Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-2906
  • E-ISSN: 2666-2914

Abstract

Campylobacteriosis is a foodborne disease caused by , which is one of the leading causative agents of bacterial gastrointestinal diseases in developed and developing countries. According to WHO, species infects a hundred million people yearly. The bacterium is thermotolerant, cytochrome oxidase-positive, spiral-shaped, negative, and microaerophilic, by exhibiting corkscrew motility it passes through the intestines of animals and birds. It is generally transmitted through the consumption of contaminated food associated with animal and their products. The main infectious species include and . Infection symptoms can be mild to serious depending upon the patient's age and in some cases can lead to permanent neurological disorders. Detection of in food, clinical and environmental samples is accomplished with the help of combinatorial usage of selective enrichment and culture methods. Currently, there is no sole viable approach for infection management because of resistance emergence. In this review article, we discuss epidemiology, pathogenicity, various diagnostic methods and treatment of Campylobacteriosis.

Loading

Article metrics loading...

/content/journals/ijghd/10.2174/0126662906281070240223053537
2024-03-22
2025-01-19
Loading full text...

Full text loading...

References

  1. WHOThe global view of campylobacteriosis.Available from: https://www.who.int/publications-detail-redirect/9789241564601 2013
  2. TaylorL.H. LathamS.M. woolhouseM.E.J. Risk factors for human disease emergence.Philos. Trans. R. Soc. Lond. B Biol. Sci.2001356141198398910.1098/rstb.2001.0888 11516376
    [Google Scholar]
  3. WHOCampylobacter.Available from: https://www.who.int/news-room/fact-sheets/detail/campylobacter 2020
  4. RukambileE. SintchenkoV. MuscatelloG. KockR. AldersR. Infection, colonization and shedding of Campylobacter and Salmonella in animals and their contribution to human disease: A review.Zoonoses Public Health201966656257810.1111/zph.12611 31179637
    [Google Scholar]
  5. HsiehY.H. SulaimanI.M. Campylobacteriosis: An Emerging Infectious Foodborne Disease.Elsevier Inc.20181510.1016/B978‑0‑12‑811444‑5.00005‑1
    [Google Scholar]
  6. HeimesaatM.M. BackertS. AlterT. BereswillS. Human campylobacteriosis---a serious infectious threat in a one health perspec-tive.Fighting Campylobacter Infections. BackertS. ChamSpringer International Publishing202112310.1007/978‑3‑030‑65481‑8_1
    [Google Scholar]
  7. CasalinoG. D’AmicoF. DinardoF.R. BozzoG. NapoletanoV. CamardaA. BoveA. LombardiR. D’OnghiaF.P. CircellaE. Prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli in wild birds from a wildlife rescue centre.Animals20221220288910.3390/ani12202889 36290276
    [Google Scholar]
  8. de VriesS.P.W. VurayaiM. HolmesM. GuptaS. BatemanM. GoldfarbD. MaskellD.J. MatshekaM.I. GrantA.J. Phylogenetic analyses and antimicrobial resistance profiles of Campylobacter spp. from diarrhoeal patients and chickens in Botswana.PLoS One2018133e019448110.1371/journal.pone.0194481 29561903
    [Google Scholar]
  9. AltekruseS.F. SternN.J. FieldsP.I. SwerdlowD.L. Campylobacter jejuni--an emerging foodborne pathogen.Emerg. Infect. Dis.199951283510.3201/eid0501.990104 10081669
    [Google Scholar]
  10. WangJ. VadduS. BhumanapalliS. MishraA. ApplegateT. SinghM. ThippareddiH. A systematic review and meta-analysis of the sources of Campylobacter in poultry production (preharvest) and their relative contributions to the microbial risk of poultry meat.Poult. Sci.20231021010290510.1016/j.psj.2023.102905 37516002
    [Google Scholar]
  11. AnsarifarE. RiahiS.M. TasaraT. SadigharaP. ZeinaliT. Campylobacter prevalence from food, animals, human and environmental samples in Iran: A systematic review and meta-analysis.BMC Microbiol.202323112610.1186/s12866‑023‑02879‑w 37165317
    [Google Scholar]
  12. RamírezO.A.M. McEwanN.R. StanleyK. Nava-DiazR. TipacamúA.G. A systematic review on the role of wildlife as carriers and spreaders of Campylobacter spp.Animals2023138133410.3390/ani13081334 37106897
    [Google Scholar]
  13. Del ColloL.P. KarnsJ.S. BiswasD. LombardJ.E. HaleyB.J. KristensenR.C. KopralC.A. FosslerC.P. Van KesselJ.A.S. Prevalence, antimicrobial resistance, and molecular characterization of Campylobacter spp. in bulk tank milk and milk filters from US dairies.J. Dairy Sci.201710053470347910.3168/jds.2016‑12084 28237599
    [Google Scholar]
