Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-2906
  • E-ISSN: 2666-2914

Abstract

The gut is the most accommodating environment in the human body for bacteria. The microbial community there is both dense and varied. The gut microbe forms an axis with the human liver, according to the theory of liver disease causation. The portal vein, systemic circulation, and biliary tract all provide bidirectional connections between the liver and the intestines. The liver secretes bile acid and a wide variety of bioactive mediators into the biliary tract and general circulation.

On the other hand, the portal vein carries microbial-produced endogenous compounds from the colon to the liver, where they might disrupt liver function. Acetyl-aldehyde and butyrate are two of the many byproducts produced by the microbiota in the human gut in response to indigestible food. In addition, these two waste products alter liver function and play an important role in maintaining intestinal health in humans. This paper reviews the literature on the link between butyrate and acetyl-aldehyde production in the human gut and the organ's role in the development of liver disease. Butyrate, acetyl-aldehyde, and liver disease all play roles in the gut-liver axis.

Loading

Article metrics loading...

/content/journals/ijghd/10.2174/0126662906273512231201050937
2024-01-24
2025-07-13
Loading full text...

Full text loading...

References

  1. QinY. HavulinnaA.S. LiuY. JousilahtiP. RitchieS.C. TokolyiA. SandersJ.G. ValstaL. BrożyńskaM. ZhuQ. TripathiA. Vázquez-BaezaY. LoombaR. ChengS. JainM. NiiranenT. LahtiL. KnightR. SalomaaV. InouyeM. MéricG. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort.Nat. Genet.202254213414210.1038/s41588‑021‑00991‑z 35115689
    [Google Scholar]
  2. AbenavoliL. ScarlataG.G.M. ParavatiM.R. BoccutoL. LuzzaF. ScarpelliniE. Gut microbiota and liver transplantation: Immune mechanisms behind the rejection.Biomedicines2023117179210.3390/biomedicines11071792 37509432
    [Google Scholar]
  3. ZhengD. LiwinskiT. ElinavE. Interaction between microbiota and immunity in health and disease.Cell Res.202030649250610.1038/s41422‑020‑0332‑7 32433595
    [Google Scholar]
  4. ThursbyE. JugeN. Introduction to the human gut microbiota.Biochem. J.2017474111823183610.1042/BCJ20160510 28512250
    [Google Scholar]
  5. Advances in experimental medicine and biology. In: Goldberg, G.; Prentice, A.; Prentice, A.; Filteau, S.; Simondon, K., Eds.; Breast-Feeding: Early Influences on Later Health.DordrechtSpringer Netherlands200963910.1007/978‑1‑4020‑8749‑3
    [Google Scholar]
  6. HillmanE.T. LuH. YaoT. NakatsuC.H. Microbial ecology along the gastrointestinal tract.Microbes Environ.201732430031310.1264/jsme2.ME17017 29129876
    [Google Scholar]
  7. Carlotta DeF. DuccioC. MonicaD.P. PaoloL. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa.Biol. Sci.2010107331469114696
    [Google Scholar]
  8. CotillardA. KennedyS.P. KongL.C. PriftiE. PonsN. Le ChatelierE. AlmeidaM. QuinquisB. LevenezF. GalleronN. GougisS. RizkallaS. BattoJ.M. RenaultP. DoréJ. ZuckerJ.D. ClémentK. EhrlichS.D. BlottièreH. LeclercM. JusteC. de WoutersT. LepageP. FouquerayC. BasdevantA. HenegarC. GodardC. FondacciM. RohiaA. HajduchF. WeissenbachJ. PelletierE. Le PaslierD. GauchiJ-P. GibratJ-F. LouxV. CarréW. MaguinE. van de GuchteM. JametA. BoumezbeurF. LayecS. Dietary intervention impact on gut microbial gene richness.Nature2013500746458558810.1038/nature12480 23985875
