Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Emerging infectious diseases and increasing resistance to available antimicrobials are mapping the evolution of clinical microbiology and escalating the nature of undertakings required. Rapid diagnosis has become the need of the hour, which can affect diagnostic algorithms and therapeutic decisions simultaneously. Subsequently, the concept of ‘diagnostic stewardship’ was introduced into clinical practice for coherent implementation of available diagnostic modalities to ensure that these new rapid diagnostic technologies are conserved, rather than consumed as part of health care resources, with a view to improve the patient care and reduce Turnaround Time (TAT) and treatment expense. The present study highlights the requisite of diagnostic stewardship and outlines the infectious disease diagnostic modalities that can assist in its successful implementation. Diagnostic stewardship promotes precise, timely diagnostics, from the initial specimen collection and identification to reporting with appropriate TAT, so as to enable timely management of the patient. The main aim of diagnostic stewardship is to optimize the right choice of diagnostic test for the right patient to attain clinically significant reports with the least possible TAT for timely management and the least expected adverse effects for the patient, community, and the healthcare system. This underlines the requisite of a multifaceted approach to make technological advancements effective and successful for implementation as a part of diagnostic stewardship for the best patient care.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265294425240607110713
2024-07-03
2025-01-01
Loading full text...

Full text loading...

References

  1. AsokanG.V. KasimanickamR.K. Emerging infectious diseases, antimicrobial resistance and millennium development goals: Resolving the challenges through one health.Cent. Asian J. Glob. Health20132276 29755885
    [Google Scholar]
  2. Centers for disease control and prevention, office of infectious disease antibiotic resistance threats in the United States. 2013Available from: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf [cited 10 August 2023].
  3. MurrayC.J.L. IkutaK.S. ShararaF. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis.Lancet20223991032562965510.1016/S0140‑6736(21)02724‑0 35065702
    [Google Scholar]
  4. AdebisiY.A. AlaranA.J. OkerekeM. COVID-19 and antimicrobial resistance.A review. Infect. Dis.20211410.1177/11786337211033870 34376994
    [Google Scholar]
  5. COVID-19 to add as many as 150 million extreme poor by 2021. World Bank2021Available from: https://www.worldbank.org/en/news/press-release/2020/10/07/covid-19-to-add-as-many-as-150-million-extreme-poor-by-2021 [cited 2023 Oct 1].
  6. Core elements of hospital antibiotic stewardship programs | Antibiotic use | CDC.2021Available from: https://www.cdc.gov/antibiotic-use/core-elements/hospital.html.[cited 10 August 2023]
  7. Morency-PotvinP. SchwartzD.N. WeinsteinR.A. Antimicrobial stewardship: How the microbiology laboratory can right the ship.Clin. Microbiol. Rev.201730138140710.1128/CMR.00066‑16 27974411
    [Google Scholar]
  8. Global Antimicrobial Resistance Surveillance System:Manual for Early Implementation.GenevaWorld Health Organization2015
    [Google Scholar]
  9. Global action plan on antimicrobial resistance. WHO. World Health Organization 2016
    [Google Scholar]
  10. WuH. LutgringJ.D. McDonaldL.C. Selective and cascade reporting of antimicrobial susceptibility testing results and its impact on antimicrobial resistance surveillance—national healthcare safety network, april 2020 to march 2021.Microbiol. Spectr.2023112e01646e2210.1128/spectrum.01646‑22 36719248
    [Google Scholar]
  11. IdelevichE.A. ReischlU. BeckerK. New microbiological techniques in the diagnosis of bloodstream infections.Dtsch. Arztebl. Int.20181154982283210.3238/arztebl.2018.0822 30678752
    [Google Scholar]
  12. MizusawaM. Updates on rapid diagnostic tests in infectious diseases.Mo. Med.20201174328337 32848269
    [Google Scholar]
  13. PliakosE.E. AndreatosN. ShehadehF. ZiakasP.D. MylonakisE. The cost-effectiveness of rapid diagnostic testing for the diagnosis of bloodstream infections with or without antimicrobial stewardship.Clin. Microbiol. Rev.2018313e00095e1710.1128/CMR.00095‑17 29848775
    [Google Scholar]
  14. FairfaxM.R. SalimniaH. Diagnostic molecular microbiology: A 2013 snapshot.Clin. Lab. Med.201333478780310.1016/j.cll.2013.08.003 24267186
    [Google Scholar]
  15. SidhuS.K. MalhotraS. DeviP. TuliA.K. Significance of coagulase negative Staphylococcus from blood cultures: Persisting problems and partial progress in resource constrained settings.Iran. J. Microbiol.201686366371 28491246
    [Google Scholar]
  16. Medical Microbiology.9th edElsevier2020
    [Google Scholar]