  14. ScallanE. MahonB.E. Foodborne diseases active surveillance network (FoodNet) in 2012: A foundation for food safety in the United States.Clin. Infect. Dis.201254S5S381S38410.1093/cid/cis257 22572657
    [Google Scholar]
  15. KaakoushN.O. RodríguezC.N. MitchellH.M. ManS.M. Global epidemiology of Campylobacter infection.Clin. Microbiol. Rev.201528368772010.1128/CMR.00006‑15 26062576
    [Google Scholar]
  16. CDCCampylobacter (Campylobacteriosis).Available from: https://www.cdc.gov/campylobacter/index.html (Accessed on: December 2, 2020).2020
  17. KirkpatrickB.D. TribbleD.R. Update on human Campylobacter jejuni infections.Curr. Opin. Gastroenterol.20112711710.1097/MOG.0b013e3283413763 21124212
    [Google Scholar]
  18. LevinR.E. Campylobacter jejuni: A review of its characteristics, pathogenicity, ecology, distribution, subspecies characterization and molecular methods of detection.Food Biotechnol.200721427134710.1080/08905430701536565
    [Google Scholar]
  19. LindmarkB. RompikuntalP.K. VaitkeviciusK. SongT. MizunoeY. UhlinB.E. GuerryP. WaiS.N. Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT) from Campylobacter jejuni.BMC Microbiol.20099122010.1186/1471‑2180‑9‑220 19835618
    [Google Scholar]
  20. Al HakeemW.G. FathimaS. ShanmugasundaramR. SelvarajR.K. Campylobacter jejuni in poultry: Pathogenesis and control strategies.Microorganisms20221011213410.3390/microorganisms10112134 36363726
    [Google Scholar]
  21. BaarsT. BergeC. GarssenJ. VersterJ. The impact of raw milk consumption on gastrointestinal bowel and skin complaints in immune depressed adults.Eur. Neuropsychopharmacol.201929S22610.1016/j.euroneuro.2018.11.367
    [Google Scholar]
  22. HudsonA KingN LakeR CresseyP. Risk profile: Campylobacter jejuni/coli in raw Milk. MPI Technical Paper No: 2014/15,2014
    [Google Scholar]
  23. El-ZamkanM.A. HameedA.K.G. Prevalence of Campylobacter jejuni and Campylobacter coli in raw milk and some dairy products.Vet. World20169101147115110.14202/vetworld.2016.1147‑1151 27847427
    [Google Scholar]
  24. DehghaniZ. HosseiniM. MohammadnejadJ. GanjaliM.R. New colorimetric DNA sensor for detection of Campylobacter jejuni in milk sample based on peroxidase‐like activity of gold/platinium nanocluster.ChemistrySelect2019440116871169210.1002/slct.201901815
    [Google Scholar]
  25. IgwaranA. OkohA.I. Human campylobacteriosis: A public health concern of global importance.Heliyon2019511e0281410.1016/j.heliyon.2019.e02814 31763476
    [Google Scholar]
  26. ModiS. BrahmbhattM.N. ChaturY.A. NayakJ.B. Prevalence of Campylobacter species in milk and milk products, their virulence gene profile and antibiogram.Vet. World2015811810.14202/vetworld.2015.1‑8 27046986
    [Google Scholar]
  27. RzeznitzeckJ. BrevesG. RychlikI. HoerrF.J. von AltrockA. RathA. RautenschleinS. The effect of Campylobacter jejuni and Campylobacter coli colonization on the gut morphology, functional integrity, and microbiota composition of female turkeys.Gut Pathog.20221413310.1186/s13099‑022‑00508‑x 35922874
    [Google Scholar]
  28. Urban-ChmielR. MarekA. Stępień-PyśniakD. WieczorekK. DecM. NowaczekA. OsekJ. Antibiotic resistance in bacteria—A review.Antibiotics2022118107910.3390/antibiotics11081079 36009947
    [Google Scholar]
  29. McEwenS.A. CollignonP.J. Antimicrobial resistance: A one health perspective.Microbiol. Spectr.20186210.1128/microbiolspec.ARBA‑0009‑2017
    [Google Scholar]
  30. GahamanyiN. MboeraL.E.G. MateeM.I. MutanganaD. KombaE.V.G. Prevalence, risk factors, and antimicrobial resistance pro-files of thermophilic Campylobacter species in humans and animals in sub-saharan Africa: A systematic review.Int. J. Microbiol.2020202011210.1155/2020/2092478 32025233
    [Google Scholar]
  31. The european union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016.EFSA Journal20171512e0507710.2903/j.efsa.2017.5077
    [Google Scholar]
  32. AndrzejewskaM. SzczepańskaB. ŚpicaD. KlaweJ.J. Prevalence, virulence, and antimicrobial resistance of Campylobacter spp. in raw milk, beef, and pork meat in Northern Poland.Foods20198942010.3390/foods8090420 31533265
    [Google Scholar]
  33. AuthorityE.F.S. Control EC for DP and. The European Union one health 2020 zoonoses report.EFSA J.20211912e06971 36329690
    [Google Scholar]
  34. CDCOutbreak of multidrug-resistant campylobacter infections linked to contact with pet store puppies.Available from: https://www.cdc.gov/campylobacter/outbreaks/puppies-12-19/index.html (Accessed on: December 2, 2020).2019
