Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-2906
  • E-ISSN: 2666-2914

Abstract

Colon cancer is a major global health concern characterized by complex interactions of genetic, environmental, and lifestyle factors. The “hallmarks of cancer” encompass various distinctions between cancerous and normal tissues, including vascular characteristics, making it a possible target for medication administration with specificity. The tumor microenvironment in colon cancer is a dynamic ecosystem comprising various cell types like cancer-associated fibroblasts, immune cells, and endothelial cells, influencing tumor progression and response to therapy. Various overexpressed receptors in colon cancer, like G-protein-coupled receptors (GPCRs), integrins, folate receptors, transferrin receptors, epidermal growth factor receptors (EGFRs), and CD-44 receptors, offer opportunities for targeted drug delivery. These receptors play vital roles in cancer cell growth, proliferation, and metastasis, making them important targets for therapeutic intervention.

Loading

Article metrics loading...

/content/journals/ijghd/10.2174/0126662906299154240613083710
2024-07-08
2025-06-18
Loading full text...

Full text loading...

References

  1. XieY.H. ChenY.X. FangJ.Y. Comprehensive review of targeted therapy for colorectal cancer.Signal Transduct. Target. Ther.2020512210.1038/s41392‑020‑0116‑z 32296018
    [Google Scholar]
  2. BoyleP. LevinB. World Cancer Report 2008.Available From: https://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2008 2008
  3. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell20111445646674
    [Google Scholar]
  4. AKI Exploiting EPR-effect for tumor targeting: Principle, mechanism and examples.Drug Discov. Today200711812818
    [Google Scholar]
  5. MaedaH. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects.Bioconjug. Chem.201021579780210.1021/bc100070g 20397686
    [Google Scholar]
  6. LeeE.S. GaoZ. BaeY.H. Recent progress in tumor pH targeting nanotechnology.J. Control. Release2008132316417010.1016/j.jconrel.2008.05.003 18571265
    [Google Scholar]
  7. SchroederA. HellerD.A. WinslowM.M. DahlmanJ.E. PrattG.W. LangerR. JacksT. AndersonD.G. Treating metastatic cancer with nanotechnology.Nat. Rev. Cancer2012121395010.1038/nrc3180 22193407
    [Google Scholar]
  8. ArnethB. Tumor microenvironment.Medicina (Kaunas)20195611510.3390/medicina56010015 31906017
    [Google Scholar]
  9. ZhongX. ZhangY. WangL. ZhangH. LiuH. LiuY. Cellular components in tumor microenvironment of neuroblastoma and the prognostic value.PeerJ20197e801710.7717/peerj.8017 31844563
    [Google Scholar]
  10. Nanoparticles for drug delivery in cancer treatment.Haley, B.; Frenkel, E., Eds.; Urologic Oncology: Seminars and original investigationsElsevierAmsterdam2008
    [Google Scholar]
  11. MocellinS. WangE. MarincolaF.M. Cytokines and immune response in the tumor microenvironment.J. Immunother.200124539240710.1097/00002371‑200109000‑00002
    [Google Scholar]
  12. HenkeE. NandigamaR. ErgünS. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy.Front. Mol. Biosci.2020616010.3389/fmolb.2019.00160 32118030
    [Google Scholar]
  13. JiangX. WangJ. DengX. XiongF. ZhangS. GongZ. LiX. CaoK. DengH. HeY. LiaoQ. XiangB. ZhouM. GuoC. ZengZ. LiG. LiX. XiongW. The role of microenvironment in tumor angiogenesis.J. Exp. Clin. Cancer Res.202039120410.1186/s13046‑020‑01709‑5 32993787
    [Google Scholar]