    [Google Scholar]
  9. GomaaE.Z. Human gut microbiota/microbiome in health and diseases: A review.Antonie van Leeuwenhoek2020113122019204010.1007/s10482‑020‑01474‑7 33136284
    [Google Scholar]
  10. NicholsonJ.K. HolmesE. KinrossJ. BurcelinR. GibsonG. JiaW. PetterssonS. Host-gut microbiota metabolic interactions.Science201233660861262126710.1126/science.1223813 22674330
    [Google Scholar]
  11. AlbillosA. de GottardiA. RescignoM. The gut-liver axis in liver disease: Pathophysiological basis for therapy.J. Hepatol.202072355857710.1016/j.jhep.2019.10.003 31622696
    [Google Scholar]
  12. TripathiA. DebeliusJ. BrennerD.A. KarinM. LoombaR. SchnablB. KnightR. The gut–liver axis and the intersection with the microbiome.Nat. Rev. Gastroenterol. Hepatol.201815739741110.1038/s41575‑018‑0011‑z 29748586
    [Google Scholar]
  13. HolscherH.D. Dietary fiber and prebiotics and the gastrointestinal microbiota.Gut Microbes20178217218410.1080/19490976.2017.1290756 28165863
    [Google Scholar]
  14. YiewK.H. ChatterjeeT.K. HuiD.Y. WeintraubN.L. Histone deacetylases and cardiometabolic diseases.Arterioscler. Thromb. Vasc. Biol.20153591914191910.1161/ATVBAHA.115.305046 26183616
    [Google Scholar]
  15. HaraT. KimuraI. InoueD. IchimuraA. HirasawaA. Free fatty acid receptors and their role in regulation of energy metabolism.Rev. Physiol. Biochem. Pharmacol.20131647711610.1007/112_2013_13
    [Google Scholar]
  16. IchimuraA. HasegawaS. KasubuchiM. KimuraI. Free fatty acid receptors as therapeutic targets for the treatment of diabetes.Front. Pharmacol.2014523610.3389/fphar.2014.00236
    [Google Scholar]
  17. ChambersE.S. PrestonT. FrostG. MorrisonD.J. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health.Curr. Nutr. Rep.20187419820610.1007/s13668‑018‑0248‑8 30264354
    [Google Scholar]
  18. SchwabeR.F. JobinC. The microbiome and cancer.Nat. Rev. Cancer2013131180081210.1038/nrc3610 24132111
    [Google Scholar]
  19. HagueA. ButtA.J. ParaskevaC. The role of butyrate in human colonic epithelial cells: An energy source or inducer of differentiation and apoptosis?Proc. Nutr. Soc.199655393794310.1079/PNS19960090 9004335
    [Google Scholar]
  20. MollicaM.P. Mattace RasoG. CavaliereG. TrincheseG. De FilippoC. AcetoS. PriscoM. PirozziC. Di GuidaF. LamaA. CrispinoM. TroninoD. Di VaioP. Berni CananiR. CalignanoA. MeliR. Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice.Diabetes20176651405141810.2337/db16‑0924 28223285
    [Google Scholar]
  21. ChangP.V. HaoL. OffermannsS. MedzhitovR. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition.Proc. Natl. Acad. Sci.201411162247225210.1073/pnas.1322269111 24390544
    [Google Scholar]
  22. SinghN. GuravA. SivaprakasamS. BradyE. PadiaR. ShiH. ThangarajuM. PrasadP.D. ManicassamyS. MunnD.H. LeeJ.R. OffermannsS. GanapathyV. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis.Immunity201440112813910.1016/j.immuni.2013.12.007 24412617
    [Google Scholar]
  23. SamelsonS.L. NelsonR.L. NyhusL.M. Protective role of faecal pH in experimental colon carcinogenesis.J. R. Soc. Med.198578323023310.1177/014107688507800311 3973888
    [Google Scholar]
  24. HanY. Butyrate mitigates weanling piglets from lipopolysaccharide-induced colitis by regulating microbiota and energy metabolism of the gut–liver axis.Front. Microbiol.20201158866610.3389/fmicb.2020.588666
    [Google Scholar]
  25. GálfiP. BokoriJ. Feeding trial in pigs with a diet containing sodium n-butyrate.Acta Vet. Hung.1990381-2317 2100936
