Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Posaconazole is an antifungal medication used primarily to treat invasive fungal infections caused by various organisms, such as Aspergillus, Candida, and certain molds. It belongs to the class of drugs known as triazole antifungals. Clinical studies have reported posaconazole to be effective in treating various invasive fungal infections, especially in patients who are immunocompromised, such as those with weakened immune systems due to conditions like HIV/AIDS, undergoing chemotherapy, or having received an organ transplant. It has effectively treated invasive candidiasis, aspergillosis, zygomycosis, and other serious fungal infections. The effectiveness of the drug varies based on factors, such as the type of infection, the patient's immune status, and the site of infection. This review describes the types of infection, the drug's safety profile, the development of resistance to posaconazole, and strategies to manage or prevent resistance.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265307531240801091445
2024-09-11
2025-01-01
Loading full text...

Full text loading...

References

  1. ViegasC. PinheiroA.C. SabinoR. ViegasS. BrandãoJ. VeríssimoC. Environmental mycology in public health: Fungi and mycotoxins risk assessment and management.Academic Press2015
    [Google Scholar]
  2. BongominF. EkengB.E. KiboneW. Invasive fungal diseases in Africa: A critical literature review.J. Fungi2022812123610.3390/jof8121236 36547569
    [Google Scholar]
  3. KumarS. JainT. BanerjeeD. Fungal diseases and their treatment: A holistic approach.In: Pathogenicity and Drug Resistance of Human Pathogens: Mechanisms and Novel Approaches.Springer201911113410.1007/978‑981‑32‑9449‑3_6
    [Google Scholar]
  4. ChenS.C.A. SlavinM.A. Management of mucorales infections in transplant patients.In: Emerging Transplant Infections.ChamSpringer202010.1007/978‑3‑030‑01751‑4_45‑1
    [Google Scholar]
  5. JordáT. PuigS. Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae.Genes202011779510.3390/genes11070795 32679672
    [Google Scholar]
  6. MaertensJ.A. RahavG. LeeD.G. Posaconazole versus voriconazole for primary treatment of invasive aspergillosis: A phase 3, randomised, controlled, non-inferiority trial.Lancet20213971027349950910.1016/S0140‑6736(21)00219‑1 33549194
    [Google Scholar]
  7. ChenX. WangJ. WangS. Real-world assessment of the effectiveness of posaconazole for the prophylaxis and treatment of invasive fungal infections in hematological patients.Medicine202110030e2677210.1097/MD.0000000000026772 34397725
    [Google Scholar]
  8. AbuhelwaA.Y. WilliamsD.B. UptonR.N. FosterD.J.R. Food, gastrointestinal pH, and models of oral drug absorption.Eur. J. Pharm. Biopharm.201711223424810.1016/j.ejpb.2016.11.034 27914234
    [Google Scholar]
  9. ZonoB. Molecular analysis of cryptococcus spp. Reveals species diversity and multilocus sequence typing heterogeneity among people living with HIV in kinshasa.J. Fungi20217916
    [Google Scholar]
  10. ScottI.A. HilmerS.N. ReeveE. Reducing inappropriate polypharmacy: The process of deprescribing.JAMA Intern. Med.2015175582783410.1001/jamainternmed.2015.0324 25798731
    [Google Scholar]
  11. MüllerC. NeugebauerT. ZillP. Lass-FlörlC. BracherF. BinderU. Sterol composition of clinically relevant mucorales and changes resulting from posaconazole treatment.Molecules2018235121810.3390/molecules23051218 29783739
    [Google Scholar]
  12. AhmedM Z RaoT SaeedA Antifungal drugs: Mechanism of action and resistance. Biochemistry of Drug Resistance14365
    [Google Scholar]
  13. JacquierN. SchneiterR. Mechanisms of sterol uptake and transport in yeast.J. Steroid Biochem. Mol. Biol.20121291-2707810.1016/j.jsbmb.2010.11.014 21145395
    [Google Scholar]
  14. KeC.L. DengF.S. ChuangC.Y. LinC.H. Antimicrobial actions and applications of chitosan.Polymers 202113690410.3390/polym13060904 33804268
    [Google Scholar]