  35. ECDCEuropean centre for disease prevention and control report, surveillance.Available from: https://www.ecdc.europa.eu/sites/default/files/documents/campylobacteriosis-annual-epidemiological-report-2021.pdf 2022
  36. HoffmannS. AshtonL. ToddJ.E. AhnJ. BerckP. Attributing US campylobacteriosis cases to food sources, season, and temperature.Available from: https://www.ers.usda.gov/webdocs/publications/100501/err-284.pdf 2021
  37. LiuF. LeeS.A. XueJ. RiordanS.M. ZhangL. Global epidemiology of campylobacteriosis and the impact of COVID-19.Front. Cell. Infect. Microbiol.20221297905510.3389/fcimb.2022.979055 36519137
    [Google Scholar]
  38. HanssonI. SandbergM. HabibI. LowmanR. EngvallE.O. Knowledge gaps in control of Campylobacter for prevention of campylobacteriosis.Transbound. Emerg. Dis.201865Suppl. 1304810.1111/tbed.12870 29663680
    [Google Scholar]
  39. MarderE.P. CieslakP.R. CronquistA.B. DunnJ. LathropS. EhrR.T. RyanP. SmithK. D’AngeloT.M. VugiaD.J. ZanskyS. HoltK.G. WolpertB.J. LynchM. TauxeR. GeisslerA.L. Incidence and trends of infections with pathogens transmitted commonly through food and the effect of increasing use of culture-independent diagnostic tests on surveillance — foodborne diseases active surveillance network, 10 U.S. Sites, 2013–2016.MMWR Morb. Mortal. Wkly. Rep.2017661539740310.15585/mmwr.mm6615a1 28426643
    [Google Scholar]
  40. BatzM.B. HoffmannS. MorrisJ.G.Jr Ranking the disease burden of 14 pathogens in food sources in the United States using attribu-tion data from outbreak investigations and expert elicitation.J. Food Prot.20127571278129110.4315/0362‑028X.JFP‑11‑418 22980012
    [Google Scholar]
  41. ArsenaultJ. BerkeO. MichelP. RavelA. GosselinP. Environmental and demographic risk factors for campylobacteriosis: Do vari-ous geographical scales tell the same story?BMC Infect. Dis.201212131810.1186/1471‑2334‑12‑318 23173982
    [Google Scholar]
  42. RavelA. PintarK. NesbittA. PollariF. Non food-related risk factors of campylobacteriosis in Canada: A matched case-control study.BMC Public Health2016161101610.1186/s12889‑016‑3679‑4 27677338
    [Google Scholar]
  43. FernándezH. [Campylobacter and campylobacteriosis: A view from South America].Rev. Peru. Med. Exp. Salud Publica201128112112710.1590/S1726‑46342011000100019 21537780
    [Google Scholar]
  44. The European union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017.EFSA J20181612e0550010.2903/j.efsa.2018.5500
    [Google Scholar]
  45. The European union one health 2019 zoonoses report.EFSA J.2021192e0640610.2903/j.efsa.2021.6406
    [Google Scholar]
  46. The European union one health 2021 zoonoses report.EFSA J.20222012e0766610.2903/j.efsa.2022.7666
    [Google Scholar]
  47. StinglK. KnüverM.T. VogtP. BuhlerC. KrügerN.J. AltK. TenhagenB.A. HartungM. SchroeterA. EllerbroekL. AppelB. KäsbohrerA. Quo vadis? — monitoring Campylobacter in Germany.Eur. J. Microbiol. Immunol.201221889610.1556/EuJMI.2.2012.1.12 24611125
    [Google Scholar]
  48. HauriA.M. JustM. McFarlandS. SchweigmannA. SchlezK. KrahnJ. [Campylobacteriosis outbreaks in the state of Hesse, Germany, 2005-2011: Raw milk yet again].Dtsch. Med. Wochenschr.2013138835736110.1055/s‑0032‑1332884 23404322
    [Google Scholar]
  49. KemmerenJM MangenMJJ DuynhovenV.Y HavelaarAH Priority setting of foodborne pathogens: Disease burden and costs of selected enteric pathogens.RIVM report2006330080001
    [Google Scholar]
  50. de BoerR.F. OttA. GürenP. van ZantenE. van BelkumA. SmidK.A.M.D. Detection of Campylobacter species and Arcobacter butzleri in stool samples by use of real-time multiplex PCR.J. Clin. Microbiol.201351125325910.1128/JCM.01716‑12 23152553
    [Google Scholar]
  51. KuhnK.G. NygårdK.M. HerradorG.B. SundeL.S. FinneR.R. TrönnbergL. JepsenM.R. RuuhelaR. WongW.K. EthelbergS. Campylobacter infections expected to increase due to climate change in Northern Europe.Sci. Rep.20201011387410.1038/s41598‑020‑70593‑y 32807810
    [Google Scholar]
  52. HuangJ.L. XuH.Y. BaoG.Y. ZhouX.H. JiD.J. ZhangG. LiuP.H. JiangF. PanZ.M. LiuX.F. JiaoX.A. Epidemiological surveillance of Campylobacter jejuni in chicken, dairy cattle and diarrhoea patients.Epidemiol. Infect.200913781111112010.1017/S0950268809002039 19192321
    [Google Scholar]
  53. ChenJ. SunX-T. ZengZ. YuY-Y. Campylobacter enteritis in adult patients with acute diarrhea from 2005 to 2009 in Beijing, China.Chin. Med. J.20111241015081512 21740807
    [Google Scholar]
  54. WangJ. GuoY.C. LiN. Prevalence and risk assessment of Campylobacter jejuni in chicken in China.Biomed. Environ. Sci.201326424324810.3967/0895‑3988.2013.04.002 23534464