    [Google Scholar]
  26. Van ImmerseelF. RussellJ.B. FlytheM.D. GantoisI. TimbermontL. PasmansF. HaesebrouckF. DucatelleR. The use of organic acids to combat Salmonella in poultry: a mechanistic explanation of the efficacy.Avian Pathol.200635318218810.1080/03079450600711045 16753609
    [Google Scholar]
  27. ZoetendalE.G. CollierC.T. KoikeS. MackieR.I. GaskinsH.R. Molecular ecological analysis of the gastrointestinal microbiota: A review.J. Nutr.2004134246547210.1093/jn/134.2.465 14747690
    [Google Scholar]
  28. van WinsenR.L. UrlingsB.A.P. LipmanL.J.A. SnijdersJ.M.A. KeuzenkampD. VerheijdenJ.H.M. van KnapenF. Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs.Appl. Environ. Microbiol.20016773071307610.1128/AEM.67.7.3071‑3076.2001 11425724
    [Google Scholar]
  29. ManzanillaE.G. NofraríasM. AnguitaM. CastilloM. PerezJ.F. Martín-OrúeS.M. KamelC. GasaJ. Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs1.J. Anim. Sci.200684102743275110.2527/jas.2005‑509 16971576
    [Google Scholar]
  30. CanibeN. HøjbergO. HøjsgaardS. JensenB.B. Feed physical form and formic acid addition to the feed affect the gastrointestinal ecology and growth performance of growing pigs.J. Anim. Sci.20058361287130210.2527/2005.8361287x 15890806
    [Google Scholar]
  31. JiangY. ZhangT. KusumanchiP. HanS. YangZ. LiangpunsakulS. Alcohol metabolizing enzymes, microsomal ethanol oxidizing system, cytochrome P450 2E1, catalase, and aldehyde dehydrogenase in alcohol-associated liver disease.Biomedicines2020835010.3390/biomedicines8030050 32143280
    [Google Scholar]
  32. BarryR.E. McGivanJ.D. Acetaldehyde alone may initiate hepatocellular damage in acute alcoholic liver disease.Gut198526101065106910.1136/gut.26.10.1065 4054705
    [Google Scholar]
  33. SeoY.S. ShahV.H. The role of gut-liver axis in the pathogenesis of liver cirrhosis and portal hypertension.Clin. Mol. Hepatol.201218433734610.3350/cmh.2012.18.4.337 23323248
    [Google Scholar]
  34. RowlandI. GibsonG. HeinkenA. ScottK. SwannJ. ThieleI. TuohyK. Gut microbiota functions: Metabolism of nutrients and other food components.Eur. J. Nutr.201857112410.1007/s00394‑017‑1445‑8 28393285
    [Google Scholar]
  35. FlintH.J. BayerE.A. RinconM.T. LamedR. WhiteB.A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis.Nat. Rev. Microbiol.20086212113110.1038/nrmicro1817 18180751
    [Google Scholar]
  36. FlintH.J. DuncanS.H. ScottK.P. LouisP. Interactions and competition within the microbial community of the human colon: links between diet and health.Environ. Microbiol.2007951101111110.1111/j.1462‑2920.2007.01281.x 17472627
    [Google Scholar]
  37. LouisP. ScottK.P. DuncanS.H. FlintH.J. Understanding the effects of diet on bacterial metabolism in the large intestine.J. Appl. Microbiol.200710251197120810.1111/j.1365‑2672.2007.03322.x 17448155
    [Google Scholar]
  38. IngerslevA.K. TheilP.K. HedemannM.S. LærkeH.N. Bach KnudsenK.E. Resistant starch and arabinoxylan augment SCFA absorption, but affect postprandial glucose and insulin responses differently.Br. J. Nutr.201411191564157610.1017/S0007114513004066 24507768
    [Google Scholar]
  39. NielsenT.S. LærkeH.N. TheilP.K. SørensenJ.F. SaarinenM. ForsstenS. Bach KnudsenK.E. Diets high in resistant starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs.Br. J. Nutr.2014112111837184910.1017/S000711451400302X 25327182
    [Google Scholar]
