Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Background

A biofilm refers to a community of microbial cells that adhere to surfaces that are surrounded by an extracellular polymeric substance. Bacteria employ various defence mechanisms, including biofilm formation, to enhance their survival and resistance against antibiotics.

Objective

The current study aims to investigate the resistance patterns of () and () in both biofilms and their planktonic forms.

Methods

and were used to compare resistance patterns in biofilms planktonic forms of bacteria. An antibiotic disc diffusion test was performed to check the resistance pattern of biofilm and planktonic bacteria against different antibiotics such as penicillin G, streptomycin, and ampicillin. Biofilm formation and its validation were done by using quantitative (microtiter plate assay) and qualitative analysis (Congo red agar media).

Results

A study of surface-association curves of and revealed that surface adhesion in biofilms was continuously constant as compared to their planktonic forms, thereby confirming the increased survival of bacteria in biofilms. Also, biofilms have shown high resistance towards the penicillin G, ampicillin and streptomycin as compared to their planktonic form.

Conclusion

It is safely inferred that and , in their biofilms, become increasingly resistant to penicillin G, ampicillin and streptomycin.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265278809240101073539
2024-07-31
2025-01-01
Loading full text...

Full text loading...

References

  1. DonlanR.M. Biofilms: Microbial life on surfaces.Emerg. Infect. Dis.20028988189010.3201/eid0809.020063 12194761
    [Google Scholar]
  2. CostertonJ.W. MontanaroL. ArciolaC.R. Biofilm in implant infections: Its production and regulation.Int. J. Artif. Organs200528111062106810.1177/039139880502801103 16353112
    [Google Scholar]
  3. de CarvalhoC.C. Biofilms: Recent developments on an old battle.Recent Pat. Biotechnol.200711495710.2174/187220807779813965 19075832
    [Google Scholar]
  4. GarnettJ.A. MatthewsS. Interactions in bacterial biofilm development: A structural perspective.Curr. Protein Pept. Sci.201213873975510.2174/138920312804871166 23305361
    [Google Scholar]
  5. WilleyJ.M. SherwoodL.M. WoolvertonC.J. Prescott, harley and klein’s microbiology. 7th. New York2008
    [Google Scholar]
  6. MuhammadM.H. IdrisA.L. FanX. Beyond risk: Bacterial biofilms and their regulating approaches.Front. Microbiol.20201192810.3389/fmicb.2020.00928 32508772
    [Google Scholar]
  7. FrieriM. KumarK. BoutinA. Antibiotic resistance.J. Infect. Public Health201710436937810.1016/j.jiph.2016.08.007 27616769
    [Google Scholar]
  8. Di MartinoP. Extracellular polymeric substances, a key element in understanding biofilm phenotype.AIMS Microbiol.20184227428810.3934/microbiol.2018.2.274 31294215
    [Google Scholar]
  9. BerneC DucretA HardyGG BrunYV Adhesins involved in attachment to abiotic surfaces by Gram‐negative bacteria.Microbiol Spectr2015343.4.1510.1128/microbiolspec.MB‑0018‑2015 26350310
    [Google Scholar]
  10. HouryA. BriandetR. AymerichS. GoharM. Involvement of motility and flagella in Bacillus cereus biofilm formation.Microbiology201015641009101810.1099/mic.0.034827‑0 20035003
    [Google Scholar]
  11. MahT.F. Biofilm-specific antibiotic resistance.Future Microbiol.2012791061107210.2217/fmb.12.76 22953707
    [Google Scholar]
  12. SharmaS. MohlerJ. MahajanS.D. SchwartzS.A. BruggemannL. AalinkeelR. Microbial biofilm: A review on formation, infection, antibiotic resistance, control measures, and innovative treatment.Microorganisms2023116161410.3390/microorganisms11061614 37375116
    [Google Scholar]
  13. NguyenP.T. NguyenT.T. BuiD.C. HongP.T. HoangQ.K. NguyenH.T. Exopolysaccharide production by lactic acid bacteria: The manipulation of environmental stresses for industrial applications.AIMS Microbiol.20206445146910.3934/microbiol.2020027 33364538
    [Google Scholar]
  14. FlemmingH.C. WingenderJ. The biofilm matrix.Nat. Rev. Microbiol.20108962363310.1038/nrmicro2415 20676145
    [Google Scholar]
  15. FlemmingH.C. WingenderJ. SzewzykU. SteinbergP. RiceS.A. KjellebergS. Biofilms: An emergent form of bacterial life.Nat. Rev. Microbiol.201614956357510.1038/nrmicro.2016.94 27510863