    [Google Scholar]
  55. KubotaK. KasugaF. IwasakiE. Shunichiinagaki SakuraiY. KomatsuM. ToyofukuH. AnguloF.J. ScallanE. MorikawaK. Estimating the burden of acute gastroenteritis and foodborne illness caused by Campylobacter, Salmonella, and Vibrio parahaemolyticus by using population-based telephone survey data, Miyagi Prefecture, Japan, 2005 to 2006.J. Food Prot.201174101592159810.4315/0362‑028X.JFP‑10‑387 22004803
    [Google Scholar]
  56. MukherjeeP. RamamurthyT. BhattacharyaM.K. RajendranK. MukhopadhyayA.K. Campylobacter jejuni in hospitalized patients with diarrhea, Kolkata, India.Emerg. Infect. Dis.20131971155115610.3201/eid1907.121278 23763834
    [Google Scholar]
  57. SinhaA. SenGuptaS. GuinS. DuttaS. GhoshS. MukherjeeP. MukhopadhyayA.K. RamamurthyT. TakedaY. KurakawaT. NomotoK. NairG.B. NandyR.K. Culture-independent real-time PCR reveals extensive polymicrobial infections in hospitalized diarrhoea cases in Kolkata, India.Clin. Microbiol. Infect.201319217318010.1111/j.1469‑0691.2011.03746.x 22268636
    [Google Scholar]
  58. RajendranP. BabjiS. GeorgeA.T. RajanD.P. KangG. AjjampurS.S. Detection and species identification of Campylobacter in stool samples of children and animals from Vellore, south India.Indian J. Med. Microbiol.2012301858810.4103/0255‑0857.93049 22361767
    [Google Scholar]
  59. KotloffK.L. NataroJ.P. BlackwelderW.C. NasrinD. FaragT.H. PanchalingamS. WuY. SowS.O. SurD. BreimanR.F. FaruqueA.S.G. ZaidiA.K.M. SahaD. AlonsoP.L. TambouraB. SanogoD. OnwuchekwaU. MannaB. RamamurthyT. KanungoS. OchiengJ.B. OmoreR. OundoJ.O. HossainA. DasS.K. AhmedS. QureshiS. QuadriF. AdegbolaR.A. AntonioM. HossainM.J. AkinsolaA. MandomandoI. NhampossaT. AcácioS. BiswasK. O’ReillyC.E. MintzE.D. BerkeleyL.Y. MuhsenK. SommerfeltH. Robins-BrowneR.M. LevineM.M. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study.Lancet2013382988820922210.1016/S0140‑6736(13)60844‑2 23680352
    [Google Scholar]
  60. MurugesanM. AbrahamD. SamuelP. AjjampurS.S.R. Campylobacter diarrhea in children in South Asia: A systematic review.Indian J. Med. Microbiol.202240333033610.1016/j.ijmmb.2022.03.010 35397849
    [Google Scholar]
  61. WeinbergerM. LernerL. ValinskyL. GiladM.J. NissanI. AgmonV. PeretzC. Increased incidence of Campylobacter spp. infection and high rates among children, Israel.Emerg. Infect. Dis.201319111828183110.3201/eid1911.120900 24188185
    [Google Scholar]
  62. DayanN. RevivoD. EvenL. ElkayamO. GlikmanD. Campylobacter is the leading cause of bacterial gastroenteritis and dysentery in hospitalized children in the Western Galilee Region in Israel.Epidemiol. Infect.2010138101405140610.1017/S0950268810000737 20370957
    [Google Scholar]
  63. OzFoodNet Working Group. Monitoring the incidence and causes of diseases potentially transmitted by food in Australia: Annual report of the OzFoodNet network, 2010.Commun. Dis. Intell. Q. Rep.2012363E213E241 23186234
    [Google Scholar]
  64. OzFoodNet Working Group. Monitoring the incidence and causes of diseases potentially transmitted by food in Australia: Annual report of the OzFoodNet Network, 2008.Commun. Dis. Intell. Q. Rep.2009334389413 20301968
    [Google Scholar]
  65. OzFoodNet Working Group. Monitoring the incidence and causes of diseases potentially transmitted by food in Australia: Annual report of the OzFoodNet Network, 2009.Commun. Dis. Intell. Q. Rep.2010344396426 21413526
    [Google Scholar]
  66. GibneyK.B. O’TooleJ. SinclairM. LederK. Disease burden of selected gastrointestinal pathogens in Australia, 2010.Int. J. Infect. Dis.20142817618510.1016/j.ijid.2014.08.006 25281904
    [Google Scholar]
  67. SearsA. BakerM.G. WilsonN. MarshallJ. MuellnerP. CampbellD.M. LakeR.J. FrenchN.P. Marked campylobacteriosis decline after interventions aimed at poultry, New Zealand.Emerg. Infect. Dis.20111761007101510.3201/eid/1706.101272 21749761
    [Google Scholar]
  68. GilpinB.J. WalsheG. OnS.L. SmithD. MarshallJ.C. FrenchN.P. Application of molecular epidemiology to understanding campyl-obacteriosis in the Canterbury region of New Zealand.Epidemiol. Infect.201314161253126610.1017/S0950268812001719 22906314
    [Google Scholar]
  69. CorneliusA.J. ChambersS. AitkenJ. BrandtS.M. HornB. OnS.L.W. epsilonproteobacteria in humans, New Zealand.Emerg. Infect. Dis.201218351051210.3201/eid1803.110875 22377283
    [Google Scholar]