  14. VaupelP. MulthoffG. Accomplices of the hypoxic tumor microenvironment compromising antitumor immunity: Adenosine, lactate, acidosis, vascular endothelial growth factor, potassium ions, and phosphatidylserine.Front. Immunol.20178188710.3389/fimmu.2017.01887 29312351
    [Google Scholar]
  15. AkhtarM.J. AhamedM. AlhadlaqH.A. AlrokayanS.A. KumarS. Targeted anticancer therapy: Overexpressed receptors and nanotechnology.Clin. Chim. Acta2014436789210.1016/j.cca.2014.05.004 24836529
    [Google Scholar]
  16. YangD. ZhouQ. LabroskaV. QinS. DarbalaeiS. WuY. YuliantieE. XieL. TaoH. ChengJ. LiuQ. ZhaoS. ShuiW. JiangY. WangM.W. G protein-coupled receptors: Structure- and function-based drug discovery.Signal Transduct. Target. Ther.202161710.1038/s41392‑020‑00435‑w 33414387
    [Google Scholar]
  17. PangX. HeX. QiuZ. ZhangH. XieR. LiuZ. GuY. ZhaoN. XiangQ. CuiY. Targeting integrin pathways: Mechanisms and advances in therapy.Signal Transduct. Target. Ther.202381110.1038/s41392‑022‑01259‑6 36588107
    [Google Scholar]
  18. FrigerioB. BizzoniC. JansenG. LeamonC.P. PetersG.J. LowP.S. Folate receptors and transporters: Biological role and diagnostic/therapeutic targets in cancer and other diseases.J. Exp. Clin. Cancer Res.2019381125
    [Google Scholar]
  19. GiannettiA.M. SnowP.M. ZakO. BjörkmanP.J. Mechanism for multiple ligand recognition by the human transferrin receptor.PLoS Biol.200313e5110.1371/journal.pbio.0000051 14691533
    [Google Scholar]
  20. SongS. LiuD. PengJ. DengH. GuoY. XuL.X. MillerA.D. XuY. Novel peptide ligand directs liposomes toward EGFR high‐expressing cancer cells in vitro and in vivo.FASEB J.20092351396140410.1096/fj.08‑117002 19124558
    [Google Scholar]
  21. GuoQ. YangC. GaoF. The state of CD44 activation in cancer progression and therapeutic targeting.FEBS J.2022289247970798610.1111/febs.16179 34478583
    [Google Scholar]
  22. WettschureckN. OffermannsS. Mammalian G proteins and their cell type specific functions.Physiol. Rev.20058541159120410.1152/physrev.00003.2005 16183910
    [Google Scholar]
  23. ZwanzigerD. Beck-SickingerA. Radiometal targeted tumor diagnosis and therapy with peptide hormones.Curr. Pharm. Des.200814242385240010.2174/138161208785777397 18781989
    [Google Scholar]
  24. OldhamW.M. HammH.E. How do receptors activate G proteins?Adv. Protein Chem.200774679310.1016/S0065‑3233(07)74002‑0 17854655
    [Google Scholar]
  25. JensenR.T. BatteyJ.F. SpindelE.R. BenyaR.V. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: Nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states.Pharmacol. Rev.200860114210.1124/pr.107.07108 18055507
    [Google Scholar]
  26. FathiZ. CorjayM.H. ShapiraH. WadaE. BenyaR. JensenR. VialletJ. SausvilleE.A. BatteyJ.F. BRS-3: A novel bombesin receptor subtype selectively expressed in testis and lung carcinoma cells.J. Biol. Chem.199326885979598410.1016/S0021‑9258(18)53415‑3 8383682
    [Google Scholar]
  27. MajumdarI.D. WeberH.C. Biology of mammalian bombesin-like peptides and their receptors.Curr. Opin. Endocrinol. Diabetes Obes.2011181687410.1097/MED.0b013e328340ff93 21042212
    [Google Scholar]
  28. SafavyA. RaischK.P. MatusiakD. BhatnagarS. HelsonL. Single-drug multiligand conjugates: Synthesis and preliminary cytotoxicity evaluation of a paclitaxel-dipeptide “scorpion” molecule.Bioconjug. Chem.200617356557010.1021/bc050224c 16704191
    [Google Scholar]
  29. NarayananS.M. Growth inhibition of pancreatic cancer by PTF1Amediated differentiation.,The University of Utah ProQuest Dissertation & Theses2023