  17. Diagnostic Stewardship Interventions That Make a Difference.
    [Google Scholar]
  18. LeekhaS. TerrellC.L. EdsonR.S. General principles of antimicrobial therapy.Mayo Clin. Proc.201186215616710.4065/mcp.2010.0639 21282489
    [Google Scholar]
  19. HuethK.D. PrinziA.M. TimbrookT.T. Diagnostic stewardship as a team sport: Interdisciplinary perspectives on improved implementation of interventions and effect measurement.Antibiotics202211225010.3390/antibiotics11020250 35203852
    [Google Scholar]
  20. MorganD.J. MalaniP.N. DiekemaD.J. Diagnostic stewardship to prevent diagnostic error.JAMA2023329151255125610.1001/jama.2023.1678 36862424
    [Google Scholar]
  21. BhatS. DeepashreeR. SastryA. Use of comments in clinical microbiology reporting: The need of the hour.J Acad Clin Microbiol2020222677510.4103/jacm.jacm_34_21
    [Google Scholar]
  22. AdrianoA. DomingaB. SalvatoreP. Efficacy of telephone communication about critical values in microbiology: Two years’ experience.Berlin, GermanyESCMID2013
    [Google Scholar]
  23. Diagnostic error in medicine.Diagnosis201854eA59eA15710.1515/dx‑2018‑0095
    [Google Scholar]
  24. MurrayC.K. GasserR.A.Jr MagillA.J. MillerR.S. Update on rapid diagnostic testing for malaria.Clin. Microbiol. Rev.20082119711010.1128/CMR.00035‑07 18202438
    [Google Scholar]
  25. CayR. FehlbergL.C.C. CarvalhaesC.G. NicolettiA.G. GalesA.C. Molecular diagnosis contributing for multi-drug resistant infection control.Curr. Treat. Options Infect. Dis.201461173910.1007/s40506‑013‑0006‑9
    [Google Scholar]
  26. PoritzM.A. BlaschkeA.J. ByingtonC.L. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: Development and application to respiratory tract infection.PLoS One2011610e2604710.1371/journal.pone.0026047 22039434
    [Google Scholar]
  27. SalimniaH. FairfaxM.R. LephartP.R. Evaluation of the filmarray blood culture identification panel: Results of a multicenter controlled trial.J. Clin. Microbiol.201654368769810.1128/JCM.01679‑15 26739158
    [Google Scholar]
  28. LiottiF.M. MenchinelliG. MarchettiS. Evaluating the newly developed BioFire COVID-19 test for SARS-CoV-2 molecular detection.Clin. Microbiol. Infect.202026121699170010.1016/j.cmi.2020.07.026 32735938
    [Google Scholar]
  29. MurphyC.N. FowlerR. Balada-LlasatJ.M. Multicenter evaluation of the biofire filmarray pneumonia/pneumonia plus panel for detection and quantification of agents of lower respiratory tract infection.J. Clin. Microbiol.2020587e00128e2010.1128/JCM.00128‑20 32350043
    [Google Scholar]
  30. RellerM.E. MalloneeA.B. KwiatkowskiN.P. MerzW.G. Use of peptide nucleic acid-fluorescence in situ hybridization for definitive, rapid identification of five common Candida species.J. Clin. Microbiol.200745113802380310.1128/JCM.01127‑07 17804657
    [Google Scholar]
  31. HarrisD.M. HataD.J. Rapid identification of bacteria and candida using pna-fish from blood and peritoneal fluid cultures: A retrospective clinical study.Ann. Clin. Microbiol. Antimicrob.2013121210.1186/1476‑0711‑12‑2 23295014
    [Google Scholar]
  32. StoneN.R.H. GortonR.L. BarkerK. RamnarainP. KibblerC.C. Evaluation of PNA-FISH yeast traffic light for rapid identification of yeast directly from positive blood cultures and assessment of clinical impact.J. Clin. Microbiol.20135141301130210.1128/JCM.00028‑13 23390280
    [Google Scholar]
  33. KothariA. MorganM. HaakeD.A. Emerging technologies for rapid identification of bloodstream pathogens.Clin. Infect. Dis.201459227227810.1093/cid/ciu292 24771332
    [Google Scholar]
  34. ScottL.J. Verigene® gram-positive blood culture nucleic acid test.Mol. Diagn. Ther.201317211712210.1007/s40291‑013‑0021‑z 23345071
    [Google Scholar]
  35. SamuelL.P. TibbettsR.J. AgoteskuA. FeyM. HensleyR. MeierF.A. Evaluation of a microarray-based assay for rapid identification of Gram-positive organisms and resistance markers in positive blood cultures.J. Clin. Microbiol.20135141188119210.1128/JCM.02982‑12 23363838
    [Google Scholar]
