Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Background

In this paper, we have discussed recent advances in our understanding of the aetiology of psoriasis, particularly as they relate to aryl hydrocarbon receptors in DCs, Langerhans cells, macrophages, signal transducer and activator of transcription 3 pathways, and dermal vascular endothelial cells. Here, we have shown that the ability to target specific cellular and molecular components of psoriasis pathogenesis with nanoscale precision using phosphodiesterase 4 inhibitors represents a transformative opportunity to address the complex nature of this dermatological condition.

Objective

In this review, we have examined the molecular mechanisms behind the pathogenic features of psoriasis and new treatments being tested in clinical settings. There is research being done on new treatments created in the last ten years. This field highlights the advantages of nanotechnological technologies as cutting-edge candidates for drug delivery systems in psoriasis and other inflammatory chronic skin disorders.

Future Developments

Nanotechnology-based treatments currently under study show good efficacy and low side effect profiles. However, long-term prospective trials are required to demonstrate long-term safety and effectiveness. Phosphodiesterase inhibitors, Janus kinase inhibitors, nonsteroidal anti-inflammatory drugs, combinations of vitamin D3 derivatives and corticosteroids, and coal tar formulations are some of the newer topical treatments for psoriasis.

Conclusion

The psoriasis treatment continues to involve conventional medications (., medicines that are generally acknowledged as either normal therapy or outdated remedies), whether used topically or orally. Nonetheless, we are starting to see initiatives to create pharmaceuticals and biosimilars with better therapeutic results, fewer side effects, and greater efficacy.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265298802240603120251
2024-07-23
2025-01-01
Loading full text...

Full text loading...

References

  1. OrganizationW.H. World Health Organization Global Report on Psoriasis.GenevaWorld Health Association2016
    [Google Scholar]
  2. GibbsS. Skin disease and socioeconomic conditions in rural Africa: Tanzania.Int. J. Dermatol.199635963363910.1111/j.1365‑4362.1996.tb03687.x 8876289
    [Google Scholar]
  3. LowesM.A. Suárez-FariñasM. KruegerJ.G. Immunology of psoriasis.Annu. Rev. Immunol.201432122725510.1146/annurev‑immunol‑032713‑120225 24655295
    [Google Scholar]
  4. DikaE. BardazziF. BalestriR. MaibachH.I. Environmental factors and psoriasis.Curr. Probl. Dermatol.20073511813510.1159/000106419 17641494
    [Google Scholar]
  5. GränF. KerstanA. SerflingE. GoebelerM. MuhammadK. Current developments in the immunology of psoriasis.Yale J. Biol. Med.202093197110 32226340
    [Google Scholar]
  6. RaychaudhuriS.P. JiangW.Y. RaychaudhuriS.K. Revisiting the Koebner phenomenon: Role of NGF and its receptor system in the pathogenesis of psoriasis.Am. J. Pathol.2008172496197110.2353/ajpath.2008.070710 18349121
    [Google Scholar]
  7. AbelE.A. DiCiccoL.M. OrenbergE.K. FrakiJ.E. FarberE.M. Drugs in exacerbation of psoriasis.J. Am. Acad. Dermatol.19861551007102210.1016/S0190‑9622(86)70265‑X 2878015
    [Google Scholar]
  8. MahilS.K. CaponF. BarkerJ.N. Update on psoriasis immunopathogenesis and targeted immunotherapy.In: Seminars in immunopathology.Springer2016Vol. 38112710.1007/s00281‑015‑0539‑8
    [Google Scholar]
  9. SwindellW.R. JohnstonA. XingX. VoorheesJ.J. ElderJ.T. GudjonssonJ.E. Modulation of epidermal transcription circuits in psoriasis: new links between inflammation and hyperproliferation.PLoS One2013811e7925310.1371/journal.pone.0079253 24260178
    [Google Scholar]
  10. SchönM.P. BoehnckeW-H. BoehnckeW.H. Psoriasis.N. Engl. J. Med.2005352181899191210.1056/NEJMra041320