  40. CummingsJ.H. EnglystH.N. Fermentation in the human large intestine and the available substrates.Am. J. Clin. Nutr.19874551243125510.1093/ajcn/45.5.1243 3034048
    [Google Scholar]
  41. Bach KnudsenK.E. Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health.Adv. Nutr.20156220621310.3945/an.114.007450 25770259
    [Google Scholar]
  42. ShinoharaR. SasakiK. InoueJ. HoshiN. FukudaI. SasakiD. KondoA. OsawaR. Butyryl-CoA:acetate CoA-transferase gene associated with the genus <i>Roseburia</i> is decreased in the gut microbiota of Japanese patients with ulcerative colitis.Biosci. Microbiota Food Health201938415916310.12938/bmfh.18‑029 31763119
    [Google Scholar]
  43. KnudsenK.E.B. Effect of dietary non-digestible carbohydrates on the rate of SCFA delivery to peripheral tissues.Foods Food Ingred. J. Jpn.20052101110081017
    [Google Scholar]
  44. LouisP. FlintH.J. Formation of propionate and butyrate by the human colonic microbiota.Environ. Microbiol.2017191294110.1111/1462‑2920.13589 27928878
    [Google Scholar]
  45. QinJ. LiR. RaesJ. ArumugamM. BurgdorfK.S. ManichanhC. NielsenT. PonsN. LevenezF. YamadaT. MendeD.R. LiJ. XuJ. LiS. LiD. CaoJ. WangB. LiangH. ZhengH. XieY. TapJ. LepageP. BertalanM. BattoJ.M. HansenT. Le PaslierD. LinnebergA. NielsenH.B. PelletierE. RenaultP. Sicheritz-PontenT. TurnerK. ZhuH. YuC. LiS. JianM. ZhouY. LiY. ZhangX. LiS. QinN. YangH. WangJ. BrunakS. DoréJ. GuarnerF. KristiansenK. PedersenO. ParkhillJ. WeissenbachJ. BorkP. EhrlichS.D. WangJ. A human gut microbial gene catalogue established by metagenomic sequencing.Nature20104647285596510.1038/nature08821 20203603
    [Google Scholar]
  46. ZhernakovaA. KurilshikovA. BonderM.J. TigchelaarE.F. SchirmerM. VatanenT. MujagicZ. VilaA.V. FalonyG. Vieira-SilvaS. WangJ. ImhannF. BrandsmaE. JankipersadsingS.A. JoossensM. CenitM.C. DeelenP. SwertzM.A. WeersmaR.K. FeskensE.J.M. NeteaM.G. GeversD. JonkersD. FrankeL. AulchenkoY.S. HuttenhowerC. RaesJ. HofkerM.H. XavierR.J. WijmengaC. FuJ. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity.Science2016352628556556910.1126/science.aad3369 27126040
    [Google Scholar]
  47. RinninellaE. RaoulP. CintoniM. FranceschiF. MiggianoG. GasbarriniA. MeleM. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases.Microorganisms2019711410.3390/microorganisms7010014 30634578
    [Google Scholar]
  48. LouisP. FlintH.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine.FEMS Microbiol. Lett.200929411810.1111/j.1574‑6968.2009.01514.x 19222573
    [Google Scholar]
  49. VitalM. HoweA.C. TiedjeJ.M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data.MBio201452e00889e1410.1128/mBio.00889‑14 24757212
    [Google Scholar]
  50. BuiT.P.N. RitariJ. BoerenS. de WaardP. PluggeC.M. de VosW.M. Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal.Nat. Commun.2015611006210.1038/ncomms10062 26620920
    [Google Scholar]
  51. FuX. LiuZ. ZhuC. MouH. KongQ. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria.Crit. Rev. Food Sci. Nutr.201959S1S130S15210.1080/10408398.2018.1542587
    [Google Scholar]
  52. BlaakE.E. CanforaE.E. TheisS. FrostG. GroenA.K. MithieuxG. NautaA. ScottK. StahlB. van HarsselaarJ. van TolR. VaughanE.E. VerbekeK. Short chain fatty acids in human gut and metabolic health.Benef. Microbes202011541145510.3920/BM2020.0057 32865024
    [Google Scholar]
  53. NedjadiT. MoranA.W. Al-RammahiM.A. Shirazi-BeecheyS.P. Characterization of butyrate transport across the luminal membranes of equine large intestine.Exp. Physiol.201499101335134710.1113/expphysiol.2014.077982 25172888