  15. KaraburunA.Ç. Kaya ÇavuşoğluB. Acar ÇevikU. Synthesis and antifungal potential of some novel benzimidazole-1, 3, 4-oxadiazole compounds.Molecules201924119110.3390/molecules24010191 30621357
    [Google Scholar]
  16. MorrisM.I. Posaconazole: A new oral antifungal agent with an expanded spectrum of activity.Am. J. Health Syst. Pharm.200966322523610.2146/ajhp070532 19179636
    [Google Scholar]
  17. WalP. SaraswatN. VigH. A detailed insight onto the molecular and cellular mechanism of action of the antifungal drugs used in the treatment of superficial fungal infections.Curr. Drug Ther.202217314815910.2174/1574885517666220328141054
    [Google Scholar]
  18. CortésJ.C.G. CurtoM.Á. CarvalhoV.S.D. PérezP. RibasJ.C. The fungal cell wall as a target for the development of new antifungal therapies.Biotechnol. Adv.201937610735210.1016/j.biotechadv.2019.02.008 30797093
    [Google Scholar]
  19. HamperlS. CimprichK.A. Conflict resolution in the genome: How transcription and replication make it work.Cell201616761455146710.1016/j.cell.2016.09.053 27912056
    [Google Scholar]
  20. RiquelmeM. AguirreJ. Bartnicki-GarcíaS. Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures.Microbiol. Mol. Biol. Rev.2018822e00068e1710.1128/MMBR.00068‑17 29643171
    [Google Scholar]
  21. GuntukuL. NaiduV.G.M. Ganesh YerraV. Mitochondrial dysfunction in gliomas: Pharmacotherapeutic potential of natural compounds.Curr. Neuropharmacol.201614656758310.2174/1570159X14666160121115641 26791479
    [Google Scholar]
  22. IbeC. MunroC.A. Fungal cell wall proteins and signaling pathways form a cytoprotective network to combat stresses.J. Fungi20217973910.3390/jof7090739 34575777
    [Google Scholar]
  23. LiJ. NguyenC. Garcia-DiazJ. Role of new antifungal agents in the treatment of invasive fungal infections in transplant recipients: isavuconazole and new posaconazole formulations.J. Fungi20151334536610.3390/jof1030345 29376915
    [Google Scholar]
  24. SoysalA. Prevention of invasive fungal infections in immunocompromised patients: The role of delayed-release posaconazole.Infect. Drug Resist.2015832133110.2147/IDR.S65592 26392781
    [Google Scholar]
  25. AubergerJ. Lass-FlörlC. AignerM. ClausenJ. GastlG. NachbaurD. Invasive fungal breakthrough infections, fungal colonization and emergence of resistant strains in high-risk patients receiving antifungal prophylaxis with posaconazole: real-life data from a single-centre institutional retrospective observational study.J. Antimicrob. Chemother.20126792268227310.1093/jac/dks189 22653819
    [Google Scholar]
  26. WongT.Y. LooY.S. VeettilS.K. Efficacy and safety of posaconazole for the prevention of invasive fungal infections in immunocompromised patients: A systematic review with meta-analysis and trial sequential analysis.Sci. Rep.20201011457510.1038/s41598‑020‑71571‑0 32884060
    [Google Scholar]
  27. GuptaA.K. TalukderM. VenkataramanM. Review of the alternative therapies for onychomycosis and superficial fungal infections: Posaconazole, fosravuconazole, voriconazole, oteseconazole.Int. J. Dermatol.202261121431144110.1111/ijd.15999 34882787
    [Google Scholar]
  28. DrewR.H. TownsendM.L. PoundM.W. JohnsonS.W. PerfectJ.R. Recent advances in the treatment of life-threatening, invasive fungal infections.Expert Opin. Pharmacother.201314172361237410.1517/14656566.2013.838217 24050675
    [Google Scholar]
  29. LeungS. PoulakosM. MachinJ. Posaconazole: An update of its clinical use.Pharmacy20153421026810.3390/pharmacy3040210 28975914
    [Google Scholar]
  30. LeventakosK. LewisR.E. KontoyiannisD.P. Fungal infections in leukemia patients: How do we prevent and treat them?Clin. Infect. Dis.201050340541510.1086/649879 20047485
    [Google Scholar]
  31. AllenD. WilsonD. DrewR. PerfectJ. Azole antifungals: 35 years of invasive fungal infection management.Expert Rev. Anti Infect. Ther.201513678779810.1586/14787210.2015.1032939 25843556
    [Google Scholar]
  32. AperisG. AlivanisP. Posaconazole: A new antifungal weapon.Rev. Recent Clin. Trials20116320421910.2174/157488711796575595 21682687