    [Google Scholar]
  11. OwenC. ChalmersR.J.G. O’SullivanT. GriffithsC.E.M. Antistreptococcal interventions for guttate and chronic psoriasis.In: Cochrane Database of Systematic Reviews.Oxford, EnglandCochrane Library2000
    [Google Scholar]
  12. BartosS. HillD. FeldmanS.R. Psoriasis: A review of diagnosis and treatment in the primary care setting.Consultant201656119122
    [Google Scholar]
  13. LeeK. KwonC. YeniovaA.Ö. Global prevalence of functional dyspepsia according to Rome criteria, 1990–2020: A systematic review and meta-analysis.Sci. Rep.2024141417210.1038/s41598‑024‑54716‑3 38378941
    [Google Scholar]
  14. ChoiY. KimH.J. ParkJ. National prevalence and trends in food labeling awareness, comprehension, usage, and COVID-19 pandemic-related factors in South Korea, 2014–2022.Sci. Rep.2024141261710.1038/s41598‑024‑51948‑1 38297021
    [Google Scholar]
  15. AliM.U. KhalidM. AlshanbariH. ZafarA. LeeS.W. Enhancing skin lesion detection: A multistage multiclass convolutional neural network-based framework.Bioengineering20231012143010.3390/bioengineering10121430 38136020
    [Google Scholar]
  16. ZwainA. AldiwaniM. TaqiH. The association between psoriasis and cardiovascular diseases.Eur. Cardiol.202116e19
    [Google Scholar]
  17. KhalilM. NaeemA. NaqviR.A. ZahraK. MoqurrabS.A. LeeS.W. Deep learning-based classification of abrasion and ischemic diabetic foot sores using camera-captured images.Mathematics20231117379310.3390/math11173793
    [Google Scholar]
  18. DamianiG. BragazziN.L. AksutK.C. The global, regional, and national burden of psoriasis: Results and insights from the global burden of disease 2019 study.Front. Med.2021874318010.3389/fmed.2021.743180 34977058
    [Google Scholar]
  19. BlackstoneB. PatelR. BewleyA. Assessing and improving psychological well-being in psoriasis: Considerations for the clinician.Psoriasis2022122533
    [Google Scholar]
  20. KooJ. MarangellL.B. NakamuraM. Depression and suicidality in psoriasis: Review of the literature including the cytokine theory of depression.J. Eur. Acad. Dermatol. Venereol.201731121999200910.1111/jdv.14460 28681405
    [Google Scholar]
  21. TraksT. KoidoK. EllerT. Polymorphisms in the interleukin-10 gene cluster are possibly involved in the increased risk for major depressive disorder.BMC Med. Genet.20089111110.1186/1471‑2350‑9‑111 19087313
    [Google Scholar]
  22. ParisiR. IskandarI.Y.K. KontopantelisE. AugustinM. GriffithsC.E.M. AshcroftD.M. National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study.BMJ2020369m159010.1136/bmj.m1590 32467098
    [Google Scholar]
  23. RaharjaA. MahilS.K. BarkerJ.N. Psoriasis: A brief overview.Clin. Med.202121317017310.7861/clinmed.2021‑0257 34001566
    [Google Scholar]
  24. DandN. MahilS.K. CaponF. SmithC.H. SimpsonM.A. BarkerJ.N. Psoriasis and genetics.Acta Derm. Venereol.2020100546410.2340/00015555‑3384
    [Google Scholar]
  25. SchönM.P. ErpenbeckL. The interleukin-23/interleukin-17 axis links adaptive and innate immunity in psoriasis.Front. Immunol.20189132310.3389/fimmu.2018.01323 29963046
    [Google Scholar]
  26. OrtonneJ.P. ChimentiS. LugerT. PuigL. ReidF. TrüebR.M. Scalp psoriasis: European consensus on grading and treatment algorithm.J. Eur. Acad. Dermatol. Venereol.2009231214351444
    [Google Scholar]
  27. KoH.C. JwaS.W. SongM. KimM.B. KwonK.S. Clinical course of guttate psoriasis: Long‐term follow‐up study.J. Dermatol.2010371089489910.1111/j.1346‑8138.2010.00871.x 20860740
    [Google Scholar]
  28. NavariniA.A. BurdenA.D. CaponF. European consensus statement on phenotypes of pustular psoriasis.J. Eur. Acad. Dermatol. Venereol.201731111792179910.1111/jdv.14386 28585342
    [Google Scholar]
  29. ProdanovichS. KirsnerR.S. KravetzJ.D. MaF. MartinezL. FedermanD.G. Association of psoriasis with coronary artery, cerebrovascular, and peripheral vascular diseases and mortality.Arch. Dermatol.2009145670070310.1001/archdermatol.2009.94 19528427