    [Google Scholar]
  30. HeS.W. ShenK-Q. HeY-J. XieB. ZhaoY-M. Regulatory effect and mechanism of gastrin and its antagonists on colorectal carcinoma.World J. Gastroenterol.19995540841610.3748/wjg.v5.i5.408 11819478
    [Google Scholar]
  31. KhanM. HuangT. LinC.Y. WuJ. FanB.M. BianZ.X. Exploiting cancer’s phenotypic guise against itself: Targeting ectopically expressed peptide G-protein coupled receptors for lung cancer therapy.Oncotarget201786110461510463710.18632/oncotarget.18403 29262666
    [Google Scholar]
  32. HoriguchiK. YamadaM. UmezawaR. SatohT. HashimotoK. TosakaM. YamadaS. MoriM. Somatostatin receptor subtypes mRNA in TSH-secreting pituitary adenomas: A case showing a dramatic reduction in tumor size during short octreotide treatment.Endocr. J.200754337137810.1507/endocrj.K06‑177 17420609
    [Google Scholar]
  33. SunL-C. CoyD.H. Somatostatin receptor-targeted anti-cancer therapy.Curr. Drug Deliv.20118121010.2174/156720111793663633 21034425
    [Google Scholar]
  34. MasakiT. The endothelin family: An overview.J. Cardiovasc. Pharmacol.2000354Suppl. 2S3S510.1097/00005344‑200000002‑00002 10976772
    [Google Scholar]
  35. NelsonJ. BagnatoA. BattistiniB. NisenP. The endothelin axis: Emerging role in cancer.Nat. Rev. Cancer20033211011610.1038/nrc990 12563310
    [Google Scholar]
  36. RaymondM.N. RobinP. De ZenF. VilainG. TanfinZ. Differential endothelin receptor expression and function in rat myometrial cells and leiomyoma ELT3 cells.Endocrinology2009150104766477610.1210/en.2009‑0118 19628575
    [Google Scholar]
  37. AsundiJ. ReedC. ArcaJ. McCutcheonK. FerrandoR. ClarkS. LuisE. TienJ. FiresteinR. PolakisP. An antibody-drug conjugate targeting the endothelin B receptor for the treatment of melanoma.Clin. Cancer Res.201117596597510.1158/1078‑0432.CCR‑10‑2340 21245091
    [Google Scholar]
  38. ChenX. PlasenciaC. HouY. NeamatiN. Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery.J. Med. Chem.20054841098110610.1021/jm049165z 15715477
    [Google Scholar]
  39. CaiW. NiuG. ChenX. Imaging of integrins as biomarkers for tumor angiogenesis.Curr. Pharm. Des.200814282943297310.2174/138161208786404308 18991712
    [Google Scholar]
  40. HumphriesJ.D. ByronA. HumphriesM.J. Integrin ligands at a glance.J. Cell Sci.2006119193901390310.1242/jcs.03098 16988024
    [Google Scholar]
  41. BerrierA.L. YamadaK.M. Cell–matrix adhesion.J. Cell. Physiol.2007213356557310.1002/jcp.21237 17680633
    [Google Scholar]
  42. YooH.S. ParkT.G. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin–PEG–folate conjugate.J. Control. Release2004100224725610.1016/j.jconrel.2004.08.017 15544872
    [Google Scholar]
  43. ShiaJ. KlimstraD.S. NitzkorskiJ.R. LowP.S. GonenM. LandmannR. WeiserM.R. FranklinW.A. PrendergastF.G. MurphyL. TangL.H. TempleL. GuillemJ.G. WongW.D. PatyP.B. Immunohistochemical expression of folate receptor α in colorectal carcinoma: Patterns and biological significance.Hum. Pathol.200839449850510.1016/j.humpath.2007.09.013 18342661
    [Google Scholar]
  44. KelemenL.E. The role of folate receptor α in cancer development, progression and treatment: Cause, consequence or innocent bystander?Int. J. Cancer2006119224325010.1002/ijc.21712 16453285
    [Google Scholar]
  45. DengY. ZhouX. Kugel DesmoulinS. WuJ. CherianC. HouZ. MatherlyL.H. GangjeeA. Synthesis and biological activity of a novel series of 6-substituted thieno[2,3-d]pyrimidine antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors over the reduced folate carrier and proton-coupled folate transporter for cellular entry.J. Med. Chem.20095292940295110.1021/jm8011323 19371039