    [Google Scholar]
  33. Kumar NigamP. Antifungal drugs and resistance: Current concepts.Nasza Dermatol. Online20156221222110.7241/ourd.20152.58
    [Google Scholar]
  34. LamothF. KontoyiannisD.P. Therapeutic challenges of non-Aspergillus invasive mold infections in immunosuppressed patients.Antimicrob. Agents Chemother.20196311e01244e1910.1128/AAC.01244‑19 31481441
    [Google Scholar]
  35. FramptonJ.E. ScottL.J. Posaconazole.Drugs2008687993101610.2165/00003495‑200868070‑00008 18457464
    [Google Scholar]
  36. VolberdingP.A. DeeksS.G. Antiretroviral therapy and management of HIV infection.Lancet20103769734496210.1016/S0140‑6736(10)60676‑9 20609987
    [Google Scholar]
  37. KarthausM. Prophylaxis and treatment of invasive aspergillosis with voriconazole, posaconazole and caspofungin - Review of the literature.Eur. J. Med. Res.201116414515210.1186/2047‑783X‑16‑4‑145 21486728
    [Google Scholar]
  38. WangJ ZhouM XuJY ZhouRF ChenB WanY Comparison of antifungal prophylaxis drugs in patients with hematological disease or undergoing hematopoietic stem cell transplantation: A systematic review and network meta-analysis.JAMA Netw Open2020310e201765210.1001/jamanetworkopen.2020.17652 33030550
    [Google Scholar]
  39. PasulaS. ChandrasekarP.H. Azole resistance in Aspergillus species: promising therapeutic options.Expert Opin. Pharmacother.202122152071207810.1080/14656566.2021.1940134 34129410
    [Google Scholar]
  40. LamothF. CalandraT. Pulmonary aspergillosis: Diagnosis and treatment.Eur. Respir. Rev.20223116622011410.1183/16000617.0114‑2022 36450372
    [Google Scholar]
  41. VaraiyaA. SundaresanA. Emerging mucormycosis: Problems and treatments.In: Fungi and Fungal Products in Human Welfare and Biotechnology.SingaporeSpringer Nature Singapore20239712510.1007/978‑981‑19‑8853‑0_4
    [Google Scholar]
  42. WaltherG. WagnerL. KurzaiO. Updates on the taxonomy of Mucorales with an emphasis on clinically important taxa.J. Fungi20195410610.3390/jof5040106 31739583
    [Google Scholar]
  43. LoganA. WolfeA. WilliamsonJ.C. Antifungal resistance and the role of new therapeutic agents.Curr. Infect. Dis. Rep.202224910511610.1007/s11908‑022‑00782‑5 35812838
    [Google Scholar]
  44. HoeniglM. SpruteR. EggerM. The antifungal pipeline: Fosmanogepix, ibrexafungerp, olorofim, opelconazole, and rezafungin.Drugs202181151703172910.1007/s40265‑021‑01611‑0 34626339
    [Google Scholar]
  45. Al YazidiL.S. Al-HatmiA.M.S. Fusariosis: An update on therapeutic options for management.Expert Opin. Orphan Drugs2021939510310.1080/21678707.2021.1904394
    [Google Scholar]
  46. HeidrichD. PaganiD.M. KoehlerA. AlvesK.O. ScrofernekerM.L. Effect of melanin biosynthesis inhibition on the antifungal susceptibility of chromoblastomycosis agents.Antimicrob. Agents Chemother.2021658e00546e2110.1128/AAC.00546‑21 33972246
    [Google Scholar]
  47. HuangC. ZhangY. SongY. WanZ. WangX. LiR. Phaeohyphomycosis caused by Phialophora americana with CARD9 mutation and 20‐year literature review in China.Mycoses2019621090891910.1111/myc.12962 31271673
    [Google Scholar]
  48. SeyedmousaviS. ChangY.C. YounJ.H. In vivo efficacy of olorofim against systemic scedosporiosis and lomentosporiosis.Antimicrob. Agents Chemother.20216510e00434e2110.1128/AAC.00434‑21 34252298
    [Google Scholar]
  49. SchwartzI.S. KauffmanC.A. Blastomycosis.Semin. Respir. Crit. Care Med.20204113141
    [Google Scholar]
  50. HanzlicekAS KuKanich KS, Cook AK, et al Clinical utility of fungal culture and antifungal susceptibility in cats and dogs with histoplasmosis.J. Vet. Intern. Med.2023373998100610.1111/jvim.16725 37092675
    [Google Scholar]
  51. ChenL. KrekelsE.H.J. HeijnenA.R. KnibbeC.A.J. BrüggemannR.J. An integrated population pharmacokinetic analysis for posaconazole oral suspension, delayed-release tablet, and intravenous infusion in healthy volunteers.Drugs2023831758610.1007/s40265‑022‑01819‑8 36607589
    [Google Scholar]