    [Google Scholar]
  30. SommerD.M. JenischS. SuchanM. ChristophersE. WeichenthalM. Increased prevalence of the metabolic syndrome in patients with moderate to severe psoriasis.Arch. Dermatol. Res.2006298732132810.1007/s00403‑006‑0703‑z 17021763
    [Google Scholar]
  31. LudwigR.J. HerzogC. RostockA. Psoriasis: A possible risk factor for development of coronary artery calcification.Br. J. Dermatol.2007156227127610.1111/j.1365‑2133.2006.07562.x 17223866
    [Google Scholar]
  32. GelfandJ.M. DommaschE.D. ShinD.B. The risk of stroke in patients with psoriasis.J. Invest. Dermatol.2009129102411241810.1038/jid.2009.112 19458634
    [Google Scholar]
  33. SternR.S. Psoriasis is not a useful independent risk factor for cardiovascular disease.J. Invest. Dermatol.2010130491791910.1038/jid.2009.446 20231828
    [Google Scholar]
  34. SternR.S. HuibregtseA. Very severe psoriasis is associated with increased noncardiovascular mortality but not with increased cardiovascular risk.J. Invest. Dermatol.201113151159116610.1038/jid.2010.399 21248765
    [Google Scholar]
  35. ArmstrongE.J. HarskampC.T. ArmstrongA.W. Psoriasis and major adverse cardiovascular events: A systematic review and meta-analysis of observational studies.J. Am. Heart Assoc.201322e00006210.1161/JAHA.113.000062 23557749
    [Google Scholar]
  36. EgebergA. SkovL. JoshiA.A. The relationship between duration of psoriasis, vascular inflammation, and cardiovascular events.J. Am. Acad. Dermatol.2017774650656.e310.1016/j.jaad.2017.06.028 28826925
    [Google Scholar]
  37. MehtaN.N. YuY. SabouryB. Systemic and vascular inflammation in patients with moderate to severe psoriasis as measured by [18F]-fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT): A pilot study.Arch. Dermatol.201114791031103910.1001/archdermatol.2011.119 21576552
    [Google Scholar]
  38. JoshiA.A. LermanJ.B. AberraT.M. GlycA is a novel biomarker of inflammation and subclinical cardiovascular disease in psoriasis.Circ. Res.2016119111242125310.1161/CIRCRESAHA.116.309637 27654120
    [Google Scholar]
  39. OgdieA. LanganS. LoveT. Prevalence and treatment patterns of psoriatic arthritis in the UK.Rheumatology201352356857510.1093/rheumatology/kes324 23221331
    [Google Scholar]
  40. ReichK. KrügerK. MössnerR. AugustinM. Epidemiology and clinical pattern of psoriatic arthritis in Germany: A prospective interdisciplinary epidemiological study of 1511 patients with plaque-type psoriasis.Br. J. Dermatol.200916051040104710.1111/j.1365‑2133.2008.09023.x 19210498
    [Google Scholar]
  41. VillaniA.P. RouzaudM. SevrainM. Prevalence of undiagnosed psoriatic arthritis among psoriasis patients: Systematic review and meta-analysis.J. Am. Acad. Dermatol.201573224224810.1016/j.jaad.2015.05.001 26054432
    [Google Scholar]
  42. StollM.L. ZurakowskiD. NigrovicL.E. NicholsD.P. SundelR.P. NigrovicP.A. Patients with juvenile psoriatic arthritis comprise two distinct populations.Arthritis Rheum.200654113564357210.1002/art.22173 17075862
    [Google Scholar]
  43. SalomonJ. SzepietowskiJ.C. ProniewiczA. Psoriatic nails: A prospective clinical study.J. Cutan. Med. Surg.20037431732110.1007/s10227‑002‑0143‑0 12879333
    [Google Scholar]
  44. PaschM.C. Nail psoriasis: A review of treatment options.Drugs201676667570510.1007/s40265‑016‑0564‑5 27041288
    [Google Scholar]
  45. LangenbruchA. RadtkeM.A. KrenselM. JacobiA. ReichK. AugustinM. Nail involvement as a predictor of concomitant psoriatic arthritis in patients with psoriasis.Br. J. Dermatol.201417151123112810.1111/bjd.13272 25040629
    [Google Scholar]
  46. MaejimaH. TaniguchiT. WataraiA. KatsuokaK. Evaluation of nail disease in psoriatic arthritis by using a modified nail psoriasis severity score index.Wiley Online Library201010.1111/j.1365‑4632.2009.04452.x
