholar]
  64. AmorK. HeinrichsD.E. FrirdichE. ZiebellK. JohnsonR.P. WhitfieldC. Distribution of core oligosaccharide types in lipopolysaccharides from Escherichia coli.Infect. Immun.20006831116112410.1128/IAI.68.3.1116‑1124.2000 10678915
    [Google Scholar]
  65. LerougeI. VanderleydenJ. O-antigen structural variation: Mechanisms and possible roles in animal/plant–microbe interactions.FEMS Microbiol. Rev.2002261174710.1111/j.1574‑6976.2002.tb00597.x 12007641
    [Google Scholar]
  66. WexlerA.G. GoodmanA.L. An insider’s perspective: Bacteroides as a window into the microbiome.Nat. Microbiol.2017251702610.1038/nmicrobiol.2017.26 28440278
    [Google Scholar]
  67. MaN. ZhangJ. ReiterR.J. MaX. Melatonin mediates mucosal immune cells, microbial metabolism, and rhythm crosstalk: A therapeutic target to reduce intestinal inflammation.Med. Res. Rev.202040260663210.1002/med.21628 31420885
    [Google Scholar]
  68. FarsaniA.Z. FarsaniY.M. ArabS. ForouzanfarF. YadollahiM. AsgharzadeS. Prediction and analysis of microRNAs involved in COVID-19 inflammatory processes associated with the NF-kB and JAK/STAT signaling pathways.Int. Immunopharmacol.202110010807110.1016/j.intimp.2021.108071 34482267
    [Google Scholar]
  69. HennessyE.J. ParkerA.E. O’NeillL.A.J. Targeting Toll-like receptors: Emerging therapeutics?Nat. Rev. Drug Discov.20109429330710.1038/nrd3203 20380038
    [Google Scholar]
  70. GetachewA. HussainM. HuangX. LiY. Toll-like receptor 2 signaling in liver pathophysiology.Life Sci.202128411994110.1016/j.lfs.2021.119941 34508761
    [Google Scholar]
  71. OlivieriF. RippoM.R. PrattichizzoF. BabiniL. GraciottiL. RecchioniR. ProcopioA.D. Toll like receptor signaling in “inflammaging”: MicroRNA as new players.Immun. Ageing20131011110.1186/1742‑4933‑10‑11 23506673
    [Google Scholar]
  72. MaoK. ChenS. ChenM. MaY. WangY. HuangB. HeZ. ZengY. HuY. SunS. LiJ. WuX. WangX. StroberW. ChenC. MengG. SunB. Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock.Cell Res.201323220121210.1038/cr.2013.6 23318584
    [Google Scholar]
  73. SchroderK. SagulenkoV. ZamoshnikovaA. RichardsA.A. CridlandJ.A. IrvineK.M. StaceyK.J. SweetM.J. Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction.Immunobiology2012217121325132910.1016/j.imbio.2012.07.020 22898390
    [Google Scholar]
  74. DingJ. ShaoF. SnapShot: The noncanonical inflammasome.Cell.2017168544544e541.10.1016/j.cell.2017.01.008
    [Google Scholar]
  75. CardingS. VerbekeK. VipondD.T. CorfeB.M. OwenL.J. Dysbiosis of the gut microbiota in disease.Microb. Ecol. Health Dis.20152626191 25651997
    [Google Scholar]
  76. MartelJ. ChangS.H. KoY.F. HwangT.L. YoungJ.D. OjciusD.M. Gut barrier disruption and chronic disease.Trends Endocrinol. Metab.202233424726510.1016/j.tem.2022.01.002 35151560
    [Google Scholar]
  77. LeungC. RiveraL. FurnessJ.B. AngusP.W. The role of the gut microbiota in NAFLD.Nat. Rev. Gastroenterol. Hepatol.201613741242510.1038/nrgastro.2016.85 27273168
    [Google Scholar]
  78. ZhangS. ZhaoJ. XieF. HeH. JohnstonL.J. DaiX. WuC. MaX. Dietary fiber‐derived short‐chain fatty acids: A potential therapeutic target to alleviate obesity‐related nonalcoholic fatty liver disease.Obes. Rev.20212211e1331610.1111/obr.13316 34279051
    [Google Scholar]