    [Google Scholar]
  54. TakebeK. NioJ. MorimatsuM. KarakiS.I. KuwaharaA. KatoI. IwanagaT. Histochemical demonstration of a Na+-coupled transporter for short-chain fatty acids (Slc5a8) in the intestine and kidney of the mouse.Biomed. Res.200526521322110.2220/biomedres.26.213 16295698
    [Google Scholar]
  55. GuilloteauP. MartinL. EeckhautV. DucatelleR. ZabielskiR. Van ImmerseelF. From the gut to the peripheral tissues: The multiple effects of butyrate.Nutr. Res. Rev.201023236638410.1017/S0954422410000247 20937167
    [Google Scholar]
  56. WongJ.M.W. de SouzaR. KendallC.W.C. EmamA. JenkinsD.J.A. Colonic health: Fermentation and short chain fatty acids.J. Clin. Gastroenterol.200640323524310.1097/00004836‑200603000‑00015 16633129
    [Google Scholar]
  57. LiuH. WangJ. HeT. BeckerS. ZhangG. LiD. MaX. Butyrate: a double-edged sword for health?Adv. Nutr.201891212910.1093/advances/nmx009 29438462
    [Google Scholar]
  58. BoetsE. GomandS.V. DerooverL. PrestonT. VermeulenK. De PreterV. HamerH.M. Van den MooterG. De VuystL. CourtinC.M. AnnaertP. DelcourJ.A. VerbekeK.A. Systemic availability and metabolism of colonic‐derived short‐chain fatty acids in healthy subjects: A stable isotope study.J. Physiol.2017595254155510.1113/JP272613 27510655
    [Google Scholar]
  59. SmithE.A. MacfarlaneG.T. Dissimilatory amino Acid metabolism in human colonic bacteria.Anaerobe19973532733710.1006/anae.1997.0121 16887608
    [Google Scholar]
  60. DaiZ.L. WuG. ZhuW-Y. Amino acid metabolism in intestinal bacteria: Links between gut ecology and host health.Front. Biosci.20111611768178610.2741/3820 21196263
    [Google Scholar]
  61. FeehilyC. KaratzasK.A.G. Role of glutamate metabolism in bacterial responses towards acid and other stresses.J. Appl. Microbiol.20131141112410.1111/j.1365‑2672.2012.05434.x 22924898
    [Google Scholar]
  62. FerreyraJ.A. WuK.J. HryckowianA.J. BouleyD.M. WeimerB.C. SonnenburgJ.L. Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance.Cell Host Microbe201416677077710.1016/j.chom.2014.11.003 25498344
    [Google Scholar]
  63. YoshidaY. SatoM. KezukaY. HasegawaY. NaganoK. TakebeJ. YoshimuraF. Acyl-CoA reductase PGN_0723 utilizes succinyl-CoA to generate succinate semialdehyde in a butyrate-producing pathway of Porphyromonas gingivalis.Arch. Biochem. Biophys.201659613814810.1016/j.abb.2016.03.014 27013206
    [Google Scholar]
  64. DeleuS. MachielsK. RaesJ. VerbekeK. VermeireS. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD?EBioMedicine20216610329310.1016/j.ebiom.2021.103293
    [Google Scholar]
  65. Le GallM. GalloisM. SèveB. LouveauI. HolstJ.J. OswaldI.P. LallèsJ.P. GuilloteauP. Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets.Br. J. Nutr.200910291285129610.1017/S0007114509990213 19480733
    [Google Scholar]
  66. KotuniaA. WolińskiJ. LaubitzD. JurkowskaM. RoméV. GuilloteauP. ZabielskiR. Effect of sodium butyrate on the small intestine development in Neonatal piglets fed [correction of feed] by artificial sow.J. Physiol. Pharmacol.200455S25968 15608361
    [Google Scholar]
  67. BartholomeA.L. AlbinD.M. BakerD.H. HolstJ.J. TappendenK.A. Supplementation of total parenteral nutrition with butyrate acutely increases structural aspects of intestinal adaptation after an 80% jejunoileal resection in Neonatal piglets.JPEN J. Parenter. Enteral Nutr.200428421022210.1177/0148607104028004210 15291402