    [Google Scholar]
  47. DouroudisK. KingoK. TraksT. Polymorphisms in the ATG16L1 gene are associated with psoriasis vulgaris.Acta Derm. Venereol.2012921858710.2340/00015555‑1183 21879234
    [Google Scholar]
  48. DanilenkoM. StonesR. RajanN. Transcriptomic profiling of human skin biopsies in the clinical trial setting: A protocol for high quality RNA extraction from skin tumours.Wellcome Open Res.201834510.12688/wellcomeopenres.14360.1
    [Google Scholar]
  49. ReemannP. ReimannE. IlmjärvS. Melanocytes in the skin--comparative whole transcriptome analysis of main skin cell types.PLoS One2014912e11571710.1371/journal.pone.0115717 25545474
    [Google Scholar]
  50. KõksG. UudeleppM.L. LimbachM. PetersonP. ReimannE. KõksS. Smoking-induced expression of the GPR15 gene indicates its potential role in chronic inflammatory pathologies.Am. J. Pathol.2015185112898290610.1016/j.ajpath.2015.07.006 26348578
    [Google Scholar]
  51. KeermannM. KõksS. ReimannE. Expression of IL-36 family cytokines and IL-37 but not IL-38 is altered in psoriatic skin.J. Dermatol. Sci.201580215015210.1016/j.jdermsci.2015.08.002 26319074
    [Google Scholar]
  52. KingoK. MössnerR. KõksS. Association analysis of IL19, IL20 and IL24 genes in palmoplantar pustulosis.Br. J. Dermatol.2007156464665210.1111/j.1365‑2133.2006.07731.x 17263806
    [Google Scholar]
  53. FreyS. StichtH. TheisW.D. Rare loss-of-function mutation in SERPINA3 in generalized pustular psoriasis.J. Invest. Dermatol.2020140714511455.e1310.1016/j.jid.2019.11.024 31945348
    [Google Scholar]
  54. LaiY. GalloR.L. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense.Trends Immunol.200930313114110.1016/j.it.2008.12.003 19217824
    [Google Scholar]
  55. OgawaE. SatoY. MinagawaA. OkuyamaR. Pathogenesis of psoriasis and development of treatment.J. Dermatol.201845326427210.1111/1346‑8138.14139 29226422
    [Google Scholar]
  56. RendonA. SchäkelK. Psoriasis pathogenesis and treatment.Int. J. Mol. Sci.2019206147510.3390/ijms20061475 30909615
    [Google Scholar]
  57. BüchauA.S. GalloR.L. Innate immunity and antimicrobial defense systems in psoriasis.Clin. Dermatol.200725661662410.1016/j.clindermatol.2007.08.016 18021900
    [Google Scholar]
  58. HarderJ. SchröderJ.M. Psoriatic scales: A promising source for the isolation of human skin-derived antimicrobial proteins.J. Leukoc. Biol.200577447648610.1189/jlb.0704409 15629886
    [Google Scholar]
  59. MorizaneS. GalloR.L. Antimicrobial peptides in the pathogenesis of psoriasis.J. Dermatol.201239322523010.1111/j.1346‑8138.2011.01483.x 22352846
    [Google Scholar]
  60. LandeR. GregorioJ. FacchinettiV. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide.Nature2007449716256456910.1038/nature06116 17873860
    [Google Scholar]
  61. MorizaneS. YamasakiK. MühleisenB. Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 ligands.J. Invest. Dermatol.2012132113514310.1038/jid.2011.259 21850017
    [Google Scholar]
  62. ResP.C.M. PiskinG. de BoerO.J. Overrepresentation of IL-17A and IL-22 producing CD8 T cells in lesional skin suggests their involvement in the pathogenesis of psoriasis.PLoS One2010511e1410810.1371/journal.pone.0014108 21124836
    [Google Scholar]
  63. MabuchiT. HirayamaN. Binding affinity and interaction of LL-37 with HLA-C*06:02 in psoriasis.J. Invest. Dermatol.201613691901190310.1016/j.jid.2016.04.033 27189829
    [Google Scholar]
  64. HawkesJ.E. ChanT.C. KruegerJ.G. Psoriasis pathogenesis and the development of novel targeted immune therapies.J. Allergy Clin. Immunol.2017140364565310.1016/j.jaci.2017.07.004 28887948
    [Google Scholar]
  65. KimJ. KruegerJ.G. Highly effective new treatments for psoriasis target the IL-23/Type 17 T cell autoimmune axis.Annu. Rev. Med.201768125526910.1146/annurev‑med‑042915‑103905 27686018
    [Google Scholar]