  36. SullivanK.V. TurnerN.N. RoundtreeS.S. Rapid detection of gram-positive organisms by use of the verigene gram-positive blood culture nucleic acid test and the bact/alert pediatric fan system in a multicenter pediatric evaluation.J. Clin. Microbiol.201351113579358410.1128/JCM.01224‑13 23966484
    [Google Scholar]
  37. McLoughlinK.S. Microarrays for pathogen detection and analysis.Brief. Funct. Genomics201110634235310.1093/bfgp/elr027 21930658
    [Google Scholar]
  38. BanerjeeS. MazumdarS. Electrospray ionization mass spectrometry: A technique to access the information beyond the molecular weight of the analyte.Int. J. Anal. Chem.20122012Mar14010.1155/2012/282574 22611397
    [Google Scholar]
  39. SegawaS. SawaiS. MurataS. Direct application of MALDI-TOF mass spectrometry to cerebrospinal fluid for rapid pathogen identification in a patient with bacterial meningitis.Clin. Chim. Acta2014435596110.1016/j.cca.2014.04.024 24797349
    [Google Scholar]
  40. Methods for the Identification of Cultured Microorganisms Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry.Clinical and Laboratory Standards Institute1st ed. Wayne, PA, USA2017M58
    [Google Scholar]
  41. ForbesB.A. HallG.S. MillerM.B. Practical guidance for clinical microbiology laboratories: Mycobacteria.Clin. Microbiol. Rev.2018312e00038e1710.1128/CMR.00038‑17 29386234
    [Google Scholar]
  42. LévesqueS. DufresneP.J. SoualhineH. A side by side comparison of bruker biotyper and VITEK MS: Utility of MALDI-TOF MS technology for microorganism identification in a public health reference laboratory.PLoS One20151012e014487810.1371/journal.pone.0144878 26658918
    [Google Scholar]
  43. GautamV. SharmaM. SinghalL. RayP. Distribution of carbapenemase genes in clinical isolates of Acinetobacter baumannii & a comparison of MALDI-TOF mass spectrometry-based detection of carbapenemase production with other phenotypic methods.Indian J. Med. Res.2020151658559110.4103/ijmr.IJMR_1383_18 32719232
    [Google Scholar]
  44. GautamV. SharmaM. SinghalL. MALDI-TOF mass spectrometry: An emerging tool for unequivocal identification of non-fermenting Gram-negative bacilli.Indian J. Med. Res.20171455665672 28948958
    [Google Scholar]
  45. TayaraniN.M.H. Applications of artificial intelligence in battling against COVID-19: A literature review.Chaos Solitons Fractals202114211033810.1016/j.chaos.2020.110338 33041533
    [Google Scholar]
  46. QuK. GuoF. LiuX. LinY. ZouQ. Application of machine learning in microbiology.Front. Microbiol.20191082710.3389/fmicb.2019.00827 31057526
    [Google Scholar]
  47. DavenportT. KalakotaR. The potential for artificial intelligence in healthcare.Future Healthc. J.201962949810.7861/futurehosp.6‑2‑94 31363513
    [Google Scholar]
  48. VaishyaR. JavaidM. KhanI.H. HaleemA. Artificial Intelligence (AI) applications for COVID-19 pandemic.Diabetes Metab. Syndr.202014433733910.1016/j.dsx.2020.04.012 32305024
    [Google Scholar]
  49. HaleemA. VaishyaR. JavaidM. KhanI.H. Artificial Intelligence (AI) applications in orthopaedics: An innovative technology to embrace.J. Clin. Orthop. Trauma202011Suppl. 1S80S8110.1016/j.jcot.2019.06.012 31992923
    [Google Scholar]
  50. LefterovaM.I. SuarezC.J. BanaeiN. PinskyB.A. Next-generation sequencing for infectious disease diagnosis and management.J. Mol. Diagn.201517662363410.1016/j.jmoldx.2015.07.004 26433313
    [Google Scholar]
  51. DuanH. LiX. MeiA. The diagnostic value of metagenomic next⁃generation sequencing in infectious diseases.BMC Infect. Dis.20212116210.1186/s12879‑020‑05746‑5 33435894
    [Google Scholar]
  52. Maljkovic BerryI. MelendrezM.C. Bishop-LillyK.A. Next generation sequencing and bioinformatics methodologies for infectious disease research and public health: Approaches, applications, and considerations for development of laboratory capacity.J. Infect. Dis.2020221Suppl. 3S292S307 31612214
    [Google Scholar]
  53. MardisE.R. DNA sequencing technologies: 2006–2016.Nat. Protoc.201712221321810.1038/nprot.2016.182 28055035
    [Google Scholar]
  54. AllenBS SuePK FilkinsL TeheraniM 161. Impact of committee- based diagnostic stewardship on performance of metagenomic next-generation sequence testing for suspected infections in children.Open Forum Infect Dis 202310Suppl 2ofad500.234