    [Google Scholar]
  68. FrankelW. LewJ. SuB. BainA. KlurfeldD. EinhornE. MacDermottR.P. RombeauJ. Butyrate increases colonocyte protein synthesis in ulcerative colitis.J. Surg. Res.199457121021410.1006/jsre.1994.1133 8041140
    [Google Scholar]
  69. ScheppachW. BartramP. RichterA. RichterF. LiepoldH. DuselG. HofstetterG. RüthleinJ. KasperH. Effect of short-chain fatty acids on the human colonic mucosa in vitro.JPEN J. Parenter. Enteral Nutr.1992161434810.1177/014860719201600143 1738218
    [Google Scholar]
  70. YuC. LiuS. ChenL. ShenJ. NiuY. WangT. ZhangW. FuL. Effect of exercise and butyrate supplementation on microbiota composition and lipid metabolism.J. Endocrinol.2019243212513510.1530/JOE‑19‑0122 31454784
    [Google Scholar]
  71. LucianoL. GroosS. BuscheR. von EngelhardtW. RealeE. Massive apoptosis of colonocytes induced by butyrate deprivation overloads resident macrophages and promotes the recruitment of circulating monocytes.Cell Tissue Res.2002309339340710.1007/s00441‑002‑0593‑0 12195296
    [Google Scholar]
  72. MariadasonJ.M. KiliasD. Catto-SmithA. GibsonP.R. Effect of butyrate on paracellular permeability in rat distal colonic mucosa ex vivo.J. Gastroenterol. Hepatol.199914987387910.1046/j.1440‑1746.1999.01972.x 10535468
    [Google Scholar]
  73. CookS.I. SellinJ.H. Review article: Short chain fatty acids in health and disease.Aliment. Pharmacol. Ther.199812649950710.1046/j.1365‑2036.1998.00337.x 9678808
    [Google Scholar]
  74. RoedigerW.E.W. The colonic epithelium in ulcerative colitis: An energy-deficiency disease?Lancet1980316819771271510.1016/S0140‑6736(80)91934‑0 6106826
    [Google Scholar]
  75. RoedigerW.E. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man.Gut198021979379810.1136/gut.21.9.793 7429343
    [Google Scholar]
  76. RungratanawanichW. QuY. WangX. EssaM.M. SongB.J. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury.Exp. Mol. Med.202153216818810.1038/s12276‑021‑00561‑7 33568752
    [Google Scholar]
  77. MerleN.S. ChurchS.E. Fremeaux-BacchiV. RoumeninaL.T. Complement system part I–molecular mechanisms of activation and regulation.Front. Immunol.2015626210.3389/fimmu.2015.00262 26082779
    [Google Scholar]
  78. OsnaN.A. DonohueT.M.Jr KharbandaK.K. Alcoholic liver disease: Pathogenesis and current management.Alcohol Res.2017382147161 28988570
    [Google Scholar]
  79. WeiX. ShiX. ZhongW. ZhaoY. TangY. SunW. YinX. BogdanovB. KimS. McClainC. ZhouZ. ZhangX. Chronic alcohol exposure disturbs lipid homeostasis at the adipose tissue-liver axis in mice: Analysis of triacylglycerols using high-resolution mass spectrometry in combination with in vivo metabolite deuterium labeling.PLoS One201382e5538210.1371/journal.pone.0055382 23405143
    [Google Scholar]
  80. ZhangW. ZhongW. SunX. SunQ. TanX. LiQ. SunX. ZhouZ. Visceral white adipose tissue is susceptible to alcohol-induced lipodystrophy in rats: role of acetaldehyde.Alcohol. Clin. Exp. Res.201539341642310.1111/acer.12646 25703837
    [Google Scholar]
  81. WangW. WangC. XuH. GaoY. Aldehyde dehydrogenase, liver disease and cancer.Int. J. Biol. Sci.202016692193410.7150/ijbs.42300 32140062
    [Google Scholar]
/content/journals/ijghd/10.2174/0126662906273512231201050937
Loading
/content/journals/ijghd/10.2174/0126662906273512231201050937
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): acetyl-aldehyde; Butyrate; gut; liver; microbiota; SCFA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test