  66. ChiricozziA. YasskyG.E. FariñasS.M. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis.J. Invest. Dermatol.2011131367768710.1038/jid.2010.340 21085185
    [Google Scholar]
  67. ChoK.A. SuhJ.W. LeeK.H. KangJ.L. WooS.Y. IL-17 and IL-22 enhance skin inflammation by stimulating the secretion of IL-1β by keratinocytes via the ROS-NLRP3-caspase-1 pathway.Int. Immunol.201224314715810.1093/intimm/dxr110 22207130
    [Google Scholar]
  68. EyerichS. EyerichK. PenninoD. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling.J. Clin. Invest.2009119123573358510.1172/JCI40202 19920355
    [Google Scholar]
  69. SinghT.P. ZhangH.H. BorekI. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation.Nat. Commun.2016711358110.1038/ncomms13581 27982014
    [Google Scholar]
  70. HarperE.G. GuoC. RizzoH. Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: Implications for psoriasis pathogenesis.J. Invest. Dermatol.200912992175218310.1038/jid.2009.65 19295614
    [Google Scholar]
  71. HeidenreichR. RöckenM. GhoreschiK. Angiogenesis drives psoriasis pathogenesis.Int. J. Exp. Pathol.200990323224810.1111/j.1365‑2613.2009.00669.x 19563608
    [Google Scholar]
  72. DenisonM.S. NagyS.R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals.Annu. Rev. Pharmacol. Toxicol.200343130933410.1146/annurev.pharmtox.43.100901.135828 12540743
    [Google Scholar]
  73. StockingerB. MeglioP.D. GialitakisM. DuarteJ.H. The aryl hydrocarbon receptor: Multitasking in the immune system.Annu. Rev. Immunol.201432140343210.1146/annurev‑immunol‑032713‑120245 24655296
    [Google Scholar]
  74. FurueM. Hashimoto-HachiyaA. TsujiG. Aryl hydrocarbon receptor in atopic dermatitis and psoriasis.Int. J. Mol. Sci.20192021542410.3390/ijms20215424 31683543
    [Google Scholar]
  75. RamirezJ.M. BrembillaN.C. SorgO. Activation of the aryl hydrocarbon receptor reveals distinct requirements for IL‐22 and IL‐17 production by human T helper cells.Eur. J. Immunol.20104092450245910.1002/eji.201040461 20706985
    [Google Scholar]
  76. ZhuZ. ChenJ. LinY. Aryl hydrocarbon receptor in cutaneous vascular endothelial cells restricts psoriasis development by negatively regulating neutrophil recruitment.J. Invest. Dermatol.2020140612331243.e910.1016/j.jid.2019.11.022 31899186
    [Google Scholar]
  77. LadizinskiB. LeeK.C. WilmerE. AlaviA. MistryN. SibbaldR.G. A review of the clinical variants and the management of psoriasis.Adv. Skin Wound Care201326627128410.1097/01.ASW.0000429778.10020.67 23669329
    [Google Scholar]
  78. SingalA. SinghN. BhattacharyaS.N. MehtaS. A study of clinicohistopathological correlation in patients of psoriasis and psoriasiform dermatitis.Indian J. Dermatol. Venereol. Leprol.200975110010.4103/0378‑6323.45241 19177702
    [Google Scholar]
  79. WeissG. ShemerA. TrauH. The Koebner phenomenon: Review of the literature.J. Eur. Acad. Dermatol. Venereol.200216324124810.1046/j.1473‑2165.2002.00406.x 12195563
    [Google Scholar]
  80. LombardoD. KiselevM.A. CaccamoM.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine.J. Nanomater.20192019126
    [Google Scholar]
  81. BakshiH. NagpalM. SinghM. DhingraG.A. AggarwalG. Treatment of psoriasis: A comprehensive review of entire therapies.Curr. Drug Saf.20201528210410.2174/22123911MTAziOTU84 31994468
    [Google Scholar]
  82. SuS. M KangP. Recent advances in nanocarrier-assisted therapeutics delivery systems.Pharmaceutics202012983710.3390/pharmaceutics12090837 32882875
    [Google Scholar]
  83. PradhanM. AlexanderA. SinghM.R. Understanding the prospective of nano-formulations towards the treatment of psoriasis.Biomed. Pharmacother.201810744746310.1016/j.biopha.2018.07.156 30103117
    [Google Scholar]
  84. BathejaP. SheihetL. KohnJ. SingerA.J. KohnM.B. Topical drug delivery by a polymeric nanosphere gel: Formulation optimization and in vitro and in vivo skin distribution studies.J. Control. Release2011149215916710.1016/j.jconrel.2010.10.005 20950659