  79. BaiJ. LiY. LiT. ZhangW. FanM. ZhangK. QianH. ZhangH. QiX. WangL. Comparison of different soluble dietary fibers during the in vitro fermentation process.J. Agric. Food Chem.202169267446745710.1021/acs.jafc.1c00237 33951908
    [Google Scholar]
  80. van der HeeB. WellsJ.M. Microbial regulation of host physiology by short-chain fatty acids.Trends Microbiol.202129870071210.1016/j.tim.2021.02.001 33674141
    [Google Scholar]
  81. GhislainJ. PoitoutV. Targeting lipid GPCRs to treat type 2 diabetes mellitus — Progress and challenges.Nat. Rev. Endocrinol.202117316217510.1038/s41574‑020‑00459‑w 33495605
    [Google Scholar]
  82. TolhurstG. HeffronH. LamY.S. ParkerH.E. HabibA.M. DiakogiannakiE. CameronJ. GrosseJ. ReimannF. GribbleF.M. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2.Diabetes201261236437110.2337/db11‑1019 22190648
    [Google Scholar]
  83. FelixJ.B. CoxA.R. HartigS.M. Acetyl-CoA and metabolite fluxes regulate white adipose tissue expansion.Trends Endocrinol. Metab.202132532033210.1016/j.tem.2021.02.008 33712368
    [Google Scholar]
  84. TaylorS.A. GreenR.M. Bile acids, microbiota and metabolism.Hepatology20186841229123110.1002/hep.30078 29729182
    [Google Scholar]
  85. ManleyS. DingW. Role of farnesoid X receptor and bile acids in alcoholic liver disease.Acta Pharm. Sin. B20155215816710.1016/j.apsb.2014.12.011 26579442
    [Google Scholar]
  86. TavaresA.H. MagalhãesK.G. AlmeidaR.D.N. CorreaR. BurgelP.H. BoccaA.L. NLRP3 inflammasome activation by Paracoccidioides brasiliensis.PLoS Negl. Trop. Dis.2013712e259510.1371/journal.pntd.0002595 24340123
    [Google Scholar]
  87. FuchsC.D. TraunerM. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology.Nat. Rev. Gastroenterol. Hepatol.202219743245010.1038/s41575‑021‑00566‑7 35165436
    [Google Scholar]
  88. DawsonP.A. KarpenS.J. Intestinal transport and metabolism of bile acids.J. Lipid Res.20155661085109910.1194/jlr.R054114 25210150
    [Google Scholar]
  89. RaoA. HaywoodJ. CraddockA.L. BelinskyM.G. KruhG.D. DawsonP.A. The organic solute transporter α-β, Ostα-Ostβ, is essential for intestinal bile acid transport and homeostasis.Proc. Natl. Acad. Sci.2008105103891389610.1073/pnas.0712328105 18292224
    [Google Scholar]
  90. SimbrunnerB. TraunerM. ReibergerT. Review article: Therapeutic aspects of bile acid signalling in the gut‐liver axis.Aliment. Pharmacol. Ther.202154101243126210.1111/apt.16602 34555862
    [Google Scholar]
  91. GadaletaR.M. van MilS.W.C. OldenburgB. SiersemaP.D. KlompL.W.J. van ErpecumK.J. Bile acids and their nuclear receptor FXR: Relevance for hepatobiliary and gastrointestinal disease.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20101801768369210.1016/j.bbalip.2010.04.006 20399894
    [Google Scholar]
  92. CollinsS.L. StineJ.G. BisanzJ.E. OkaforC.D. PattersonA.D. Bile acids and the gut microbiota: Metabolic interactions and impacts on disease.Nat. Rev. Microbiol.2022214236247 36253479
    [Google Scholar]
  93. TekinT. DincerE. Effect of resistant starch types as a prebiotic.Appl. Microbiol. Biotechnol.20231072-349151510.1007/s00253‑022‑12325‑y 36512032
    [Google Scholar]
  94. StiemsmaL.T. NakamuraR.E. NguyenJ.G. MichelsK.B. Does consumption of fermented foods modify the human gut microbiota?J. Nutr.202015071680169210.1093/jn/nxaa077 32232406