    [Google Scholar]
  46. ReddyJ.A. DortonR. WestrickE. DawsonA. SmithT. XuL.C. VetzelM. KleindlP. VlahovI.R. LeamonC.P. Preclinical evaluation of EC145, a folate-vinca alkaloid conjugate.Cancer Res.20076794434444210.1158/0008‑5472.CAN‑07‑0033 17483358
    [Google Scholar]
  47. MüllerC. SchibliR. Folic acid conjugates for nuclear imaging of folate receptor-positive cancer.J. Nucl. Med.20115211410.2967/jnumed.110.076018 21149477
    [Google Scholar]
  48. LowP.S. HenneW.A. DoorneweerdD.D. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases.Acc. Chem. Res.200841112012910.1021/ar7000815 17655275
    [Google Scholar]
  49. ZhaoX. LiH. LeeR.J. Targeted drug delivery via folate receptors.Expert Opin. Drug Deliv.20085330931910.1517/17425247.5.3.309 18318652
    [Google Scholar]
  50. MansooriG.A. BrandenburgK.S. Shakeri-ZadehA. A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications.Cancers (Basel)2010241911192810.3390/cancers2041911 24281209
    [Google Scholar]
  51. KircheisR. WightmanL. KursaM. OstermannE. WagnerE. Tumor-targeted gene delivery: An attractive strategy to use highly active effector molecules in cancer treatment.Gene Ther.200291173173510.1038/sj.gt.3301748 12032698
    [Google Scholar]
  52. YoonD.J. KwanB.H. ChaoF.C. NicolaidesT.P. PhillipsJ.J. LamG.Y. MasonA.B. WeissW.A. KameiD.T. Intratumoral therapy of glioblastoma multiforme using genetically engineered transferrin for drug delivery.Cancer Res.201070114520452710.1158/0008‑5472.CAN‑09‑4311 20460527
    [Google Scholar]
  53. DanielsT.R. BernabeuE. RodríguezJ.A. PatelS. KozmanM. ChiappettaD.A. HollerE. LjubimovaJ.Y. HelgueraG. PenichetM.L. The transferrin receptor and the targeted delivery of therapeutic agents against cancer.Biochim. Biophys. Acta, Gen. Subj.20121820329131710.1016/j.bbagen.2011.07.016 21851850
    [Google Scholar]
  54. YangD.C. WangF. ElliottR.L. HeadJ.F. Expression of transferrin receptor and ferritin H-chain mRNA are associated with clinical and histopathological prognostic indicators in breast cancer.Anticancer Res.2001211B541549 11299801
    [Google Scholar]
  55. DufèsC. Al RobaianM. SomaniS. Transferrin and the transferrin receptor for the targeted delivery of therapeutic agents to the brain and cancer cells.Ther. Deliv.20134562964010.4155/tde.13.21 23647279
    [Google Scholar]
  56. UlbrichK. HekmataraT. HerbertE. KreuterJ. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB).Eur. J. Pharm. Biopharm.200971225125610.1016/j.ejpb.2008.08.021 18805484
    [Google Scholar]
  57. SalomonD.S. BrandtR. CiardielloF. NormannoN. Epidermal growth factor-related peptides and their receptors in human malignancies.Crit. Rev. Oncol. Hematol.199519318323210.1016/1040‑8428(94)00144‑I 7612182
    [Google Scholar]
  58. BlessingT. KursaM. HolzhauserR. KircheisR. WagnerE. Different strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for targeted gene delivery.Bioconjug. Chem.200112452953710.1021/bc0001488 11459457
    [Google Scholar]
  59. LinggiB. CarpenterG. ErbB receptors: New insights on mechanisms and biology.Trends Cell Biol.2006161264965610.1016/j.tcb.2006.10.008 17085050
    [Google Scholar]
  60. ScaltritiM. BaselgaJ. The epidermal growth factor receptor pathway: A model for targeted therapy.Clin. Cancer Res.200612185268527210.1158/1078‑0432.CCR‑05‑1554 17000658
    [Google Scholar]