    [Google Scholar]
  55. NyasingaJ. Kyany’aC. OkothR. A six-member SNP assay on the iPlex MassARRAY platform provides a rapid and affordable alternative for typing major African Staphylococcus aureus types.Access Microbiol.201913e00001810.1099/acmi.0.000018 32974514
    [Google Scholar]
  56. NixI.D. IdelevichE.A. StorckL.M. Detection of methicillin resistance in staphylococcus aureus from agar cultures and directly from positive blood cultures using maldi-tof mass spectrometry-based direct-on-target microdroplet growth assay.Front. Microbiol.20201123210.3389/fmicb.2020.00232 32117194
    [Google Scholar]
  57. PaskovaV. ChudejovaK. SramkovaA. Insufficient repeatability and reproducibility of MALDI-TOF MS-based identification of MRSA.Folia Microbiol.202065589590010.1007/s12223‑020‑00799‑0 32613406
    [Google Scholar]
  58. JaniszewskaD. Szultka-MłyńskaM. PomastowskiP. BuszewskiB. “Omic” approaches to bacteria and antibiotic resistance identification.Int. J. Mol. Sci.20222317960110.3390/ijms23179601 36077000
    [Google Scholar]
  59. GogginK.P. FoxT.G. JaggiP. ShaneA.L. GonzalezM.D. Impact of a new diagnostic stewardship team on utilization and interpretation of a microbial cell-free DNA detection test.J. Pediatric Infect. Dis. Soc.202312Suppl. 1S2410.1093/jpids/piad070.049
    [Google Scholar]
  60. EpsteinL. DiekemaD.J. MorganD.J. Diagnostic stewardship and the coronavirus disease 2019 (COVID-19) pandemic: Lessons learned for prevention of emerging infectious diseases in acute-care settings.Infect. Control Hosp. Epidemiol.202445327728310.1017/ice.2023.195 37933951
    [Google Scholar]
  61. SinghH.K. ClaeysK.C. AdvaniS.D. Diagnostic stewardship to improve patient outcomes and healthcare-associated infection (HAI) metrics.Infect. Control Hosp. Epidemiol.202445440541110.1017/ice.2023.284 38204365
    [Google Scholar]
  62. SchinasG. DimopoulosG. AkinosoglouK. Understanding and implementing diagnostic stewardship: A guide for resident physicians in the era of antimicrobial resistance.Microorganisms2023119221410.3390/microorganisms11092214 37764058
    [Google Scholar]
  63. CoffeyK.C. MorganD.J. ClaeysK.C. Diagnostic stewardship: What impacts antibiotics use?Curr. Opin. Infect. Dis.202336427027510.1097/QCO.0000000000000927 37431556
    [Google Scholar]
  64. BanerjeeR. TengC.B. CunninghamS.A. Randomized trial of rapid multiplex polymerase chain reaction–based blood culture identification and susceptibility testing.Clin. Infect. Dis.20156171071108010.1093/cid/civ447 26197846
    [Google Scholar]
  65. ClaeysK.C. JohnsonM.D. Leveraging diagnostic stewardship within antimicrobial stewardship programmes.Drugs Context20231210.7573/dic.2022‑9‑5
    [Google Scholar]
  66. ZakhourJ. HaddadS.F. KerbageA. Diagnostic stewardship in infectious diseases: A continuum of antimicrobial stewardship in the fight against antimicrobial resistance.Int. J. Antimicrob. Agents202362110681610.1016/j.ijantimicag.2023.106816 37061101
    [Google Scholar]
  67. Woods-HillC.Z. ColantuoniE.A. KoontzD.W. Association of diagnostic stewardship for blood cultures in critically ill children with culture rates, antibiotic use, and patient outcomes.JAMA Pediatr.2022176769069810.1001/jamapediatrics.2022.1024 35499841
    [Google Scholar]
  68. TiseoG. ArenaF. BorrèS. Diagnostic stewardship based on patient profiles: Differential approaches in acute versus chronic infectious syndromes.Expert Rev. Anti Infect. Ther.202119111373138310.1080/14787210.2021.1926986 33970746
    [Google Scholar]
  69. AdvaniS.D. ClaeysK. Behavioral strategies in diagnostic stewardship.Infect. Dis. Clin. North Am.202337472974710.1016/j.idc.2023.06.004 37537001
    [Google Scholar]
  70. CurrenE.J. LutgringJ.D. KabbaniS. Advancing diagnostic stewardship for healthcare-associated infections, antibiotic resistance, and sepsis.Clin. Infect. Dis.202274472372810.1093/cid/ciab672 34346494
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265294425240607110713
Loading
/content/journals/iddt/10.2174/0118715265294425240607110713
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test