  70. GilpinB.J. WalkerT. PaineS. SherwoodJ. MackerethG. WoodT. HamblingT. HewisonC. BrountsA. WilsonM. ScholesP. RobsonB. LinS. CorneliusA. RivasL. HaymanD.T.S. FrenchN.P. ZhangJ. WilkinsonD.A. MidwinterA.C. BiggsP.J. JagroopA. EyreR. BakerM.G. JonesN. A large scale waterborne Campylobacteriosis outbreak, Havelock North, New Zealand.J. Infect.202081339039510.1016/j.jinf.2020.06.065 32610108
    [Google Scholar]
  71. HowardP. AlexanderN. AtkinsonA. CleggA. GeregaG. JavatiA. KajoiM. LupiwaS. LupiwaT. MensM. SaleuG. SandersR. WestB. AlpersM. Bacterial, viral and parasitic aetiology of paediatric diarrhoea in the highlands of Papua New Guinea.J. Trop. Pediatr.2000461101410.1093/tropej/46.1.10 10730034
    [Google Scholar]
  72. MasonJ. Iturriza-GomaraM. O’BrienS.J. NgwiraB.M. DoveW. MaidenM.C.J. CunliffeN.A. Campylobacter infection in children in Malawi is common and is frequently associated with enteric virus co-infections.PLoS One201383e5966310.1371/journal.pone.0059663 23555739
    [Google Scholar]
  73. SwierczewskiB.E. OdundoE.A. KoechM.C. NdonyeJ.N. KireraR.K. OdhiamboC.P. CheruiyotE.K. ShafferD.N. OmbogoA.N. OaksE.V. Enteric pathogen surveillance in a case-control study of acute diarrhoea in the town of Kisii, Kenya.J. Med. Microbiol.201362111774177610.1099/jmm.0.059139‑0 23842139
    [Google Scholar]
  74. Platts-MillsJ.A. LiuJ. GratzJ. MdumaE. AmourC. SwaiN. TaniuchiM. BegumS. YoriP.P. TilleyD.H. LeeG. ShenZ. WharyM.T. FoxJ.G. McGrathM. KosekM. HaqueR. HouptE.R. Detection of Campylobacter in stool and determination of significance by culture, enzyme immunoassay, and PCR in developing countries.J. Clin. Microbiol.20145241074108010.1128/JCM.02935‑13 24452175
    [Google Scholar]
  75. LastovicaA.J. Emerging Campylobacter spp.: The tip of the iceberg.Clin. Microbiol. Newsl.2006287495610.1016/j.clinmicnews.2006.03.004
    [Google Scholar]
  76. PaintsilE.K. OforiL.A. AdobeaS. AkentenC.W. PhillipsR.O. AscofareM.O. LamshöftM. MayJ. DansoO.K. KrumkampR. DekkerD. Prevalence and antibiotic resistance in Campylobacter spp. Isolated from humans and food-producing animals in West Africa: A systematic review and meta-analysis.Pathogens202211214010.3390/pathogens11020140 35215086
    [Google Scholar]
  77. EscherichT. Contributions to the knowledge of intestinal bacteria. III. About the presence of vibrios in the intestinal canal and the stools of infants (Articles Adding to Knowl Intest Bact III Exist Vibrios Intest Feces Babies).Munch. Med. Wochenschr.188633815817
    [Google Scholar]
  78. McFadyeanJ. StockmanS. Report of the departmental committee appointed by the board of agriculture and fisheries to inquire into epizootic abortion. Appendix to part III, abortion in sheep.Available from: https://search.worldcat.org/title/Report-of-the-Depart-mental-Committee-appointed-by-the-Board-of-Agriculture-and-Fisheries-to-inquire-into-epizootic-abortion.-Appendix-to-part-III-Abortion-in-sheep/oclc/152479441 1913
  79. LevyA.J. A gastro-enteritis cutbreak probably due to a bovine strain of vibrio.Yale J. Biol. Med.1946184243258 21019769
    [Google Scholar]
  80. VincentR. Severe septicemia during pregnancy due to vibration.Bull. Acad Natl. Med.19471319092
    [Google Scholar]
  81. KingE.O. Human infections with Vibrio fetus and a closely related vibrio.J. Infect. Dis.1957101211912810.1093/infdis/101.2.119 13475869
    [Google Scholar]
  82. SebaldM. VERONM. [Base dna content and classification of vibrios].Ann. Inst. Pasteur1963105897910
    [Google Scholar]
  83. ButzlerJ.P. DekeyserP. DetrainM. DehaenF. Related vibrio in stools.J. Pediatr.197382349349510.1016/S0022‑3476(73)80131‑3 4572934
    [Google Scholar]
  84. DekeyserP. Gossuin-DetrainM. ButzlerJ.P. SternonJ. Acute enteritis due to related vibrio: First positive stool cultures.J. Infect. Dis.1972125439039210.1093/infdis/125.4.390 4553081
    [Google Scholar]
  85. SkirrowM.B. Campylobacter enteritis: A “new” disease.BMJ19772607891110.1136/bmj.2.6078.9 871765
    [Google Scholar]
  86. VeronM. ChatelainR. Taxonomic study of the genus Campylobacter sebald and vkron and designation of the neotype strain for the type species, Campylobacter fetus (Smith and Taylor).Sebald and Vkon197323122134
    [Google Scholar]
  87. VandammeP. De LeyJ. Proposal for a new family, campylobacteraceae.Int. J. Syst. Evol. Microbiol.199141451455
    [Google Scholar]
  88. CostaD. IraolaG. Pathogenomics of emerging Campylobacter species.Clin. Microbiol. Rev.2019324e00072e1810.1128/CMR.00072‑18 31270126
    [Google Scholar]
  89. BeltráS.M. LeeB.G. LópezA.B.A. QuiñonesB. Overview of methodologies for the culturing, recovery and detection of Campylobacter.Int. J. Environ. Health Res.20233330732310.1080/09603123.2022.2029366