    [Google Scholar]
  95. HillC. GuarnerF. ReidG. GibsonG.R. MerensteinD.J. PotB. MorelliL. CananiR.B. FlintH.J. SalminenS. CalderP.C. SandersM.E. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic.Nat. Rev. Gastroenterol. Hepatol.201411850651410.1038/nrgastro.2014.66 24912386
    [Google Scholar]
  96. MokhtarzadeM. ShamsiM.M. AbolhasaniM. BakhshiB. SahraianM.A. QuinnL.S. NegareshR. Home-based exercise training influences gut bacterial levels in multiple sclerosis.Complement. Ther. Clin. Pract.20214510146310.1016/j.ctcp.2021.101463 34348201
    [Google Scholar]
  97. LiuK.Y. NakatsuC.H. Jones-HallY. KozikA. JiangQ. Vitamin E alpha- and gamma-tocopherol mitigate colitis, protect intestinal barrier function and modulate the gut microbiota in mice.Free Radic. Biol. Med.202116318018910.1016/j.freeradbiomed.2020.12.017 33352218
    [Google Scholar]
  98. ChenD. JinD. HuangS. WuJ. XuM. LiuT. DongW. LiuX. WangS. ZhongW. LiuY. JiangR. PiaoM. WangB. CaoH. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota.Cancer Lett.202046945646710.1016/j.canlet.2019.11.019 31734354
    [Google Scholar]
  99. UlluwishewaD. AndersonR.C. McNabbW.C. MoughanP.J. WellsJ.M. RoyN.C. Regulation of tight junction permeability by intestinal bacteria and dietary components.J. Nutr.2011141576977610.3945/jn.110.135657 21430248
    [Google Scholar]
  100. IsolauriE. SütasY. KankaanpääP. ArvilommiH. SalminenS. Probiotics: Effects on immunity.Am. J. Clin. Nutr.200173S2444s450s10.1093/ajcn/73.2.444s 11157355
    [Google Scholar]
  101. ParnellJ.A. RamanM. RiouxK.P. ReimerR.A. The potential role of prebiotic fibre for treatment and management of non‐alcoholic fatty liver disease and associated obesity and insulin resistance.Liver Int.201232570171110.1111/j.1478‑3231.2011.02730.x 22221818
    [Google Scholar]
  102. SafariZ. GérardP. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD).Cell. Mol. Life Sci.20197681541155810.1007/s00018‑019‑03011‑w 30683985
    [Google Scholar]
  103. KaurK.K. AllahbadiaG. SinghM. The Association of Non Viral Liver Diseases from NAFLD to NASH to HCC with the pandemic of obesity, type 2 diabetes, or diabesity & metabolic syndrome–etiopathogenetic correlation along with utilization for diagnostic &therapeutic purposes-a systematic review.J. Endocrinol.202131034
    [Google Scholar]
  104. MizunoS. MasaokaT. NaganumaM. KishimotoT. KitazawaM. KurokawaS. NakashimaM. TakeshitaK. SudaW. MimuraM. HattoriM. KanaiT. Bifidobacterium-rich fecal donor may be a positive predictor for successful fecal microbiota transplantation in patients with irritable bowel syndrome.Digestion2017961293810.1159/000471919 28628918
    [Google Scholar]
  105. ZhouD. PanQ. ShenF. CaoH. DingW. ChenY. FanJ. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota.Sci. Rep.201771152910.1038/s41598‑017‑01751‑y 28484247
    [Google Scholar]
/content/journals/ijghd/10.2174/0126662906299478240614100954
Loading
/content/journals/ijghd/10.2174/0126662906299478240614100954
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cirrhosis; fibrosis; gut microbiome; HCC; Insulin resistance; liver damage; MASH/NASH; MASLD/NAFLD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test