  61. CitriA. SkariaK.B. YardenY. The deaf and the dumb: The biology of ErbB-2 and ErbB-3.Exp. Cell Res.20032841546510.1016/B978‑012160281‑9/50005‑0
    [Google Scholar]
  62. SchlessingerJ. LemmonM.A. Nuclear signaling by receptor tyrosine kinases: The first robin of spring.Cell20061271454810.1016/j.cell.2006.09.013 17018275
    [Google Scholar]
  63. MasterA.M. Sen GuptaA. EGF receptor-targeted nanocarriers for enhanced cancer treatment.Nanomedicine (Lond.)20127121895190610.2217/nnm.12.160 23249333
    [Google Scholar]
  64. NegiL.M. TalegaonkarS. JaggiM. AhmadF.J. IqbalZ. KharR.K. Role of CD44 in tumour progression and strategies for targeting.J. Drug Target.201220756157310.3109/1061186X.2012.702767 22758394
    [Google Scholar]
  65. NegiL.M. JaggiM. JoshiV. RonodipK. TalegaonkarS. Hyaluronic acid decorated lipid nanocarrier for MDR modulation and CD-44 targeting in colon adenocarcinoma.Int. J. Biol. Macromol.20157256957410.1016/j.ijbiomac.2014.09.005 25220787
    [Google Scholar]
  66. LiuY. HanZ. ZhangS. JingY. BuX. WangC. SunK. JiangG. ZhaoX. LiR. GaoL. ZhaoQ. WuM. WeiL. Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer.J. Biol. Chem.201128628250072501510.1074/jbc.M110.213108 21592963
    [Google Scholar]
  67. LeeS.D. YuD. LeeD.Y. ShinH.S. JoJ.H. LeeY.C. Upregulated microRNA‐193a‐3p is responsible for cisplatin resistance in CD 44(+) gastric cancer cells.Cancer Sci.2019110266267310.1111/cas.13894 30485589
    [Google Scholar]
  68. MorathI. HartmannT.N. Orian-RousseauV. CD44: More than a mere stem cell marker.Int. J. Biochem. Cell Biol.201681Pt A16617310.1016/j.biocel.2016.09.00927640754
    [Google Scholar]
  69. HuK. ZhouH. LiuY. LiuZ. LiuJ. TangJ. LiJ. ZhangJ. ShengW. ZhaoY. WuY. ChenC. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells.Nanoscale20157188607861810.1039/C5NR01084E 25898852
    [Google Scholar]
  70. NiJ. CozziP.J. HaoJ.L. BeretovJ. ChangL. DuanW. ShigdarS. DelpradoW.J. GrahamP.H. BucciJ. KearsleyJ.H. LiY. CD44 variant 6 is associated with prostate cancer metastasis and chemo‐/radioresistance.Prostate201474660261710.1002/pros.22775 24615685
    [Google Scholar]
  71. ChandraJ. MoluguluN. AnnaduraiS. WahabS. KarwasraR. SinghS. ShuklaR. KesharwaniP. Hyaluronic acid-functionalized lipoplexes and polyplexes as emerging nanocarriers for receptor-targeted cancer therapy.Environ. Res.202323311650610.1016/j.envres.2023.116506 37369307
    [Google Scholar]
  72. BhaskaranN.A. JittaS.R. Salwa, KumarL. SharmaP. KulkarniO.P. HariG. GourishettiK. VermaR. BirangalS.R. BhaskarK.V. Folic acid-chitosan functionalized polymeric nanocarriers to treat colon cancer.Int. J. Biol. Macromol.2023253Pt 512714210.1016/j.ijbiomac.2023.127142 37797853
    [Google Scholar]
  73. BaiãoA. SousaF. OliveiraA.V. OliveiraC. SarmentoB. Effective intracellular delivery of bevacizumab via PEGylated polymeric nanoparticles targeting the CD44v6 receptor in colon cancer cells.Biomater. Sci.20208133720372910.1039/D0BM00556H 32500879
    [Google Scholar]
  74. AbdellatifA.A.H. IbrahimM.A. AminM.A. MaswadehH. AlwehaibiM.N. Al-HarbiS.N. AlharbiZ.A. MohammedH.A. MehanyA.B.M. SaleemI. Cetuximab conjugated with octreotide and entrapped calcium alginate-beads for targeting somatostatin receptors.Sci. Rep.2020101473610.1038/s41598‑020‑61605‑y 32170176
    [Google Scholar]
/content/journals/ijghd/10.2174/0126662906299154240613083710
Loading
/content/journals/ijghd/10.2174/0126662906299154240613083710
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test