    [Google Scholar]
  85. PetitR.G. CanoA. OrtizA. Psoriasis: From pathogenesis to pharmacological and nano-technological-based therapeutics.Int. J. Mol. Sci.2021229498310.3390/ijms22094983 34067151
    [Google Scholar]
  86. Mora-HuertasC.E. FessiH. ElaissariA. Polymer-based nanocapsules for drug delivery.Int. J. Pharm.20103851-211314210.1016/j.ijpharm.2009.10.018 19825408
    [Google Scholar]
  87. BarbosaT.C. NascimentoL.É.D. BaniC. Development, cytotoxicity and eye irritation profile of a new sunscreen formulation based on benzophenone-3-poly(ε-caprolactone) nanocapsules.Toxics2019745110.3390/toxics7040051 31546707
    [Google Scholar]
  88. MarchioriM.L. LubiniG. Dalla NoraG. Hydrogel containing dexamethasone-loaded nanocapsules for cutaneous administration: Preparation, characterization, and in vitro drug release study.Drug Dev. Ind. Pharm.201036896297110.3109/03639041003598960 20590450
    [Google Scholar]
  89. NagleA. GoyalA.K. KesarlaR. MurthyR.R. Efficacy study of vesicular gel containing methotrexate and menthol combination on parakeratotic rat skin model.J. Liposome Res.201121213414010.3109/08982104.2010.492476 20557280
    [Google Scholar]
  90. KumarR. DograS. AmarjiB. Efficacy of novel topical liposomal formulation of cyclosporine in mild to moderate stable plaque psoriasis.JAMA Dermatol.2016152780781510.1001/jamadermatol.2016.0859 27096709
    [Google Scholar]
  91. AinbinderD. PaolinoD. FrestaM. TouitouE. Drug delivery applications with ethosomes.J. Biomed. Nanotechnol.20106555856810.1166/jbn.2010.1152 21329048
    [Google Scholar]
  92. AgrawalU. GuptaM. VyasS.P. Capsaicin delivery into the skin with lipidic nanoparticles for the treatment of psoriasis.Artif. Cells Nanomed. Biotechnol.2015431333910.3109/21691401.2013.832683 24040836
    [Google Scholar]
  93. FernandesA.R. GomesM.C. SantiniA. SilvaA.M. SoutoE.B. Psoriasis vulgaris—pathophysiology of the disease and its classical treatment versus new drug delivery systems.In: Design of nanostructures for versatile therapeutic applications.Elsevier201837940610.1016/B978‑0‑12‑813667‑6.00009‑7
    [Google Scholar]
  94. BiosciencesE.I. A Study of EDP1815 in Healthy Participants and Participants with Mild to Moderate Psoriasis and Atopic Dermatitis.Silver Spring, MD, USAUS Food and Drug Administration2018
    [Google Scholar]
  95. LarrañetaE. LuttonR.E.M. WoolfsonA.D. DonnellyR.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development.Mater. Sci. Eng. Rep.201610413210.1016/j.mser.2016.03.001
    [Google Scholar]
  96. AlshawwaS.Z. KassemA.A. FaridR.M. MostafaS.K. LabibG.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence.Pharmaceutics202214488310.3390/pharmaceutics14040883 35456717
    [Google Scholar]
  97. OuriqueA.F. PohlmannA.R. GuterresS.S. BeckR.C.R. Tretinoin-loaded nanocapsules: Preparation, physicochemical characterization, and photostability study.Int. J. Pharm.20083521-21410.1016/j.ijpharm.2007.12.035 18249513
    [Google Scholar]
  98. LaptevaM. MondonK. MöllerM. GurnyR. KaliaY.N. Polymeric micelle nanocarriers for the cutaneous delivery of tacrolimus: A targeted approach for the treatment of psoriasis.Mol. Pharm.20141192989300110.1021/mp400639e 25057896
    [Google Scholar]
  99. ZhangY.T. FengN-P. ShenL-N. ZhaoJ-H. Evaluation of psoralen ethosomes for topical delivery in rats by using in vivo microdialysis.Int. J. Nanomedicine2014966967810.2147/IJN.S57314 24489470
    [Google Scholar]
  100. LiG. FanY. FanC. Tacrolimus-loaded ethosomes: Physicochemical characterization and in vivo evaluation.Eur. J. Pharm. Biopharm.2012821495710.1016/j.ejpb.2012.05.011 22705640
    [Google Scholar]
  101. PradhanM. SinghD. SinghM.R. Development characterization and skin permeating potential of lipid based novel delivery system for topical treatment of psoriasis.Chem. Phys. Lipids201518691610.1016/j.chemphyslip.2014.11.004 25447290