    [Google Scholar]
  16. PrestinaciF. PezzottiP. PantostiA. Antimicrobial resistance: A global multifaceted phenomenon.Pathog. Glob. Health2015109730931810.1179/2047773215Y.0000000030 26343252
    [Google Scholar]
  17. MunitaJ.M. AriasC.A. Mechanisms of antibiotic resistance.Microbiol. Spectr.20164210.1128/microbiolspec.VMBF‑0016‑2015
    [Google Scholar]
  18. SinghS. SinghS.K. ChowdhuryI. SinghR. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents.Open Microbiol. J.2017111536210.2174/1874285801711010053 28553416
    [Google Scholar]
  19. CiofuO. MoserC. JensenP.Ø. HøibyN. Tolerance and resistance of microbial biofilms.Nat. Rev. Microbiol.2022201062163510.1038/s41579‑022‑00682‑4 35115704
    [Google Scholar]
  20. de la Fuente-NúñezC. ReffuveilleF. FernándezL. HancockR.E.W. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies.Curr. Opin. Microbiol.201316558058910.1016/j.mib.2013.06.013 23880136
    [Google Scholar]
  21. MadsenJ.S. BurmølleM. HansenL.H. SørensenS.J. The interconnection between biofilm formation and horizontal gene transfer.FEMS Immunol. Med. Microbiol.201265218319510.1111/j.1574‑695X.2012.00960.x 22444301
    [Google Scholar]
  22. TolmaskyM.E. Strategies to prolong the useful life of existing antibiotics and help overcoming the antibiotic resistance crisis.In: Frontiers in Clinical Drug Research-Anti Infectives.Atta-ur-Rhaman, Ed201712710.2174/9781681084879117040003
    [Google Scholar]
  23. EkiciG. DümenE. Escherichia coliand food safety.In: The universe of Escherichia coli.IntechOpen201910.5772/intechopen.82375
    [Google Scholar]
  24. ChekababS.M. Paquin-VeilletteJ. DozoisC.M. HarelJ. The ecological habitat and transmission of Escherichia coliO157:H7.FEMS Microbiol. Lett.2013341111210.1111/1574‑6968.12078 23305397
    [Google Scholar]
  25. PoirelL MadecJY LupoA Antimicrobial resistance in Escherichia coli.Microbiol Spectr2018646.4.1410.1128/microbiolspec.ARBA‑0026‑2017 30003866
    [Google Scholar]
  26. AnesJ. McCuskerM.P. FanningS.Ã. MartinsM. The ins and outs of RND efflux pumps in Escherichia coli.Front. Microbiol.2015658710.3389/fmicb.2015.00587 26113845
    [Google Scholar]
  27. O’TooleG. KaplanH.B. KolterR. Biofilm formation as microbial development.Annu. Rev. Microbiol.2000541497910.1146/annurev.micro.54.1.49 11018124
    [Google Scholar]
  28. VlamakisH. ChaiY. BeauregardP. LosickR. KolterR. Sticking together: Building a biofilm the Bacillus subtilis way.Nat. Rev. Microbiol.201311315716810.1038/nrmicro2960 23353768
    [Google Scholar]
  29. KumarD. SinghA.K. AliM.R. ChanderY. Antimicrobial susceptibility profile of extended spectrum β-lactamase (ESBL) producing Escherichia colifrom various clinical samples.Infectious Diseases: Research and Treatment20147
    [Google Scholar]
  30. LalA. CheepthamN. Starch agar protocol.Am Soc Microbiol2012119
    [Google Scholar]
  31. ShemeshM. ChaiY. A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via histidine kinase KinD signaling.J. Bacteriol.2013195122747275410.1128/JB.00028‑13 23564171
    [Google Scholar]
  32. FreemanD.J. FalkinerF.R. KeaneC.T. New method for detecting slime production by coagulase negative staphylococci.J. Clin. Pathol.198942887287410.1136/jcp.42.8.872 2475530
    [Google Scholar]
  33. MerrittJ.H. KadouriD.E. O’TooleG.A. Growing and analyzing static biofilms.Curr. Protoc. Microbiol.20112211B10.1002/9780471729259.mc01b01s22 18770545
    [Google Scholar]
  34. BauerA.W. PerryD.M. KirbyW.M. Single-disk antibiotic-sensitivity testing of staphylococci; an analysis of technique and results.AMA Arch. Intern. Med.1959104220821610.1001/archinte.1959.00270080034004 13669774
    [Google Scholar]
  35. Clinical and laboratory standards institute. M7-A7: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically.In: 11th Informational Supplement. Wayne, PA, USA : Clinical and Laboratory Standards Institute (CLSI).2006
    [Google Scholar]
  36. MishraA SharmaV BistR Prevalence of extended spectrum β-lactamases producing E. coli in conferring multi drug resistance against antimicrobials vegetos 31.201896
    [Google Scholar]