    [Google Scholar]
  90. LastovicaA.J. OnS.L.W. ZhangL. The family campylobacteraceae. The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. RosenbergE. DeLongE.F. LoryS. StackebrandtE. ThompsonF. Berlin, HeidelbergSpringer Berlin Heidelberg201430733510.1007/978‑3‑642‑39044‑9_274
    [Google Scholar]
  91. AchesonD. AllosB.M. Campylobacter jejuni infections: update on emerging issues and trends.Clin. Infect. Dis.20013281201120610.1086/319760 11283810
    [Google Scholar]
  92. CecilR.L.F. GoldmanL. SchaferA.I. Goldman’s Cecil Medicine, Expert Consult Premium Edition--Enhanced Online Features and Print, Single Volume, 24: Goldman’s Cecil Medicine;Elsevier Health Sciences201224
    [Google Scholar]
  93. NishiguchiS. SekineI. KurodaS. SatoM. KitagawaI. Myositis ossificans of the hip due to pyogenic arthritis caused by <i>Campylobacter fetus</i> subspecies <i>fetus</i>.Intern. Med.201756896797210.2169/internalmedicine.56.7906 28420848
    [Google Scholar]
  94. SilvaM.F. PereiraG. CarneiroC. HemphillA. MateusL. da-CostaL.L. SilvaE. Campylobacter portucalensis sp. nov., a new species of Campylobacter isolated from the preputial mucosa of bulls.PLoS One2020151e022750010.1371/journal.pone.0227500 31923228
    [Google Scholar]
  95. SilvaJ. LeiteD. FernandesM. MenaC. GibbsP.A. TeixeiraP. Campylobacter spp. as a foodborne pathogen: A review.Front. Microbiol.2011220010.3389/fmicb.2011.00200 21991264
    [Google Scholar]
  96. VandenbergO. SkirrowM.B. ButzlerJ.P. Campylobacter and acrobacter. Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology.Wiley2005
    [Google Scholar]
  97. BoltonF.J. HutchinsonD.N. ParkerG. Reassessment of selective agars and filtration techniques for isolation ofCampylobacter species from faeces.Eur. J. Clin. Microbiol. Infect. Dis.19887215516010.1007/BF01963069 3134202
    [Google Scholar]
  98. HuangH. GarciaM.M. Isolation and identification of <em>campylobacter. Spp. from Food and Food-Related Environment.” P. Tellez-IsaiasG. El-AshramS. RijekaIntechOpen2022
    [Google Scholar]
  99. CorryJ.E.L. PostD.E. ColinP. LaisneyM.J. Culture media for the isolation of campylobacters.Int. J. Food Microbiol.1995261437610.1016/0168‑1605(95)00044‑K 7662519
    [Google Scholar]
  100. WassenaarT.M. NewellD.G. The genus Campylobacter.Prokaryotes2006711913810.1007/0‑387‑30747‑8_4
    [Google Scholar]
  101. Mota-GutierrezJ. LisL. LasagabasterA. NafarrateI. FerrocinoI. CocolinL. RantsiouK. Campylobacter spp. prevalence and mitigation strategies in the broiler production chain.Food Microbiol.202210410399810.1016/j.fm.2022.103998 35287817
    [Google Scholar]
  102. MyintzawP. JaiswalA.K. JaiswalS. A review on Campylobacteriosis associated with poultry meat consumption.Food Rev. Int.202239421072121
    [Google Scholar]
  103. GarénauxA. JugiauF. RamaF. de JongeR. DenisM. FederighiM. RitzM. Survival of Campylobacter jejuni strains from different origins under oxidative stress conditions: Effect of temperature.Curr. Microbiol.200856429329710.1007/s00284‑007‑9082‑8 18180992
    [Google Scholar]
  104. HarveyP. LeachS. Analysis of coccal cell formation by Campylobacter jejuni using continuous culture techniques, and the importance of oxidative stress.J. Appl. Microbiol.199885239840410.1046/j.1365‑2672.1998.00532.x 9750311
    [Google Scholar]
  105. KassemI.I. ChandrashekharK. RajashekaraG. Of energy and survival incognito: A relationship between viable but non-culturable cells formation and inorganic polyphosphate and formate metabolism in Campylobacter jejuni.Front. Microbiol.2013418310.3389/fmicb.2013.00183 23847606
    [Google Scholar]
  106. McKennaA. IjazU.Z. KellyC. LintonM. SloanW.T. GreenB.D. LaveryU. DorrellN. WrenB.W. RichmondA. Cor-cionivoschiN. GundogduO. Impact of industrial production system parameters on chicken microbiomes: Mechanisms to improve performance and reduce Campylobacter.Microbiome20208112810.1186/s40168‑020‑00908‑8 32907634
    [Google Scholar]
  107. Perez-ArnedoI. Gonzalez-FandosE. Prevalence of Campylobacter spp. in poultry in three Spanish farms, a slaughterhouse and a further processing plant.Foods20198311110.3390/foods8030111 30917510
    [Google Scholar]
  108. EppingL. WaltherB. PiroR.M. KnüverM.T. HuberC. ThürmerA. FliegerA. FruthA. JaneckoN. WielerL.H. StinglK. SemmlerT. Genome-wide insights into population structure and host specificity of Campylobacter jejuni.Sci. Rep.20211111035810.1038/s41598‑021‑89683‑6 33990625
    [Google Scholar]