    [Google Scholar]
  102. DoktorovováS. AraújoJ. GarciaM.L. RakovskýE. SoutoE.B. Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC).Colloids Surf. B Biointerfaces201075253854210.1016/j.colsurfb.2009.09.033 19879736
    [Google Scholar]
  103. LinY-K. HuangZ-R. ZhuoR-Z. FangJ-Y. Combination of calcipotriol and methotrexate in nanostructured lipid carriers for topical delivery.Int. J. Nanomedicine20105117128 20309398
    [Google Scholar]
  104. JainA. DoppalapudiS. DombA.J. KhanW. Tacrolimus and curcumin co-loaded liposphere gel: Synergistic combination towards management of psoriasis.J. Control. Release201624313214510.1016/j.jconrel.2016.10.004 27725194
    [Google Scholar]
  105. A trial of a botanical drug (EISO) for treatment of mild-to-moderate plaque psoriasis.NCT Patent 030006082019
  106. A study to test how well patients with plaque psoriasis tolerate BI 730357 over a longer period and how effective it is.NCT Patent 038354812022
  107. TehlirianC. SinghR.S.P. PradhanV. Oral tyrosine kinase 2 inhibitor PF-06826647 demonstrates efficacy and an acceptable safety profile in participants with moderate-to-severe plaque psoriasis in a phase 2b, randomized, double-blind, placebo-controlled study.J. Am. Acad. Dermatol.202287233334210.1016/j.jaad.2022.03.059 35398218
    [Google Scholar]
  108. A clinical study of SHR-1314 injection in the treatment of moderate to severe plaque psoriasis in adults.NCT041211432022
  109. Clinical study of efficacy and safety of BCD-085 (Monoclonal Anti-IL-17 Antibody) in psoriatic arthritis (PATERA).NCT Patent 035987512021
  110. The VOLTAIRE-X trial looks at the effect of switching between humira® and BI 695501 in patients with plaque psoriasis. NCT Patent 032102592021
  111. Comparison of CHS-1420 versus humira in subjects with chronic plaque psoriasis (PsOsim).NCT Patent 024892272020
  112. A study to evaluate the efficacy and safety of subcutaneous MK- 3222, followed by an optional long-term safety extension study, in participants with moderate-to-severe chronic plaque psoriasis (MK- 3222-010) (reSURFACE 1).NCT Patent 017223312022
  113. AbrahamN KrishnanN RajA. Management of psoriasis -ayurveda and allopathy-A review.Int J Dermatol Clin Res2019510182310.17352/2455‑8605.000033
    [Google Scholar]
  114. ShenefeltP.D. Herbal treatment for dermatologic disorders.In: Herbal Medicine: Biomolecular and Clinical Aspects.2nd ed.. Boca Raton (FL)M/: CRC Press/Taylor & Francis2012
    [Google Scholar]
  115. HermanA. HermanA. Topically used herbal products for the treatment of psoriasis – Mechanism of action, drug delivery, clinical studies.Planta Med.201682171447145510.1055/s‑0042‑115177 27574899
    [Google Scholar]
  116. MalekzadehM. MirmazloumS.I. MortazaviS.N. PanahiM. AngoraniH.R. Physicochemical properties and oil constituents of milk thistle (Silybum Marianum Gaertn. Cv. Budakalászi) under drought stress.J. Med. Plants Res.20115814851488
    [Google Scholar]
  117. RoutS.K. TripathyB.C. KarB.R. Natural green alternatives to psoriasis treatment- A review.Glob J Pharm Pharmaceut Sci2017421710.19080/GJPPS.2017.04.555631
    [Google Scholar]
  118. SanatiS. RazaviB.M. HosseinzadehH. A review of the effects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome.Iran. J. Basic Med. Sci.2018215439448 29922422
    [Google Scholar]
  119. BylkaW. AwiżeńZ.P. SrokaS.E. PazdrowskaD.A. BrzezińskaM. Centella asiatica in dermatology: An overview.Phytother. Res.20142881117112410.1002/ptr.5110 24399761
    [Google Scholar]
  120. TalcottP. Toxicologic problems.In: Equine Internal Medicine.3rd edSt Louis, MOSaunders Elsevier201013641416
    [Google Scholar]
  121. dos SantosD.S. BarretoR.S.S. SerafiniM.R. Phytomedicines containing Matricaria species for the treatment of skin diseases: A biotechnological approach.Fitoterapia201913810426710.1016/j.fitote.2019.104267 31319107