  37. RuhalR. KatariaR. Biofilm patterns in gram-positive and gram-negative bacteria.Microbiol. Res.202125112682910.1016/j.micres.2021.126829 34332222
    [Google Scholar]
  38. MahT.F.C. O’TooleG.A. Mechanisms of biofilm resistance to antimicrobial agents.Trends Microbiol.200191343910.1016/S0966‑842X(00)01913‑2 11166241
    [Google Scholar]
  39. ArnaouteliS. BamfordN.C. Stanley-WallN.R. KovácsÁ.T. Bacillus subtilis biofilm formation and social interactions.Nat. Rev. Microbiol.202119960061410.1038/s41579‑021‑00540‑9 33824496
    [Google Scholar]
  40. RahmanS.U. AhmadM. Isolation and identification of Escherichia colifrom urine samples and their antibiotic susceptibility pattern.J. Entomol. Zool. Stud.201973259264
    [Google Scholar]
  41. TariqA.L. SudhaS. ReyazA.L. Isolation and screening of Bacillus species from sediments and application in bioremediation.Int. J. Curr. Microbiol. Appl. Sci.20165691692410.20546/ijcmas.2016.506.099
    [Google Scholar]
  42. KussS. TannerE.E.L. Ordovas-MontanesM. ComptonR.G. Electrochemical recognition and quantification of cytochrome c expression in Bacillus subtilis and aerobe/anaerobe Escherichia coliusing N,N,N′,N′-tetramethyl-para-phenylene-diamine (TMPD).Chem. Sci.20178117682768810.1039/C7SC03498A 29568431
    [Google Scholar]
  43. BeshiruA. OkohA.I. IgbinosaE.O. Processed ready-to-eat (RTE) foods sold in Yenagoa Nigeria were colonized by diarrheagenic Escherichia coliwhich constitute a probable hazard to human health.PLoS One2022174e026605910.1371/journal.pone.0266059 35381048
    [Google Scholar]
  44. BagayaJ. SsekatawaK. NakabiriG. Molecular characterization of Carbapenem-resistant Escherichia coliisolates from sewage at Mulago National Referral Hospital, Kampala: A cross-sectional study.Ann. Microbiol.20237312810.1186/s13213‑023‑01732‑9
    [Google Scholar]
  45. AwaisM. ShahA.A. HameedA. HasanF. Isolation, identification and optimization of bacitracin produced by Bacillus sp.Pak. J. Bot.20073941303
    [Google Scholar]
  46. CostertonJ.W. ChengK.J. GeeseyG.G. Bacterial biofilms in nature and disease.Annu. Rev. Microbiol.198741143546410.1146/annurev.mi.41.100187.002251 3318676
    [Google Scholar]
  47. NguyenJ.M. MooreR.E. SpicerS.K. GaddyJ.A. TownsendS.D. Synthetic phosphoethanolamine cellobiose promotes Escherichia colibiofilm formation and congo red binding.ChemBioChem202122152540254510.1002/cbic.202000869 33890354
    [Google Scholar]
  48. PathakR. VergisJ. ChouhanG. Comparative efficiency of carbohydrates on the biofilm‐forming ability of enteroaggregative Escherichia coli.J. Food Saf.2022423e1297110.1111/jfs.12971
    [Google Scholar]
  49. JebrilN.M.T. Evaluation of two fixation techniques for direct observation of biofilm formation of Bacillus subtilis in situ, on Congo red agar, using scanning electron microscopy.Vet. World20201361133113710.14202/vetworld.2020.1133‑1137 32801564
    [Google Scholar]
  50. KatongoleP. NalubegaF. FlorenceN.C. AsiimweB. AndiaI. Biofilm formation, antimicrobial susceptibility and virulence genes of Uropathogenic Escherichia coliisolated from clinical isolates in Uganda.BMC Infect. Dis.202020145310.1186/s12879‑020‑05186‑1 32600258
    [Google Scholar]
  51. ReisnerA. KrogfeltK.A. KleinB.M. ZechnerE.L. MolinS. In vitro biofilm formation of commensal and pathogenic Escherichia colistrains: Impact of environmental and genetic factors.J. Bacteriol.2006188103572358110.1128/JB.188.10.3572‑3581.2006 16672611
    [Google Scholar]
  52. MishraA. BistR. SharmaV. Study of pervasiveness, antimicrobial vulnerability and resolution of best method for determining extended spectrum beta lactamases Escherichia coliisolates.Hos Pal Med Int Jnl2019325964
    [Google Scholar]
  53. DhanoaT. LiW. ThomasK. WuB. Sub-minimum inhibitory concentration of streptomycin and cephaloridine-induced capsular polysaccharide production in Escherichia coliK-12 increases biofilm formation in a Wzy-transporter dependent manner.J Exp Microbiol Immunol201519
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265278809240101073539
Loading
/content/journals/iddt/10.2174/0118715265278809240101073539
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ampicillin; antibiotics; bacteria; Biofilm; disc diffusion; resistance
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test