  109. Møller NielsenE. EngbergJ. MadsenM. Distribution of serotypes of Campylobacter jejuni and C. coli from Danish patients, poultry, cattle and swine.FEMS Immunol. Med. Microbiol.1997191475610.1111/j.1574‑695X.1997.tb01071.x 9322068
    [Google Scholar]
  110. TangM. ZhouQ. ZhangX. ZhouS. ZhangJ. TangX. LuJ. GaoY. Antibiotic resistance profiles and molecular mechanisms of Campylobacter from chicken and pig in China.Front. Microbiol.20201159249610.3389/fmicb.2020.592496 33193261
    [Google Scholar]
  111. SibandaN. McKennaA. RichmondA. RickeS.C. CallawayT. StratakosA.C. GundogduO. CorcionivoschiN. A review of the effect of management practices on campylobacter prevalence in poultry farms.Front. Microbiol.20189200210.3389/fmicb.2018.02002 30197638
    [Google Scholar]
  112. ChabanB. NgelekaM. HillJ.E. Detection and quantification of 14 Campylobacter species in pet dogs reveals an increase in species richness in feces of diarrheic animals.BMC Microbiol.20101017310.1186/1471‑2180‑10‑73 20219122
    [Google Scholar]
  113. Jay-RussellM.T. BatesA. HardenL. MillerW.G. MandrellR.E. Isolation of Campylobacter from feral swine (Sus scrofa) on the ranch associated with the 2006 Escherichia coli O157:H7 spinach outbreak investigation in California.Zoonoses Public Health201259531431910.1111/j.1863‑2378.2012.01465.x 22405465
    [Google Scholar]
  114. Barker-DaviesR.M. O’SullivanO. SenaratneK.P.P. BakerP. CranleyM. DattaD.S. EllisH. GoodallD. GoughM. LewisS. NormanJ. PapadopoulouT. RoscoeD. SherwoodD. TurnerP. WalkerT. MistlinA. PhillipR. NicolA.M. BennettA.N. BahadurS. The Stanford Hall consensus statement for post-COVID-19 rehabilitation.Br. J. Sports Med.2020541694995910.1136/bjsports‑2020‑102596 32475821
    [Google Scholar]
  115. DjennadA. NicholsG. LoiaconoG. FlemingL. KesselA. KovatsS. LakeI. SarranC. ElsonR. LaneC. HoeserC. BaileyT. The seasonality and effects of temperature and rainfall on Campylobacter infections.Int. J. Popul. Data Sci.201711110.23889/ijpds.v1i1.51
    [Google Scholar]
  116. FrirdichE. BiboyJ. HuynhS. ParkerC.T. VollmerW. GaynorE.C. Morphology heterogeneity within a Campylobacter jejuni helical population: the use of calcofluor white to generate rod‐shaped C. jejuni 81‐176 clones and the genetic determinants responsible for differences in morphology within 11168 strains.Mol. Microbiol.2017104694897110.1111/mmi.13672 28316093
    [Google Scholar]
  117. KaakoushN.O. BaarC. MacKichanJ. SchmidtP. FoxE.M. SchusterS.C. MendzG.L. Insights into the molecular basis of the microaerophily of three Campylobacterales: a comparative study.Antonie van Leeuwenhoek200996454555710.1007/s10482‑009‑9370‑3 19669588
    [Google Scholar]
  118. BiswasD. HannonS.J. TownsendH.G. PotterA. AllanB.J. Genes coding for virulence determinants of Campylobacter jejuni in human clinical and cattle isolates from Alberta, Canada, and their potential role in colonization of poultry.Int. Microbiol.20111412532 22015699
    [Google Scholar]
  119. CDCNational center for emerging and zoonotic infectious diseases (NCEZID) 2020.Available from: https://www.cdc.gov/ncezid/index.html 2020
  120. KhademiF. SahebkarA. Prevalence of fluoroquinolone-resistant campylobacter species in Iran: A systematic review and meta-analysis.Int. J. Microbiol.20202020886819710.1155/2020/8868197
    [Google Scholar]
  121. MorishitaS. FujiwaraH. MurotaH. MaedaY. HaraA. FujiwaraH. HoriiT. Bloodstream infection caused by Campylobacter lari.J. Infect. Chemother.201319233333710.1007/s10156‑012‑0471‑y 22965843
    [Google Scholar]
  122. DingleK.E. Van Den BraakN. CollesF.M. PriceL.J. WoodwardD.L. RodgersF.G. EndtzH.P. Van BelkumA. MaidenM.C.J. Sequence typing confirms that Campylobacter jejuni strains associated with Guillain-Barré and Miller-Fisher syndromes are of diverse genetic lineage, serotype, and flagella type.J. Clin. Microbiol.20013993346334910.1128/JCM.39.9.3346‑3349.2001 11526174
    [Google Scholar]
  123. KobayashiR. MatsumotoS. YoshidaY. Case of acute pancreatitis associated with Campylobacter enteritis.World J. Gastroenterol.201420237514751710.3748/wjg.v20.i23.7514 24966623
    [Google Scholar]
  124. KormanT.M. VarleyC.C. SpelmanD.W. Acute hepatitis associated withCampylobacter jejuni bacteraemia.Eur. J. Clin. Microbiol. Infect. Dis.199716967868110.1007/BF01708559 9352262
    [Google Scholar]
  125. LouwenR. van BaarlenP. van VlietA.H.M. van BelkumA. HaysJ.P. EndtzH.P. Campylobacter bacteremia: A rare and under-reported event?Eur. J. Microbiol. Immunol.201221768710.1556/EuJMI.2.2012.1.11 24611124