    [Google Scholar]
  122. RadS.J. SalehiB. VaroniE.M. Plants of the Melaleuca genus as antimicrobial agents: From farm to pharmacy.Phytother. Res.201731101475149410.1002/ptr.5880 28782167
    [Google Scholar]
  123. AsogwaF.C. OkoyeC.O.B. Anti–psoriatic activity of psorospermum febrifugum stem bark extract using the rat–dinitrofluorobenzene induced model.Int J Sci Eng Sci2019315
    [Google Scholar]
  124. VogelH.G. VogelW.H. VogelH.G. MüllerG. SandowJ. SchölkensB.A. Drug Discovery and Evaluation: Pharmacological Assays.3rd edBerlin, HeidelbergSpringer1997Vol. 210.1007/978‑3‑662‑03333‑3
    [Google Scholar]
  125. BocheńskaK. SmolińskaE. MoskotM. BaneckaJ.J. CimińskaG.M. Models in the research process of psoriasis.Int. J. Mol. Sci.20171812251410.3390/ijms18122514 29186769
    [Google Scholar]
  126. LeighI.M. NavsariaH. PurkisP.E. McKayI.A. BowdenP.E. RiddleP.N. Keratins (Kl6 and Kl7) as markers of keratinocyte hyperproliferation in psoriasis in vivo and in vitro.Br. J. Dermatol.1995133450151110.1111/j.1365‑2133.1995.tb02696.x 7577575
    [Google Scholar]
  127. MartinG. GuérardS. FortinM.M.R. Pathological crosstalk in vitro between T lymphocytes and lesional keratinocytes in psoriasis: necessity of direct cell-to-cell contact.Lab. Invest.20129271058107010.1038/labinvest.2012.69 22525430
    [Google Scholar]
  128. DesmetE. RamadhasA. LambertJ. Van GeleM. In vitro psoriasis models with focus on reconstructed skin models as promising tools in psoriasis research.Exp. Biol. Med. 2017242111158116910.1177/1535370217710637 28585891
    [Google Scholar]
  129. SaiagP. CoulombB. LebretonC. BellE. DubertretL. Psoriatic fibroblasts induce hyperproliferation of normal keratinocytes in a skin equivalent model in vitro.Science1985230472666967210.1126/science.2413549 2413549
    [Google Scholar]
  130. van den BogaardE.H. TjabringaG.S. JoostenI. Crosstalk between keratinocytes and T cells in a 3D microenvironment: A model to study inflammatory skin diseases.J. Invest. Dermatol.2014134371972710.1038/jid.2013.417 24121402
    [Google Scholar]
  131. KruegerG.G. JorgensenC.M. Experimental models for psoriasis.J. Invest. Dermatol.199095S5S56S5810.1111/1523‑1747.ep12505791 16788635
    [Google Scholar]
  132. SuppD.M. BoyceS.T. Engineered skin substitutes: Practices and potentials.Clin. Dermatol.200523440341210.1016/j.clindermatol.2004.07.023 16023936
    [Google Scholar]
  133. BarkerC.L. McHaleM.T. GilliesA.K. The development and characterization of an in vitro model of psoriasis.J. Invest. Dermatol.2004123589290110.1111/j.0022‑202X.2004.23435.x 15482477
    [Google Scholar]
  134. ZhengH. GuL. WangZ. Establishing transcription profile of psoriasiform cutaneous in vitro using HaCaT cells stimulated with combination of cytokines.J. Vis. Exp.2021169e61537
    [Google Scholar]
  135. SaS.M. ValdezP.A. WuJ. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis.J. Immunol.200717842229224010.4049/jimmunol.178.4.2229 17277128
    [Google Scholar]
  136. PendariesV. Le LamerM. CauL. In a three-dimensional reconstructed human epidermis filaggrin-2 is essential for proper cornification.Cell Death Dis.201562e1656e610.1038/cddis.2015.29 25695608
    [Google Scholar]
  137. NogralesK.E. ZabaL.C. YasskyG.E. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways.Br. J. Dermatol.2008159510.1111/j.1365‑2133.2008.08769.x18684158
    [Google Scholar]
  138. Pouliot-BérubéC. ZanioloK. GuérinS.L. PouliotR. Tissue-engineered human psoriatic skin supplemented with cytokines as an in vitro model to study plaque psoriasis.Regen. Med.201611654555710.2217/rme‑2016‑0037 27513102
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265298802240603120251
Loading
/content/journals/iddt/10.2174/0118715265298802240603120251
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test