  52. PhillipsN.A. BachmannG. HaefnerH. MartensM. StockdaleC. Topical treatment of recurrent vulvovaginal candidiasis: An expert consensus. Women’s. Women’s.Health Rep.202231384210.1089/whr.2021.0065 35136875
    [Google Scholar]
  53. KamathS. KumarM. SarkarN. AhmedT. SunderA. Study of profile of mucormycosis during the second wave of COVID-19 in a tertiary care hospital.Cureus2022141e2105410.7759/cureus.21054 35155019
    [Google Scholar]
  54. ChenL. KrekelsE.H.J. VerweijP.E. BuilJ.B. KnibbeC.A.J. BrüggemannR.J.M. Pharmacokinetics and pharmacodynamics of posaconazole.Drugs202080767169510.1007/s40265‑020‑01306‑y 32323222
    [Google Scholar]
  55. DingQ. HuangS. SunZ. ChenK. LiX. PeiQ. A review of population pharmacokinetic models of posaconazole.Drug Des. Devel. Ther.2022163691370910.2147/DDDT.S384637 36277600
    [Google Scholar]
  56. Van DaeleR. SprietI. MaertensJ. Posaconazole in prophylaxis and treatment of invasive fungal infections: A pharmacokinetic, pharmacodynamic and clinical evaluation.Expert Opin. Drug Metab. Toxicol.202016753955010.1080/17425255.2020.1764939 32478597
    [Google Scholar]
  57. Echeverria-EsnalD. Martín-OntiyueloC. Navarrete-RoucoM.E. Pharmacological management of antifungal agents in pulmonary aspergillosis: An updated review.Expert Rev. Anti Infect. Ther.202220217919710.1080/14787210.2021.1962292 34328373
    [Google Scholar]
  58. BeckK.R. TelismanL. van KoppenC.J. ThompsonG.R.III OdermattA. Molecular mechanisms of posaconazole- and itraconazole-induced pseudohyperaldosteronism and assessment of other systemically used azole antifungals.J. Steroid Biochem. Mol. Biol.202019910560510.1016/j.jsbmb.2020.105605 31982514
    [Google Scholar]
  59. WaalewijnH. TurkovaA. RakhmaninaN. Optimizing pediatric dosing recommendations and treatment management of antiretroviral drugs using therapeutic drug monitoring data in children living with HIV.Ther. Drug Monit.201941443144310.1097/FTD.0000000000000637 31008997
    [Google Scholar]
  60. BrandtC. AtkinsonT.J. A review of the safety of buprenorphine in special populations.Am. J. Med. Sci.2022364667568410.1016/j.amjms.2022.06.025 35843298
    [Google Scholar]
  61. CzajkaK.M. VenkataramanK. Brabant-KirwanD. Molecular mechanisms associated with antifungal resistance in pathogenic Candida species.Cells20231222265510.3390/cells12222655 37998390
    [Google Scholar]
  62. VitielloA. FerraraF. BoccellinoM. Antifungal drug resistance: An emergent health threat.Biomedicines2023114106310.3390/biomedicines11041063 37189681
    [Google Scholar]
  63. DouglasA.P. SmibertO.C. BajelA. Consensus guidelines for the diagnosis and management of invasive aspergillosis, 2021.Intern. Med. J.202151S7Suppl. 714317610.1111/imj.15591 34937136
    [Google Scholar]
  64. Geddes-McAlisterJ. ShapiroR.S. New pathogens, new tricks: Emerging, drug‐resistant fungal pathogens and future prospects for antifungal therapeutics.Ann. N. Y. Acad. Sci.201914351577810.1111/nyas.13739 29762860
    [Google Scholar]
  65. FisherM.C. Alastruey-IzquierdoA. BermanJ. Tackling the emerging threat of antifungal resistance to human health.Nat. Rev. Microbiol.202220955757110.1038/s41579‑022‑00720‑1 35352028
    [Google Scholar]
  66. TrikhaG. NucciM. WingardJ.R. SafdarA. Antimicrobial drug prophylaxis: Challenges and controversies.In: Principles and Practice of Transplant Infectious Diseases.New York, NYSpringer2019
    [Google Scholar]
  67. RisumM. DatcuR. JohansenH.K. SchønheyderH. RosenvingeF.S. KnudsenI.J.D. Update 2016-2018 of the nationwide Danish fungaemia surveillance study: Epidemiologic changes in a 15-year perspective.J. Fungi2019549496 31591307
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265307531240801091445
Loading
/content/journals/iddt/10.2174/0118715265307531240801091445
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): aspergillosis; candidiasis; fungal disease; Posaconazole; treatment; zygomycosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test