    [Google Scholar]
  126. PetersB.E.G. JongenburgerI. de BoerE. ReitsmaJ.W.F. Validation by interlaboratory trials of EN ISO 10272 - Microbiology of the food chain - Horizontal method for detection and enumeration of Campylobacter spp. - Part 1: Detection method.Int. J. Food Microbiol.2019288394610.1016/j.ijfoodmicro.2018.05.007 29934105
    [Google Scholar]
  127. Jacobs-ReitsmaW.F. JongenburgerI. de BoerE. PetersB.E.G. Validation by interlaboratory trials of EN ISO 10272 - Microbiology of the food chain - horizontal method for detection and enumeration of campylobacter spp. - part 2: colony-count technique.Int. J. Food Microbiol.2019288323810.1016/j.ijfoodmicro.2018.05.008 29929852
    [Google Scholar]
  128. ISOWater quality–detection and enumeration of thermotolerant campylobacter species 2005. https://www.iso.org/standard/42082.html
  129. PerssonS. OlsenK.E.P. Multiplex PCR for identification of Campylobacter coli and Campylobacter jejuni from pure cultures and directly on stool samples.J. Med. Microbiol.200554111043104710.1099/jmm.0.46203‑0 16192435
    [Google Scholar]
  130. SailsA.D. FoxA.J. BoltonF.J. WareingD.R.A. GreenwayD.L.A. A real-time PCR assay for the detection of Campylobacter jejuni in foods after enrichment culture.Appl. Environ. Microbiol.20036931383139010.1128/AEM.69.3.1383‑1390.2003 12620820
    [Google Scholar]
  131. ChoudharyP. PuniaA. DahiyaS. SharmaN. BalharaM. DangiM. ChhillarA.K. Recent trends in diagnosis of campylobacter infection.Advances in Animal Disease Diagnosis202121922810.1201/9781003080282‑14
    [Google Scholar]
  132. EberleK.N. KiessA.S. Phenotypic and genotypic methods for typing Campylobacter jejuni and Campylobacter coli in poultry.Poult. Sci.201291125526410.3382/ps.2011‑01414 22184452
    [Google Scholar]
  133. Al AmriA. SenokA.C. IsmaeelA.Y. Al-MahmeedA.E. BottaG.A. Multiplex PCR for direct identification of Campylobacter spp. in human and chicken stools.J. Med. Microbiol.200756101350135510.1099/jmm.0.47220‑0 17893173
    [Google Scholar]
  134. YanW. ChangN. TaylorD.E. Pulsed-field gel electrophoresis of Campylobacter jejuni and Campylobacter coli genomic DNA and its epidemiologic application.J. Infect. Dis.199116351068107210.1093/infdis/163.5.1068 2019755
    [Google Scholar]
  135. Potturi-VenkataL.P. BackertS. LastovicaA.J. VieiraS.L. NortonR.A. MillerR.S. PierceS. OyarzabalO.A. Evaluation of different plate media for direct cultivation of Campylobacter species from live broilers.Poult. Sci.20078671304131110.1093/ps/86.7.1304 17575175
    [Google Scholar]
  136. WassenaarT.M. AstorgaF.A. AlonsoR. MarteinssonV.T. MagnússonS.H. KristoffersenA.B. HofshagenM. Comparison of Campylobacter fla -SVR genotypes isolated from humans and poultry in three European regions.Lett. Appl. Microbiol.200949338839510.1111/j.1472‑765X.2009.02678.x 19627478
    [Google Scholar]
  137. TaginiF. GreubG. Bacterial genome sequencing in clinical microbiology: A pathogen-oriented review.Eur. J. Clin. Microbiol. Infect. Dis.201736112007202010.1007/s10096‑017‑3024‑6 28639162
    [Google Scholar]
  138. AhmedM.U. DunnL. IvanovaE.P. Evaluation of current molecular approaches for genotyping of Campylobacter jejuni strains.Foodborne Pathog. Dis.20129537538510.1089/fpd.2011.0988 22506653
    [Google Scholar]
  139. BardonJ. KolarM. CekanovaL. HejnarP. KoukalovaD. Prevalence of Campylobacter jejuni and its resistance to antibiotics in poultry in the Czech Republic.Zoonoses Public Health200956311111610.1111/j.1863‑2378.2008.01176.x 18771516
    [Google Scholar]
  140. BoltonD.J. Campylobacter virulence and survival factors.Food Microbiol.2015489910810.1016/j.fm.2014.11.017 25790997
    [Google Scholar]
  141. BruzzeseE. GiannattasioA. GuarinoA. Antibiotic treatment of acute gastroenteritis in children.F1000 Res.2018719310.12688/f1000research.12328.1 29511533
    [Google Scholar]
  142. GilbertD.N. MoelleringR.C. EliopoulosG.M. SandeM.A. The Sanford Guide to Antimicrobial Therapy.37th edVienna, VaAntimicrob. Ther2007
    [Google Scholar]
  143. NeustaedterC.M. RobertsonK. TschritterD. Reid-SmithR.J. MacKinnonM.C. MurphyC.P. ChapmanB. NeumannN.F. OttoS.J.G. A scoping review of factors associated with antimicrobial-resistant Campylobacter species infections in humans.Epidemiol. Infect.2023151e10010.1017/S095026882300074237283142
    [Google Scholar]
/content/journals/ijghd/10.2174/0126662906281070240223053537
Loading
/content/journals/ijghd/10.2174/0126662906281070240223053537
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test